SEMIDISCRETE FINITE ELEMENT APPROXIMATIONS OF A
LINEAR FLUID-STRUCTURE INTERACTION PROBLEM

Q. DU*, M. D. GUNZBURGERT, L. S. HOUf, AND J. LEES

Abstract. Semidiscrete finite element approximations of a linear fluid-structure interaction
problem are studied. First, results concerning a divergence-free weak formulation of the interaction
problem are reviewed. Next, semidiscrete finite element approximations are defined and the exis-
tence of finite element solutions are proved with the help of an auxiliary, discretely divergence-free
formulation. A discrete inf-sup condition is verified and the existence of a finite element pressure
is established. Strong a priori estimates for the finite element solutions are also derived. Then,
by passing to the limit in the finite element approximations, the existence of a strong solution is
demonstrated and semidiscrete error estimates are obtained.

1. Introduction. Fluid-structure interaction problems have been extensively
studied in recent years both analytically and computationally. The book [28] and
the special issue [30] give accounts of the state of the art from the engineering points
of view. In addition, a short discussion of the literature can be found in [10]. The
references in [10] include: [4, 18, 29] for fluid-structure interactions involving ele-
mentary fluids; [2, 3, 32] for fluid-structure interactions involving inviscid fluids; and
[6, 7, 8,9, 11, 13, 14, 15, 16, 17, 20, 21, 22, 26, 27, 33, 34] for interations between
viscous, incompressible fluids and elastic solids.

In [10], we analyzed a model for the interactions between Stokesian fluids and
linear elastic solids. This paper is devoted to the finite element analysis of that
model. As in [10], we assume the fluid and solid occupy two adjacent, open, Lipschitz
domains Q; € R? and Q5 C R?, respectively, where d = 2 or 3 is the space dimension.
We denote by 2 the entire fluid-solid region under consideration, i.e., {2 is the interior
of Q1 UQs. Let Ty = 991 N Iy denote the interface between the fluid and solid
and let T';y = 991 \ T'p and T'y = 990y \ Ty respectively denote the parts of the fluid
and solid boundaries excluding the interface I'g. For obvious reasons we assume that
meas(I'; UT2) # 0.

In the fluid region 1, we apply the Stokes system

pve +Vp— V- (Vv +VvD) =pify in
V-v=0 in Q4

v=20 on I'y

V]i=0 = Vo in Qy,

where v denotes the fluid velocity, p the fluid pressure, f; the given body force per
unit mass, p; and pp the constant fluid density and viscosity and v the given initial
velocity.
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In the solid region, we apply the equations of linear elasticity
pauy — 2V - (Vu + VuT) — XV (V- u) = pofy in Qs
u=0 on I'y (1.2)
uli—o =up and wli—o =w in o,

where u denotes the displacement of the solid, f5 the given loading force per unit
mass, po and A2 the Lamé constants, p2 the constant solid density and ug and uy the
given initial data.

Across the fized interface I'g between the fluid and solid, the velocity and stress
vector are continuous. Thus, we have

w=v on I'y (1.3)
and
2 (Vu + VuT) ‘ng + A (V- -ung =pny — w1 (Vv + VVT) -ny on Ty, (1.4)

where n; is the outward-pointing unit normal vector along 99;, i = 1, 2.

The physical validity of the model (1.1)—(1.4) was explained in [10]. Previous
work concerning this model include, as cited in [10], eigenmode analysis [34], homog-
enization [8], the one-dimensional case [11], and a numerical algorithm [13]. In [10],
weak formulations for (1.1)—(1.4) were defined and the existence of weak solutions
were established. The proof for the existence result was based on Galerkin approxi-
mations using divergence-free basis functions and the pressure term was absent in the
Galerkin approximations.

The objective of this paper is to define semidiscrete finite element approxima-
tions, prove the convergence of finite element solutions and derive error estimates for
the finite element approximations. We point out that finite element basis functions
in general are not divergence free and finite element formulations must be studied
with the pressure term. The proof for the convergence of finite element solutions pro-
vides an alternative proof to that found in [10] for the existence of a weak solution;
the results of this paper do not rely on those of [10] concerning the existence of a
divergence-free weak solution. Moreover, the regularity and compatibility assump-
tions made on the data in this paper lead to a stronger solution. The details for
the divergence-free Galerkin approximations of [10] and the discretely divergence-free
finite element approximations are sufficiently different so that separate treatments are
warranted.

