Qualification Exam Syllabus

Major: Set Theory

21-602: Set Theory I

- The axioms of ZFC
- Ordinal and cardinal arithmetic
- König's lemma
- Transfinite induction and recursion scheme
- The rank hierarchy and rank function
- The Mostowski collapse theorem scheme
- Foundation $\Longleftrightarrow V=W F$
- $H_{\lambda} \models$ ZFC-P for regular uncountable λ
- $H_{\lambda}<\Sigma_{1} V$ for uncountable λ
- Δ_{1}-absoluteness theorem
- The absoluteness of well-foundedness
- The reflection theorem scheme of hierarchy of sets: ZFC is not finite axiomatizable
- Δ-system lemma
- Internal model theory and proof theory
- $\operatorname{HOD} \models \mathrm{ZFC} ; \operatorname{HOD}(X) \models \mathrm{ZF}$
- $L \models \mathrm{ZFC}+\mathrm{GCH}$
- ${ }^{\omega} \omega \cap L$ is Σ_{2}^{1} set of reals
- $L \vDash<_{L} \cap{ }^{\omega} \omega \times{ }^{\omega} \omega$ is a Δ_{2}^{1} wellordering of ordertype ω_{1}
- $<_{L} \cap^{\omega} \omega \times{ }^{\omega} \omega$ is not Lebesgue measurable in L
- Suslin representation for $\boldsymbol{\Sigma}_{1}^{1}, \boldsymbol{\Pi}_{1}^{1}$ and $\boldsymbol{\Sigma}_{2}^{1}$ sets of reals
- Shoenfield's absoluteness theorem
- $\boldsymbol{\Sigma}_{2}^{1} \cap \mathcal{P}\left({ }^{\omega} \omega\right)=\boldsymbol{\Sigma}_{1}^{H C} \cap \mathcal{P}\left({ }^{\omega} \omega\right)$
- Suslin's problem
- Trees and tree property
- Construction of various uncountable trees: Aronszajn, Suslin, Kurepa, Special
- Diagonal intersection and normality of filters
- Fodor's lemma
- Solovay's splitting theorem
- Elementary substructures and internal approaching sequences
- Ultrapowers and Łoś's theorem
- Clubs and stationary sets of $[X]^{\omega}$
- The diamond principle $\diamond_{\kappa}(E)$ and applications
- $L \models \diamond_{\kappa}(E)$
- The square principle \square_{κ} and applications
- Large cardinals: Inaccessible, Mahlo, weakly compact, measurable, strong, superstrong, supercompact, huge cardinals
- Equivalent definitions for weakly compact cardinals
- Equivalent definitions for measurable cardinals
- Scott's theorem of $L \vDash$ "There is no measurable cardinals"
- Kunen's theorem that the only elementary embedding from V to V is the identity
- Silver's theorem on singular cardinals

21-702: Set Theory II

- Generic model theorem
- Generic filter existence lemma
- Theorem on forcing and truth
- Theorem on the definability of forcing
- Eliminating the countable transitive model assumption
- Existential completeness of forcing
- A model of $\mathrm{ZFC}+\mathrm{V} \neq \mathrm{L}$
- Properties that some posets have, such as:
- Splitting
- Chain condition
- Distributive
- Closed
- Weakly homogeneous
- Partial ordering in the strict sense
- Separative
together with corresponding forcing facts, examples and applications
- Cohen's consistency proof for $\mathrm{ZFC}+\neg \mathrm{CH}$
- Nice names lemma
- Properties and applications of the poset $\operatorname{Add}(\kappa, \lambda)$
- Products of posets with various supports
- Product lemmas
- Properties and applications of the posets $\operatorname{Coll}(\kappa, \lambda)$ and $\operatorname{Coll}(\kappa,<\mu)$.
- Easton's theorem and Easton's lemma
- Various models in which AC fails, including:
- ZF+ There is an infinite set A for which there is no injection $f: \omega \rightarrow A$
$-\mathrm{ZF}+\omega_{1}$ is singular
$-\mathrm{ZF}+\mathrm{DC}+$ There is no wellordering of \mathbb{R}
- Boolean completion of a poset
- Intermediate models are forcing extensions by complete subalgebras
- Quotient Boolean algebras and two step iterations
- Characterization of $\operatorname{ro}(\operatorname{Coll}(\omega, \kappa))$
- $\operatorname{ro}(\operatorname{Coll}(\omega, \kappa))$ is countably generated
- Classical results on Baire category, Lebesgue measure and perfect sets
- If ω_{1} is inaccessible to reals, then every $\boldsymbol{\Sigma}_{2}^{\mathbf{1}}$ set has the Baire property
- Borel/meager $\simeq \operatorname{ro}($ Cohen $)$
- Solovay's model for ZF + DC + BP + LM + PSP
- Mansfield perfect set theorem
- Sacks-Guasparie-Kechris theorem
- Martin's theorem that if there is a measurable cardinal, then Π_{1}^{1} sets are homogeneously Suslin, hence determined
- Homogeneous and weakly homogeneous systems
- Martin-Solovay Σ_{3}^{1}-absoluteness theorem

