Qualification Exam Syllabus

Major: Set Theory

21-602: Set Theory I

- The axioms of ZFC
- Ordinal and cardinal arithmetic
- König's lemma
- Transfinite induction and recursion scheme
- The rank hierarchy and rank function
- The Mostowski collapse theorem scheme
- Foundation $\iff V = WF$
- $H_{\lambda} \models$ ZFC-P for regular uncountable λ
- $H_{\lambda} \prec_{\Sigma_1} V$ for uncountable λ
- Δ_1 -absoluteness theorem
- The absoluteness of well-foundedness
- The reflection theorem scheme of hierarchy of sets: ZFC is not finite axiomatizable
- Δ -system lemma
- Internal model theory and proof theory
- HOD \models ZFC; HOD $(X) \models$ ZF
- $L \models \text{ZFC+GCH}$
- ${}^{\omega}\omega \cap L$ is Σ_2^1 set of reals
- $L \models <_L \cap {}^{\omega}\omega \times {}^{\omega}\omega$ is a Δ_2^1 well ordering of order type ω_1
- $<_L \cap {}^\omega \omega \times {}^\omega \omega$ is not Lebesgue measurable in L
- Suslin representation for Σ_1^1, Π_1^1 and Σ_2^1 sets of reals
- Shoenfield's absoluteness theorem
- $\Sigma_2^1 \cap \mathcal{P}(\omega\omega) = \Sigma_1^{HC} \cap \mathcal{P}(\omega\omega)$
- Suslin's problem

- Trees and tree property
- Construction of various uncountable trees: Aronszajn, Suslin, Kurepa, Special
- Diagonal intersection and normality of filters
- Fodor's lemma
- Solovay's splitting theorem
- Elementary substructures and internal approaching sequences
- Ultrapowers and Łoś's theorem
- Clubs and stationary sets of $[X]^{\omega}$
- The diamond principle $\Diamond_{\kappa}(E)$ and applications
- $L \models \Diamond_{\kappa}(E)$
- The square principle \square_{κ} and applications
- Large cardinals: Inaccessible, Mahlo, weakly compact, measurable, strong, superstrong, supercompact, huge cardinals
- Equivalent definitions for weakly compact cardinals
- Equivalent definitions for measurable cardinals
- Scott's theorem of $L \models$ "There is no measurable cardinals"
- Kunen's theorem that the only elementary embedding from V to V is the identity
- Silver's theorem on singular cardinals

21-702: Set Theory II

- Generic model theorem
- Generic filter existence lemma
- Theorem on forcing and truth
- Theorem on the definability of forcing
- Eliminating the countable transitive model assumption
- Existential completeness of forcing
- A model of $ZFC + V \neq L$
- Properties that some posets have, such as:

- Splitting
- Chain condition
- Distributive
- Closed
- Weakly homogeneous
- Partial ordering in the strict sense
- Separative

together with corresponding forcing facts, examples and applications

- Cohen's consistency proof for $ZFC + \neg CH$
- Nice names lemma
- Properties and applications of the poset $Add(\kappa, \lambda)$
- Products of posets with various supports
- Product lemmas
- Properties and applications of the posets $\operatorname{Coll}(\kappa, \lambda)$ and $\operatorname{Coll}(\kappa, < \mu)$.
- Easton's theorem and Easton's lemma
- Various models in which AC fails, including:
 - ZF+ There is an infinite set A for which there is no injection $f: \omega \to A$
 - ZF+ ω_1 is singular
 - ZF + DC+ There is no well ordering of $\mathbb R$
- Boolean completion of a poset
- Intermediate models are forcing extensions by complete subalgebras
- Quotient Boolean algebras and two step iterations
- Characterization of $ro(Coll(\omega, \kappa))$
- $ro(Coll(\omega, \kappa))$ is countably generated
- Classical results on Baire category, Lebesgue measure and perfect sets
- If ω_1 is inaccessible to reals, then every Σ_2^1 set has the Baire property
- Borel/meager \simeq ro(Cohen)
- Solovay's model for ZF + DC + BP + LM + PSP

- Mansfield perfect set theorem
- Sacks-Guasparie-Kechris theorem
- Martin's theorem that if there is a measurable cardinal, then Π_1^1 sets are homogeneously Suslin, hence determined
- Homogeneous and weakly homogeneous systems
- Martin-Solovay Σ_3^1 -absoluteness theorem

21-800: Advanced Topics in Logic(Inner Model Theory)

The fine structure theory of L:

- Jensen's hierarchy
- Σ_1 -condensation theorem
- Theorems about soundness, acceptability, and solidity
- Equivalent definitions of projecta and standard parameters
- The decoding process
- Downward and upward extension theorem
- $\mathfrak{C} = (J_{\rho}, \epsilon, A) = \mathfrak{C}_{1}^{J_{\alpha}} \implies \forall n < \omega [\mathcal{P}(J_{\rho}) \cap \Sigma_{2+n}^{J_{\alpha}} = \Sigma_{1+n}^{\mathfrak{C}}]$
- Amenability of the coding structure
- Σ_2 -condensation theorem of the coding structure
- Higher-order coding structures and corresponding theorems
- Examples of the project sequence