A few technical aspects contained in this paper are particularly noteworthy: the
finite element initial conditions are defined asymetrically about the two subdomains
Q; and Qg; two inf-sup conditions are verified that facilitate the analysis of certain
steady-state saddle point problems (these inf-sup conditions are also useful in dealing
with approximations of mixed boundary value problems for the Stokes equations); and
error estimates for a weighted L? projection onto discretely divergence-free spaces are
derived.

The plan of the paper is as follow. In Section 2, we recall relevant results of [10], in
particular the weak formulations and the existence theorems. In Section 3, we define
semidiscrete finite element approximations and establish the existence of and a priori
estimates for the finite element solutions. In Section 4, we show the convergence of
finite element solutions and derive error estimates.
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2. Notations and results concerning divergence-free weak formulations.
In this section we will recall the notations, weak formulations, and the existence results
of [10].

Throughout this paper, C' denotes a positive constant, depending on the domains
Q, 7 and s, whose meaning and value changes with context. H*(D), s € R, denotes
the standard Sobolev space of order s with respect to the set D equipped with the
standard norm || - ||s,p. Vector-valued Sobolev spaces are denoted by H?®(D), with
norms still denoted by || - ||s,p. HE(D) denotes the space of functions belonging
to H(D) that vanish on the boundary 9D of D; H}(D) denotes the vector-valued
counterpart.

We will use the following L? inner product notations on scalar and vector-valued
L? spaces:

[p,q]oz/pqu Vp,q € L*(D), [u7V]D:/u~vdD Vu,v e L*(D),
D D

where the spatial set D is Q or I'y or §;, for ¢ = 1, 2.
We introduce the function spaces

X; = [H)(Q)]|a, with the norm || - [|x, = || - [[1.0,, i=1,2,
and
¥ = {necH{Q):divn=0in Q;} with the norm || - ||1.q-
We define the weighted L?(2) inner product [[-,-]] by

[[57 77]] = [/)15777]91 + [p2£777]92 VS, ne L2(Q) (21)

We denote by ((-,-)) the duality pairing between ¥* and ¥ that is generated from
the weighted L?(Q) inner product [[-,-]]. The norm on the dual space ¥* is defined
in the conventional manner:

lsllg~ = sup l((g,m)] VgeP¥"
neW, (n)h0<1

We define the bilinear forms

a[u,v] :2/ p1(Vu+vul): (Vv 4+ Vvl dQ  Vu,ve X,
|95
a2[u,v]:/ {ZuQ(Vu—FVuT):(Vv+VVT)—|—/\2(V~u)(V-V)}dQ Vu, v € Xo,
Qo
blv,q] = —/ qV - v dSQQ Vve Xy, Vge L3(Q).
Q1

It can be verified with the help of Korn’s inequalities [31, p.31, p.120] that for i = 1, 2,
ailnom] = kil g, Yme Xi, if meas(Ty) #0 (2.2)
and

. mle, +ailn,n] = killnlfq, Yme X,  if meas(ly) =0. (2.3)
3



The bounded bilinear form b[-, -] was shown in [10] to satisfy the inf-sup conditions

nf su _ bmag > ky (2.4)

i p
geL?() peni (o) [Mllellalloe,
and

nf blv, q]

Sup T————— = ky 2.5
€L () ve X, Hv||1791||q||0791 29

where k; > 0 is a constant.
For functions that also depend on time, we introduce the space L?(0,T; X) that
consists of L2-integrable functions from [0, T'] into the space X and which is equiped

with the norm
t 1/2
([ 1sea)
0

Similarly, we introduce the space C(0,T; X ) that consists of continuous functions from
[0,T] into the space X and which is equipped with the norm

sup || f|[x -
te[0,T)

The divergence-free weak formulation for (1.1)-(1.4) was defined in [10] as follows.
Given