21-800: Advanced Topics in Logic(Inner Model Theory)
The fine structure theory of L :

- Jensen's hierarchy
- Σ_{1}-condensation theorem
- Theorems about soundness, acceptability, and solidity
- Equivalent definitions of projecta and standard parameters
- The decoding process
- Downward and upward extension theorem
- $\mathfrak{C}=\left(J_{\rho}, \in, A\right)=\mathfrak{C}_{1}^{J_{\alpha}} \Longrightarrow \forall n<\omega\left[\mathcal{P}\left(J_{\rho}\right) \cap \Sigma_{2+n}^{J_{\alpha}}=\Sigma_{1+n}^{\mathfrak{C}}\right]$
- Amenability of the coding structure
- Σ_{2}-condensation theorem of the coding structure
- Higher-order coding structures and corresponding theorems
- Examples of the projecta sequence

The covering lemma of L : The proof and some applications
Sharps:

- The factor lemma of ultrapowers
- Indiscernibles of L is a club class
- Equivalence of non-rigidity of L : There is an active baby mice; There is a club class of L-indiscernibles; There is a club class of L-indiscernibles that generates L
- Iterability of $\left(L, \in, U_{j}\right)$ with $j: L \rightarrow L$
- Realization lemma and fixed points lemma of L-iterates
- \mathcal{M} is iterable iff it is $|\mathcal{M}|^{+}$-iterable
- $\{\mathcal{M}: \mathcal{M}$ is a countable active baby mouse $\}$ is Π_{1} over $H C$
- The singleton containing the minimal active baby mouse is Σ_{3}^{1}
- Uniqueness lemma of the minimal active baby mouse
- Σ_{1}-condensation of active baby premouse
- Copying construction
- Uniqueness lemma of every active baby mouse with respect to the critical point
- Uniqueness of L-indiscernibles and its generation of L
- $\exists 0^{\#}$ is absolute between forcing extensions
- $\exists \theta$-iterable,countable active baby premouse is absolute between L and V for all $\theta<\omega_{1}^{L}$
- $\exists 0^{\#} \Longrightarrow \Sigma_{1}^{1}$-Det
$L[U]$ premice:
- Copying construction beween coarse premice
- ω_{1}-iterability $\Longleftrightarrow \omega_{1}$-completeness \Longleftrightarrow iterability
- Realization lemma of coarse premice
- Comparison lemma between mice
- Silver's theorem: All weasels satisfy GCH
- All weasels have the same reals and the same wellordering of their reals
- ${ }^{\omega} \omega \cap W$ is a Σ_{3}^{1} set of reals
- The order of construction of every weasel W restricts to a Σ_{3}^{1} wellordering of ${ }^{\omega} \omega \cap W$
- A proof of Martin-Solovay using mice
- In iteration $i_{0, \theta} M \rightarrow M_{\theta}$ with $\operatorname{crit}\left(i_{0, \theta}\right)=\kappa$, all cardinal $\mu>\theta$ of M such that $M \models c f(\mu)>\kappa \wedge \forall \lambda<\mu\left(\lambda^{\kappa}<\mu\right)$ is fixed by $i_{0, \theta}$
- The class of ordinals fixed by the iteration map is thick
- Hull property and definability property of weasels
- The weasel W is uniquely determined by $\dot{\kappa}^{W}$
- For any two weasels W and $W^{\prime}, \dot{\kappa}^{W}<\dot{\kappa}^{W^{\prime}} \Longrightarrow W^{\prime}$ is an iterate of W
- $L[U] \vDash \mathrm{ZFC}+$ "there is only one measurable cardinal with only one normal measure"
- $L[U] \vDash \forall \bar{U}\left[" \bar{U}\right.$ is a measure over $\dot{\kappa} " \Longrightarrow \exists n<\omega\left[\bar{U} \simeq \dot{U}^{n}\right] "$
- Mathias theorem about Prikry forcing