The covering lemma of L: The proof and some applications

Sharps:

- The factor lemma of ultrapowers
- Indiscernibles of L is a club class
- Equivalence of non-rigidity of L: There is an active baby mice; There is a club class of L-indiscernibles; There is a club class of L-indiscernibles that generates L
- Iterability of (L, \in, U_j) with $j: L \to L$
- Realization lemma and fixed points lemma of L-iterates

- \mathcal{M} is iterable iff it is $|\mathcal{M}|^+$ -iterable
- { \mathcal{M} : \mathcal{M} is a countable active baby mouse} is Π_1 over HC
- The singleton containing the minimal active baby mouse is Σ_3^1
- Uniqueness lemma of the minimal active baby mouse
- Σ_1 -condensation of active baby premouse
- Copying construction
- Uniqueness lemma of every active baby mouse with respect to the critical point
- Uniqueness of *L*-indiscernibles and its generation of *L*
- $\exists 0^{\#}$ is absolute between forcing extensions
- $\exists \theta$ -iterable, countable active baby premouse is absolute between L and V for all $\theta < \omega_1^L$
- $\exists 0^{\#} \implies \Sigma_1^1$ -Det

L[U] premice:

- Copying construction between coarse premice
- ω_1 -iterability $\iff \omega_1$ -completeness \iff iterability
- Realization lemma of coarse premice
- Comparison lemma between mice
- Silver's theorem: All weasels satisfy GCH
- All weasels have the same reals and the same wellordering of their reals
- ${}^{\omega}\omega \cap W$ is a Σ_3^1 set of reals
- The order of construction of every weasel W restricts to a Σ^1_3 wellordering of ${}^\omega\omega\cap W$
- A proof of Martin-Solovay using mice
- In iteration $i_{0,\theta}M \to M_{\theta}$ with $crit(i_{0,\theta}) = \kappa$, all cardinal $\mu > \theta$ of M such that $M \models cf(\mu) > \kappa \land \forall \lambda < \mu(\lambda^{\kappa} < \mu)$ is fixed by $i_{0,\theta}$
- The class of ordinals fixed by the iteration map is thick
- Hull property and definability property of weasels
- The weasel W is uniquely determined by $\dot{\kappa}^W$
- For any two weasels W and W', $\dot{\kappa}^W < \dot{\kappa}^{W'} \implies W'$ is an iterate of W

- $L[U] \models \text{ZFC+}$ "there is only one measurable cardinal with only one normal measure"
- $L[U] \models \forall \bar{U}["\bar{U} \text{ is a measure over } \dot{\kappa}" \implies \exists n < \omega[\bar{U} \simeq \dot{U}^n]"$
- Mathias theorem about Prikry forcing

Minor: Topology

- Topological space. (Sequentially) continuity. Subspace topology. Basis and subbasis. Interior and closure. Limit points and boundary. Neighborhood basis.
- Initial and final topology. Initial and final topology exists and unique. Product topology. Topological sum.
- (Pathwise/locally) connectedness. (Pathwise) connected components. Properties of (pathwise/locally) connectedness.
- Compactness and variations (paracompact, sequentially compact, locally compact, Lindelöf). Properties of compactness.
- First and second countablility. Separable space.
- Metric space. Isometry. Compact metric spaces. Totally boundedness. Separable metric spaces. Completion of metric spaces. Arzela-Ascoli theorem.
- Axiom of Choice. Zorn's lemma. Baire category theorem. Banach-Steinhaus theorem.
- Filters. Ultrafilters. Acummulation points. Push-forward filters. Tychonoff's theorem.
- Separation $\operatorname{axioms}(T_0, T_1, T_2, T_3, T_{3a}, T_4)$. Regular, completely regular and normal spaces. Urysohn's lemma. Tietze's extension theorem.
- Stone-Čech compactification of completely regular spaces and discrete spaces. Universal property. One-point compactification of locally compact, non-compact, Hausdorff spaces.
- Quotient spaces. Gluing one space to another. Cone and suspensions. Configuration spaces. Projective spaces.
- Simplical complexes. PL category. Orientations. $\mathbb{R}P^2$ does not embed into \mathbb{R}^3 .
- Brouwer's fixed point theorem. KKM theorem. Appications. Intersecting paths in the unit square.
- Borsuk-Ulam theorem. Jordan curve theorem.
- Antipodally-labelled triangulations and alternating simplices. Topological Radon theorem. $K_{3,3}$ is not planar. Linked curves. K_6 is intrinsically linked.
- Homotopy. Homotopy equivalence. Contractible spaces. B^n is contractible. S^n is not contractible. Simply connected spaces.

Qualification Exam Transcript*

Examiner: Prof. James Cummings, Prof. Ernest Schimmerling, Prof. Florian Fricks.