{ f; € C([O,T],L2(Ql))7 fy € C([O7T],L2(Qg))7 ug € Xo,
(2.6)
vp € X1, divvg=01in ©Qy, u; € X, v0|p0:u1|p0,
seek a pair (v, u) such that
(v,u) € L*(0,T; X1) x L*(0,T; X5), divv =0, (2.7)
2 (otv.mle, + poldnmle, ) + arlv.m] + sl
dt ) 1 ) 2 9 9 (28)
= p1 [fla 77]91 + pQ[an 77]92 VT’ S \Ilv
Vit=0 = Vo, uli—o = uo, Wele=0 = Ui, (2.9)
and
t
/ v(s)|r, ds = u(t)|r, — uolr, a.e. t. (2.10)
0

The “natural” interface condition (1.4) is built into equation (2.8) and the “essential”
interface condition (1.3) is enforced weakly in the sense of (2.10).
By defining

v in Ql Vo in Ql fl in Ql
£ = & = and f = (2.11)

U in QQ, up in QQ, f2 in Qg,
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(2.7)—(2.10) was conveniently recast in [10] into the following equivalent, auxiliary
divergence-free weak formulation: seek a & such that

£ € L*(0,T;L3(Q)), 0:& € L*(0,T;¥),
(2.12)
€|Ql S LQ(O,T; Xl), diV€|Ql =0, fO |Q2 ds € L2(0 T XQ)

((&m) + ar[€, ] +a2[/0 £(s)ds,n] = [[f,n]] — azluo,m] Vne ¥, ae t, (2.13)

£(0) =& (2.14)

and

ds a.e. t. (2.15)

0

[ (eom)|, o= [ (e0,)],

The existence and uniqueness of a solution for the auxiliary problem (2.12)—(2.15)
was proved in [10].

THEOREM 2.1. Assume that f1,vo,fa and ug satisfy (2.6). Then, there exists a
unique solution € for (2.12)—(2.15). Moreover, £ satisfies the estimates

||€(t)||3,9 + ||€||L2(O TH(Q)) + H fo d3||1—11(92)

(2.16)
< CeCT(”fHL?(O,T;L?(Q)) + ol o, + Vol o, + willio,) Vte[0,7)
and
2
||at€||L2(0 W) (2 17)
< CQCT(HfHL?(o T;L2(Q)) + ||u0||1 , T ||V0||1 o, T ||u1||1 Qg)
Using relation (2.11) reversely, i.e., setting v = £|g, and u = ug + fo )|, ds,

Theorem 2.1 immediately yields the followmg existence result for (2.7)—(2. 10)

THEOREM 2.2. Assume that £1,vo, {2, ug and vy satisfy (2.6). Then, there exists
a unique solution (v,u) € L*(0,T;X1) x L*(0,T; Xs) for (2.7)-(2.10), where (2.8)
holds in the sense of distributions on (0,T). Moreover,

V5.0, + ||U-t( MG 0, + ||V||L2 om0 T ult )”%11(92)

< ceory (2.18)

+voll.a, + willg.q,) ¥t € [0,7].

The existence of a stronger solution and an L? integrable pressure was also es-
tablished in [10].
THEOREM 2.3. Assume that f1,vo, {2, up and u; satisfy (2.6) and

of; € LQ(O,T, L2(Ql>), 1=1,2, wvg€ H2(Ql), uj € Hl(QQ), up € H2(QQ)
Assume further that there exists a pg € H'(Qy) such that

= (,LLQ(VIIO + Vug) ‘o + ()\2 + ‘LLQ)(le 110)112)

5
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where n; denotes the outward-pointing normal along 0Q;. Then, the solution (v,u)

to (2.7)~(2.10) satisfies
v € L®(0,T;L2(2)) N L*(0,T; X;), ue L>(0,T;Xy),

vy € L0, T; L2(Q1))NLA0,T; X1), us € L=(0,T;X5), uy € L>(0,T;L%(y)),
and

100w (1)[13.0, + 19e(®)]3 0, + 106¥1122 0 sy + 19r0(0) 2

< CeT (11El3 0,rinzceny + oll3.0, + Vol g, + Ipollf g, + Iwili3 0, ) e € [0, 71

Furthermore, there exists a unique p € L?(0,T; L?(Q1)) such that

pi[ve, nla, + 0, p] + a1 [v,n] + p2[ug, n)o, + az(u, 7] 2.19)

= pilf1, mla, + p2(f2, nla, VneHy(Q), Yae t

and

ol 20,7200,y < CeT (Hf”%{l(O,T;LQ((l))+||u0||§,£22+||V0||§,Ql+||p0”iﬂl+||u1 ||is22)-

3. Semidiscrete finite element approximations. In this section we will de-
fine semidiscrete finite element approximations, prove the existence of finite element
solutions on discretely divergence-free spaces and derive energy estimates, and es-
tablish the existence of a discrete pressure by verifying inf-sup conditions for finite
element space pairs.