Minor: Topology

- Topological space. (Sequentially) continuity. Subspace topology. Basis and subbasis. Interior and closure. Limit points and boundary. Neighborhood basis.
- Initial and final topology. Initial and final topology exists and unique. Product topology. Topological sum.
- (Pathwise/locally) connectedness. (Pathwise) connected components. Properties of (pathwise/locally) connectedness.
- Compactness and variations (paracompact, sequentially compact, locally compact, Lindelöf). Properties of compactness.
- First and second countablility. Separable space.
- Metric space. Isometry. Compact metric spaces. Totally boundedness. Separable metric spaces. Completion of metric spaces. Arzela-Ascoli theorem.
- Axiom of Choice. Zorn's lemma. Baire category theorem. Banach-Steinhaus theorem.
- Filters. Ultrafilters. Acummulation points. Push-forward filters. Tychonoff's theorem.
- Separation axioms $\left(T_{0}, T_{1}, T_{2}, T_{3}, T_{3 a}, T_{4}\right)$. Regular, completely regular and normal spaces. Urysohn's lemma. Tietze's extension theorem.
- Stone-Čech compactification of completely regular spaces and discrete spaces. Universal property. One-point compactification of locally compact, non-compact, Hausdorff spaces.
- Quotient spaces. Gluing one space to another. Cone and suspensions. Configuration spaces. Projective spaces.
- Simplical complexes. PL category. Orientations. $\mathbb{R} P^{2}$ does not embed into \mathbb{R}^{3}.
- Brouwer's fixed point theorem. KKM theorem. Appications. Intersecting paths in the unit square.
- Borsuk-Ulam theorem. Jordan curve theorem.
- Antipodally-labelled triangulations and alternating simplices. Topological Radon theorem. $K_{3,3}$ is not planar. Linked curves. K_{6} is intrinsically linked.
- Homotopy. Homotopy equivalence. Contractible spaces. B^{n} is contractible. S^{n} is not contractible. Simply connected spaces.

Qualification Exam Transcript*

Examiner: Prof. James Cummings, Prof. Ernest Schimmerling, Prof. Florian Fricks.
Florian: Give a counter-example of sequentially continuity/compactness/closedness not implying continuity/compactness/closedness.

Me: Consider $f: \omega_{1}+1 \rightarrow\{0,1\}$, where $\omega_{1}+1$ is equipped with the order topology, $\{0,1\}$ the discrete topology, and $f(\alpha)=0$ iff $\alpha<\omega_{1}$. This function is sequentially continuous but not continuous.

Florian: Show that, $f: X \rightarrow Y$ is continuous at x iff for every filter $\mathcal{F} \subseteq \mathcal{P}(X)$ and $\mathcal{F} \rightarrow x$, $\mathcal{F}^{*} \rightarrow f(x)$, where \mathcal{F}^{*} is the push-forward filter.
$\mathrm{Me}:[\text { Omitted response. }]^{\dagger}$
James: Show why $x=0^{\#}$ is $\Pi_{2}^{1}(x)$.
$\mathrm{Me}:[\text { Omitted response. }]^{\ddagger}$
James: Show why $0^{\#}$ exists is absolute between V and $V[G]$, where G is a set-generic filter over V.