- Florian: Give a counter-example of sequentially continuity/compactness/closedness not implying continuity/compactness/closedness.
 - Me: Consider $f : \omega_1 + 1 \to \{0, 1\}$, where $\omega_1 + 1$ is equipped with the order topology, $\{0, 1\}$ the discrete topology, and $f(\alpha) = 0$ iff $\alpha < \omega_1$. This function is sequentially continuous but not continuous.
- **Florian:** Show that, $f: X \to Y$ is continuous at x iff for every filter $\mathcal{F} \subseteq \mathcal{P}(X)$ and $\mathcal{F} \to x$, $\mathcal{F}^* \to f(x)$, where \mathcal{F}^* is the push-forward filter.
 - Me: [Omitted response.][†]
- **James:** Show why $x = 0^{\#}$ is $\Pi_2^1(x)$.
 - Me: [Omitted response.][‡]
- **James:** Show why $0^{\#}$ exists is absolute between V and V[G], where G is a set-generic filter over V.
 - Me: If V has $0^{\#}$, then the minimal active baby mouse is still iterable in V[G], thus $V[G] \models 0^{\#}$ exists. If $\Vdash_{\mathbb{P}} 0^{\#}$ exists, then we force $\mathbb{P} \times \mathbb{P}$ over V. Let $G \times H$ be the generic filter. Then since $0^{\#}$ exists in both V[G] and V[H], and by the uniqueness theorem, in $V[G \times H]$ witnesses the fact that $(0^{\#})^{V}[G] = (0^{\#})^{V}[H]$. This implies that $0^{\#} \in V$, by the product lemma.
- Florian: Give the definition of contractible space.

Florian: Show that S^n is not contractible.[§]

Me: Notice that:

Lemma 1. S^n is contractible iff for every continuous function $f: S^n \to S^n$, f can be extended to a continuous function $\tilde{f}: B^{n+1} \to S^n$.

Me: [Omitted response.]

^{*}I wrote this list after approximately 1hr after the exam, but I won't be sure that these are all of the questions.

[†]I mistakenly stated the definition of x being an accumulation point of \mathcal{F} , and Florian corrected me.

 $^{^{\}ddagger}I$ got the correct idea, but I was very sloppy at how I should express that I code some structure in a real and some iteration process can be computable from it. I received several hints and suggestions from James and Ernest.

[§]I misheard the question and answered that B^n is contractible. Fixed by Florian.

Florian didn't ask me to prove this. I then claimed that I can get a contradiction by using the Borsuk-Ulam theorem, but it turned out that I cannot. Hinted by Florian, I considered the Brower's fixed point theorem, and let $f = id_{S^n}$. Suppose f has a continuous extension \tilde{f} , then let g(x) = -x and consider $g \circ \tilde{f} : B^{n+1} \to S^n \subseteq B^{n+1}$. This map has no fixed point, which contradicts the Brower's fixed point theorem.

- **Ernest:** Give some properties hold by L.
 - Me: $L \models \mathsf{ZFC}, L \models 0^{\#}$ does not exist(I gave a short proof of this, under Ernest's request that I cannot using Kunen's inconsistency), $L \models \Diamond_{\kappa}(E) \land \square_{\kappa}(E)$, the covering lemma, fine structure...
- Ernest: Show some consequence of covering lemma.

Me: If $0^{\#}$ does not exist, then for any singular uncountable cardinal κ , $\kappa^{+L} = \kappa^+$.

- Ernest: Prove this.
 - Me: [Ernest's hint: Consider $\kappa^{+L} = \alpha < \kappa^+$ and the $cof(\alpha)$.] Otherwise, let $F \subseteq \alpha$ be a cofinal set in V with cardinality $< \kappa$. Now in L, let $F^* \supseteq F$ in L given by the covering lemma. Now F^* witnesses that α is not regular in L. Contradiction.
- **James:** Give an outline of the proof of Solovay splitting theorem.
 - Me: [Since the time is over we just had a brief conversation about this. He would like to know the proof of the regular case, I basically wrote:

Lemma 2. Let μ be a weakly inaccessible cardinal and $S \subseteq \mu$ is stationary. Then $T = \{\alpha \in S : \alpha \cap S \text{ is not stationary in } \alpha\}$ is stationary.

I said that this is a homework question of 602 and they didn't ask me to prove this. Also I briefly proved that following ladder system lemma:

Lemma 3. Let $C_{\alpha} = \{\xi_j^{\alpha} : j < \alpha\}$ be a club set that $T \cap C_{\alpha} = \emptyset$. Then there exists $j < \mu$ such that for all $\eta < \mu$, $\{\alpha \in T : \xi_j^{\alpha} \ge \eta\}$ is stationary.

What I said is just: towards contradiction, we should first take the diagonal intersection. Then Ernest reminds me that we should also take the club set of the closure point of $i \mapsto \eta_i$.][¶]

Time span: Approx. 1hr 45min. After the exam, they said that the tradition was to let me wait in my office and they would come to my office after the result was determined.

 $[\]P$ I also remember that Ernest wanted to ask me to give the outline of the proof of the covering lemma and then he changed his mind.