As alluded to previously, finite element solutions in general are not divergence
free and finite element formulations should include the pressure term. Of course, the
corresponding continuous weak formulation should also contain the pressure term.
Such a weak formulation requires additional regularity on v; and us. The continuous
weak formulation we consider is as follows: given f1,vq,fs and ug satisfying (2.6),
seek a triplet (v, p,u) such that

(Vap7 u) € L2(07T7X1) X Lz(OaTa L2(Ql)) X L2(07T;X2)7 (31)
vi € L2(0,T; L3 (Qy)), u; € L2(0,T; X5), uy; € L2(0,T;L%(Q)),  (3.2)

pi[ve,nla, + 0, p] + a1 [v,n] + p2[ug, n)o, + az(u, 7]

= p1lf1,mla, + p2(f2,Mla, Vn e H}(Q), ae. t€[0,7T], (3.3)
bv,q] =0  Vqe& L*(Q), ae. t €[0,T], (3.4)
V|t—o = Vo, uli—o = uy, Uyli—o = uy, (3.5)
vlr, = wlr, a.e. t. (3.6)

We will define finite element approximations to (3.3)—(3.6). By showing the conver-
gence of finite element solutions, we establish the existence of a solution for (3.1)—(3.6).
For reasons connected with the derivation of the regularity results (3.2), we will define
finite element initial conditions in a nonstandard manner.
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3.1. Finite element discretization. In the sequel we assume that 2; and 5
are two-dimensional polygons or three dimensional polyhedra. Let h denote a dis-
cretization parameter associated with the triangulation 7" () of Q2. We assume that
elements of 7" do not cross the interface I'y. We assume the triangulation 7" consists
of triangular elements in two dimensions or tetrahedral elements in three dimensions,
though our results can be extended to other types of triangulations. Furthermore, we
assume that there exists a triangulation 7"0(Q) such that for each h < hg, 7"(Q) is
a refinement of 770 ().

For each h, we choose X" € C(Q) NH}(Q) and Q% C L?() as finite element
subspaces over the triangulation 7" (). We assume that X" contains piecewise linear
functions. We set

Xh = x"

Q, =12
and
T = {n, € X" bn,, ] =0,V an € Q}}.

We assume that the finite element spaces X2, X% and Q% satisfy the standard ap-
proximation properties [5], i.e., there exists an integer k£ > 0 and constant C' > 0 such
that

hinf . v — v"|o.0, < Ch" V|10, Vve H T (Q)NX;, re[0,k], (3.7
vheX

i

}inf . v —v"|lia, < CR"||V]lrs1.00 Vv e H T (Q) N X;, re0,k] (3.8)
vheX]

and

it lla - ¢"llo.0n <CR"|pllra, Vg€ H (@), r € [0,k]. (3.9)
q" 1

Also, X" satisfies the approximation properties

0.0 <CR M nllis1ea Yne HTHQ) NLA(Q), r € [0,k] (3.10)

inf —nh
it m—n"|
and

ik, I = n"le, < CP(Inllr10 Ve HHH(Q)NH(Q), r € [0,k (3.11)

We assume that the finite element pair { X", M"} = {XPH} (), QP NLE(04)}
satisfies the discrete inf-sup condition:
b[v", ¢"]

1;91th”0791

inf sup (3.12)

qheMR () vheXh (1) th|

Choices of finite element spaces satisfying (3.12) are well known [19]. Note that
functions in )N(lh vanish on I'y.