Me: If V has $0^{\#}$, then the minimal active baby mouse is still iterable in $V[G]$, thus $V[G] \vDash$ $0^{\#}$ exists. If $\Vdash_{\mathbb{P}} 0^{\#}$ exists, then we force $\mathbb{P} \times \mathbb{P}$ over V. Let $G \times H$ be the generic filter. Then since $0^{\#}$ exists in both $V[G]$ and $V[H]$, and by the uniqueness theorem, in $V[G \times H]$ witnesses the fact that $\left(0^{\#}\right)^{V}[G]=\left(0^{\#}\right)^{V}[H]$. This implies that $0^{\#} \in V$, by the product lemma.

Florian: Give the definition of contractible space.
Me : [Omitted response.]
Florian: Show that S^{n} is not contractible. ${ }^{\S}$
Me: Notice that:
Lemma 1. S^{n} is contractible iff for every continuous function $f: S^{n} \rightarrow S^{n}, f$ can be extended to a continuous function $\tilde{f}: B^{n+1} \rightarrow S^{n}$.

[^0]Florian didn't ask me to prove this. I then claimed that I can get a contradiction by using the Borsuk-Ulam theorem, but it turned out that I cannot. Hinted by Florian, I considered the Brower's fixed point theorem, and let $f=i d_{S^{n}}$. Suppose f has a continuous extension \tilde{f}, then let $g(x)=-x$ and consider $g \circ \tilde{f}: B^{n+1} \rightarrow S^{n} \subseteq B^{n+1}$. This map has no fixed point, which contradicts the Brower's fixed point theorem.

Ernest: Give some properties hold by L.
Me: $L \vDash$ ZFC, $L \models 0^{\#}$ does not exist(I gave a short proof of this, under Ernest's request that I cannot using Kunen's inconsistency), $L \models \diamond_{\kappa}(E) \wedge \square_{\kappa}(E)$, the covering lemma, fine structure...

Ernest: Show some consequence of covering lemma.
Me: If $0^{\#}$ does not exist, then for any singular uncountable cardinal $\kappa, \kappa^{+L}=\kappa^{+}$.
Ernest: Prove this.
Me: [Ernest's hint: Consider $\kappa^{+L}=\alpha<\kappa^{+}$and the $\operatorname{cof}(\alpha)$.] Otherwise, let $F \subseteq \alpha$ be a cofinal set in V with cardinality $<\kappa$. Now in L, let $F^{*} \supseteq F$ in L given by the covering lemma. Now F^{*} witnesses that α is not regular in L. Contradiction.

James: Give an outline of the proof of Solovay splitting theorem.
Me: [Since the time is over we just had a brief conversation about this. He would like to know the proof of the regular case, I basically wrote:

Lemma 2. Let μ be a weakly inaccessible cardinal and $S \subseteq \mu$ is stationary. Then $T=\{\alpha \in S: \alpha \cap S$ is not stationary in $\alpha\}$ is stationary.

I said that this is a homework question of 602 and they didn't ask me to prove this. Also I briefly proved that following ladder system lemma:

Lemma 3. Let $C_{\alpha}=\left\{\xi_{j}^{\alpha}: j<\alpha\right\}$ be a club set that $T \cap C_{\alpha}=\varnothing$. Then there exists $j<\mu$ such that for all $\eta<\mu,\left\{\alpha \in T: \xi_{j}^{\alpha} \geqslant \eta\right\}$ is stationary.

What I said is just: towards contradiction, we should first take the diagonal intersection. Then Ernest reminds me that we should also take the club set of the closure point of $\left.i \mapsto \eta_{i} \cdot\right]^{\mathbb{I}}$

Time span: Approx. 1hr 45min. After the exam, they said that the tradition was to let me wait in my office and they would come to my office after the result was determined.

[^1]
[^0]: *I wrote this list after approximately 1 hr after the exam, but I won't be sure that these are all of the questions.
 ${ }^{\dagger}$ I mistakenly stated the definition of x being an accumulation point of \mathcal{F}, and Florian corrected me.
 ${ }^{\ddagger}$ I got the correct idea, but I was very sloppy at how I should express that I code some structure in a real and some iteration process can be computable from it. I received several hints and suggestions from James and Ernest.
 ${ }^{\S}$ I misheard the question and answered that B^{n} is contractible. Fixed by Florian.

[^1]: ${ }^{\mathbb{I}}$ I also remember that Ernest wanted to ask me to give the outline of the proof of the covering lemma and then he changed his mind.