We also assume that triangulations are uniformly regular so that the following
inverse inequalities hold:

[v|l1,0 < CR7Y[VMoo Vv e XM
(3.13)
[V, < Ch™Y[vh

0.0, Vvhe Xt i=1,2.
7



Semidiscrete finite element approximations of the weak form (3.3)-(3.6) are de-
fined as follows: seek (v, p" uh) € C([0,T]; X}) x C([0,T]; Q%) x C1([0,T]; X%)
such that

p1[0cvh, Mpla, + by, pa] + a1[vi, my] + p2[Owan, ny]a, + azlun, ny]

(3.14)
= pilfi, mplo, + p2lf2.mplo, Y, € X0 ae o
bvi,qn) =0  VYan € QF, ae. t, (3.15)
Vilr, = Ovun|r, a.e. t€[0,7], (3.16)
Vhli=o0 = Vo,n, up =0 = g, Oup =0 = uyp, (3.17)

where vo ), € \Ilh|Q17 up) € XQ and uy € X%I are finite element approximations of
vo, up and uy, respectively. We assume that (v p,uy ) satisfies

blvon,an] =0 Van € QY Vo,n|re = U1,n|r, (3.18)
and that ug p, is defined by
az[ug,p, Wi] = azug, wy] Vwy, € Xé‘. (3.19)

3.2. The existence of discretely divergence-free finite element solutions.
The existence of finite element solutions {(v",u")} can be established in a manner
analogous to the analysis of the Galerkin approximations {(v,,, u,,)} in [10]. However,
it should be noted that finite element approximations are not special cases of the
Galerkin approximations due to the fact that the basis functions used in the Galerkin
approximations are divergence free in 21, whereas the finite element solutions are
only discretely divergence free in 7 in the sense of (3.15), i.e., they belong to the
space of discretely divergence free functions ¥".

We first formulate auxiliary semidiscrete finite element approximations on the
discretely divergence-free space ¥". Through the relation

v in
&n = { dpup,  in Qo (3.20)

we see that (3.14)—(3.19) can be recast into the system

P1[0e&n: Ml + p2(0:€4: My, + a1€y, ] + a2 [fot £n(s) ds,my]

(3.21)
= pilfr, m]a, + palf2, mu)a, — az[uo, my] Vn, € " t€0,T]
and
o _ V07h in Ql
6.0 =€ ={ W o (322)

Let {1&?}3]’:‘1 be a finite element basis for ¥". Assumption (3.18) implies that €on €
¥" 5o that we can write

Jh
So,h = Z dj’l.b?-
j=1

8



The solution £&" € C([0, T]; ®") for (3.21)-(3.22) can be expressed in the form

Jn
&= Z g Yl (x) (3.23)

so that system (3.21)—(3. 22) is equivalent to the following linear system of ordinary
differential equations for {g; }

Jn t
Sl ) gk +Za1 Wl +za2 Ll [ ) as
j=1
= [plfl(t)ﬂ'lvbz] |95 [p2f2( )7#’?]92 - a2[u07'¢?] i=1,---,Jp, L€ [O,T]7
g0y =d;  i=1,-- Jp

We have the following results concerning the existence of and a priori estimates for a
finite element solution &, of (3.21)—(3.22). The proof is the same as that in [10] for
the Galerkin approximations and thus is omitted.

THEOREM 3.1. Assume that £1,vo, f2,ug and vy satisfy (2.6). Then, there exists
a unique function &, € CY([0,T]; ®") which satisfies (3.21)~(3.22) and the estimate

€m0 + 1 120 mamscany + 1 &0 (5) dsln oy
(3.24)
< CGCT(l|f||%2(O,T;L2(Q)) + o3 q, + IVo,rllga, + ||u1;hH3,Qz) vt € [0,T7.

Setting vy, = &} ]q,, up = ugp + fot £,,(8)|a, ds and using (3.19) we immediately
obtain the existence of a (vj,,up) satisfying the discretely divergence-free version of
(3.14)(3.19):

THEOREM 3.2. Assume that £1,vo, {2, ug and vy satisfy (2.6). Then, there exists
a unique (vi,uy) € CL([0,T7; \Ilh|gl) x C2%([0,T); X2) satisfying

P10V, Mylo, + a1[v,my,] + p2[Owan, myla, + azlun, 1]

. (3.25)
= pilfi,mlo, +p2lfemple, V€0, 1 E€(0,7]
and (3.15)—(3.19). Moreover, the following estimate holds:
Va0, + 10n®F o, + 1VallZaoram @) + sl @) 3.26)

< C‘fCT(HfH%?(o,T;m(Q)) + ol o, + IVorllf 0, + lurnllf o,) vt € 0,T].

3.3. The discrete inf-sup conditions and discrete pressure fields. We
have proved the existence of a finite element solution in the discretely divergence-free
formulation consisting of (3.25) and (3.15)—(3.19). We will show the existence of a
discrete pressure p, such that (3.14) holds. A crucial step towards this goal is the
verification of discrete inf-sup conditions. The discrete inf-sup conditions will also
play a role in deriving strong energy estimates in a subsequent section.

We rewrite (3.14) as

b[nmph] = —pP1 [5ch777h]Ql — a1 [Vﬂ”lh] — P2 [attuha'rlh]ﬂg — a2 [U-hﬂ”lh] (3 27)

+p1[f1777h]91 + p2[f2777h]92 Vnh € Xhu te [O7T] .
9



In terms of the auxiliary variable &;,, (3.27) is equivalent to

B[y, pr) = —[[0:&p. Mul] — ar[va, ]
(3.28)

—az[un, ] + [[f, 1] Vn, € X, vtelo,T].

To show the existence of a p;, € C([0,T]; Q%) satisfying (3.27) or (3.28), we need to
verify a discrete inf-sup condition for b[-,-] which will be presented below; this will
be the task of this subsection. To derive an estimate for p;, we need an estimate for
10:€p 10,2, or |0:vrllo.0, and ||Onupllo.q,; these will be derived in Section 3.4.

The inf-sup condition we will verify is

inf sup — M@l o (3.29)

aneQt m, exn mmlliellanlloq,

This inf-sup condition was proved in [2] for a special choice of X}, and Q%. We will
establish (3.29) for the general case under assumption (3.12). To this end, we will
first need the following lemma and we will need to prove the inf-sup condition

blvn,
inf  sup Vi a1 > (3.30)
Q) vyexn [[Vallnellanlloo
LEMMA 3.3. For each constant d, there exists a piecewise linear function v € X{“’
such that

/ v-ndl = —d, biv,d =|d?  and  ||v]|1q, <Cld,
T'o

where n denotes the unit, outward-pointing normal along 021 and the constant C
depends only on the coarse triangulation T" ().

Proof. We give the complete proof for the two dimensional case and discuss the
ideas for the three-dimensional case in a ensuing remark.

We choose from 7"0(Q) a layer of triangles K = U;’ilKj C ©; adjacent to Ty,
i.e., each K has either a side or a vertex on I'g. We denote the vertices on I'oNOK by
Aj,j=0,1,--,Jo. We define the C°, piecewise linear vector function v = (v1,v2)
on K as follows:

v = 0 at points Ag and Ay,;

v = 0 at all vertices of K belonging to the interior of Q;

v-nj_lz—aandv~nj:—aatAj, j=1,---,Jo—1, n;_; #ny;
v~nj,1:—3andv-‘rj:0atAj, j:L"',J()—l, nj,lznj
where
Jo—1

d= d/(|A0A1|/2 + Z |Aj_1 A5 + |AJ0—1AJ0|/2)
=2

and n; and 7; denote the unit, outward-pointing normal and unit tangent vectors,
respectively, on 921 N A;_1A;. Note that n; and 7; are defined with respect to

10




the segment A;_1 A; so that they are well defined. Clearly, the values of vi(A;) and
va(A;) are proportional to d. We can write

Jo—1

vi(x) = Z vi(Aj)L;“’(x), i=1,2

j=1
where for each j, L;-“’ (x) is the continuous piecewise linear basis function (the shape
function) associated with the vertex A;. Then,

Jo—1 Jo—1
h = h
loillf i < C D7 oa(A)PILE IS & < ClAP Y IILS]
j=1

j=1

2
1,K

so that
[vlix < Cld].

We extend v to Q1 by zero outside K and denote the extended function still by v.
Then we readily have v € X fo,

IVie, = [IVllhx < Cld] < Cld]

and

Jo
/v-ndl":z v-ndl’
Iy ]:1

Aj_14;
Jo—1
= —d(|A0A1|/2+ Z |[A;_1A;] + |AJ0—1AJ0|/2) - _d

Jj=2

Using Green’s theorem and the last equality, we have

bv,dj=—d | V- -vdQ= —d/ v-ndl = d*
Q1 To

d

REMARK 1. In the three-dimensional case we merely need assume that [750(Q)]|r,
contains a vertex Py shared by exactly three triangles. Indeed, in forming the coarse
triangulation 7"°(Q), we may simply choose a partition on a flat piece of I'y to meet
this requirement. Then, we define a v to satisfy v-n =d and v x n = 0 at Py and
v = 0 at all other vertices, where d is a suitable scaling of d.

Next we prove inf-sup condition (3.30) based on the inf-sup assumption (3.12) for
the pair {X" M} = {XI 0 H(Qy), QP N L2()}.

THEOREM 3.4. The pair { X}, Q"} satisfies inf-sup condition (3.30).

Proof. Owing to [19, p.118, Remark 1.4], the inf-sup condition (3.30) is equivalent
to

Vaqn € Qh,  there exists v, € XJ'  such that

3.31
bvi ] > CllanlZo, and  [vallie, < Clarllo- (3:31)

Let gn, € Q% be given. Set

1 ~ _
Qn = 157 qn dS2 and ah = qn — qp,-
1] Jo,

11



Then gy = @n + Ty, in Q1 and [|qnl[§ o, = G5 0, + 17,115 o, - Obviously, g € M7 =

QMM LE(1) so that by inf-sup condition (3.12) for the pair {XI, M}, we may choose

a v, € X7 such that

bVh.Gn] = lanllg o, and  [[Vall1.0, < Cllgallo.q, -

By Lemma 3.3 with d = ||}, |0.0,, we may choose a ¥, € X' such that
0,0 = [Tnlee,  and  [Wallie, < Clulloq-

(We recall that we assumed 7" (1) is a refinement of a coarse triangulation 7" (Q;)
so that a piecewise linear function on 7"°(€);) belongs to X'.) Setting vj, = Vj, +avy,
for some o > 0 (to be determined) we have

b[Vi, qn] = b[Vh, qn] + b[Vh, Q] + ab[Vh, qn] + ab[Vh, T,]

> [1nll6.0, +0 = Callgn|

0.9 ¥rll1.0, + allg,ll5 o,
> ||§h||(2),91 — Cal|gnllo,o. |Tnllo,0: + O‘”ﬁh”%,szl

(2J,s21 + (a/2)||§h||3,91] + 04||§h||%,91

> [|gnll3 0, — [Collgn]

= (1 —=Ca)llgnl

o
(2J,Q1 + 5”%”3,91

so that by choosing a sufficiently small « > 0 we obtain

. ~ 1 _
v, an] > min{1 — Caa/2) (|l o, + 1al30,) 2 Cladla,.
Also,
[villia: < [Vallie + [Wallie, < Cllanlloe, + Cllgnllo.or < Cllgnllo.q. -
Hence, we have proved (3.31) which is equivalent to (3.30). oo
We now prove inf-sup condition (3.29) for {X", Q"}.
THEOREM 3.5. {X" Q"} satisfies the inf-sup condition (3.29).

Proof. Let the discrete extension operator E? : X' — X" be defined as follows:
for any vj, € X, (Ehvh)|§1 = vy, and (E"v})|q, € X is the solution of

[V(E"v4),Vanla, =0 Va, € XPnHL(Q), (E"vu)r, =0, (E"v)|r, = Valr,-
It is well known (see, e.g., [23] and [1]) that [|[E"vp (1,0, < C|[vall1/2,r, so that
IE"vh|lLe < CI(E"vh)la, e, + [(E"va)|all1,0,
< C([vallio, + IVallij2r,) < Clvallie,  Vvi € X7

Then, for every q; € Q% we have

b b[EM
sup (7, an) > swp [ Vhah qn)
n,ext llanllo.a Imnllne = v exp llanlloo [E"Vall1a
b[EM b
2 C sup [ thqh] - C sup [Vhth] 2 C
viext llanllo.r [[vallia, vnext llanllo,e, Ivallie,

12



where the last step is valid because of (3.30). O

As a direct consequence of [19, p.58, Lemma 4.1], Theorem 3.8 and the inf-sup
condition (3.29), we obtain the following theorem concerning the existence of a discrete
pressure. Note that an estimate for p;, will be established in Section 3.4 only after we
have derived strong energy estimates, particularly the estimate for ||0:&},[| L2 (0,712 (q2))-

THEOREM 3.6. Assume that fi,vo,fo,up and u; satisfy (2.6) and let &, €
CY([0,T); ®") be the solution of (3.21)(3.22). Let (vi,up) € CH([0,T]; X"|q,) x
CH([0,T); X2) be the solution of (3.25) and (3.15)~(3.19). Then, there exists a unique
pn € C([0,T); QY satisfying (3.28) and (3.15).

Proof. The existence and uniqueness of a p;, € C([0,T]; Q%) satisfying (3.28)
follows directly from [19, p.58, Lemma 4.1], Theorem 3.8 and the inf-sup condition
(3.29). Since (3.28) is equivalent to (3.27), we also conclude that pj, satisfies (3.27)
and is the unique such solution. O

3.4. Strong a priori energy estimates for the finite element solutions.
In the finite element system (3.25) and (3.15)—(3.19) the discrete initial conditions are
arbitrary approximations of the corresponding continuous initial data. We now make
a particular choice of discrete initial data that will allow us to derive an estimate for
|0:€ 110, under additional assumptions on the data. Such an estimate can then be
used to derive an estimate for ||pn | z2(0,7;02(0,)) (the existence of a discrete pressure
ph, satisfying (3.14) was shown in Section 3.3.) The estimates on p, and 9:§; will
be needed in order to prove the convergence of finite element solutions, since finite
element formulations involve the term b[n,,, pp] which, in general, does not vanish for
n, € XM

We first study the approximation of the initial condition. We choose (vg p,uy ) €
U and po.n € Q% to be the solution of

a1[vo,n, My + [U1,n, Myl0, + 0[N0y, Po,k] (3:32)

= ay [V07 77h] + [u1777h]92 + b[nhapo] vVny, € Xha

blvon qn] =0 Y, € QY and Vo |, = Uinlrg, (3.33)

where pg is the initial pressure field associated with the initial velocity field vy.

LEMMA 3.7. Assume that vo € X1, po € L?(Q1), w3 € X2 and vo|r, = wir,-
Then, there exists a unique triplet (vo p,Po.n, U1n) € X x QF x X¥ which satisfies
(3.32)—(3.33) and

IVo,n — voll1,0, + [[ur,n — uillo,0. + |Po,n — polloe. < C(lmy — Voll1,0, (3:34)

+lm, — uilo,. + llan — pollo.o,) Y (N, an) € X" x Q}f-

If, in addition, vo € H™1(Q4), po € H"(Q1) and uy € H™1(Qy) for some r € [0, k]
(k being the integer appearing in the approzimation properties), then

[vo,n = voll1,0, + lui,n — aillo,0, + [[Po,n — Pollo,a,
(3.35)
< Ch([[vollr+1.0, + [[utllr+1.0, + [|Pollra,)-

Proof. We set X = {n € L%(Q) : n]q, € X1,divn|q, = 0} and equip X with the
inner product

[gﬂn])zzal[gun]+[£an]ﬂz VS/I’]EX
13



It is easy to check that X is a Hilbert space. The continuous inf-sup condition (2.4)
implies

bn, q] . bn, |
— 7= > inf u 7
a€L2() pex Ml zllallon, — acf?@) penyo) Inllzllallo.o
b
> inf su % > C.

2 p
a2 ) peny(o) [Mlhelldllos:

Thus, by [19, p.114, Theorem 1.1], there exists a unique (Eo,ﬁo) €X x L2(£2;) satis-
fying

€0l + b[m. Po] = a1[vo,n] + [u1, M, +bln,po]  VmEX, (3.36)

b€y, q) =0  Vge L*(). (3.37)

As & defined by (2.11) and pg constitute an obvious solution to (3.36)—(3.37) we have

€|Q1 = Vo =~
= = and = . 3.38
SO SO { E|Q2 u, Po Po ( )

Similarly, the discrete inf-sup condition (3.29) implies

b b
inf sup [nha qh] 2 inf sup [T]}‘U Qh] >
n€QY M, eXh Imnll g llgnlloen — aneql 7, €Xh 75 111.0llan]lo.,

so that by [19, p.114, Theorem 1.1], there exists a unique (£,4,p0,n) € X" x Q
satisfying

(0.1 Mnl 5 + b1, Po.n] = a1[vo,n,] + [ur, o, + B[Ny, po] vn, € X", (3.39)

b€onan] =0 VgeQy; (3.40)
moreover, the following error estimate holds:
[€0.n = &ollz + lIPo.n — pollo,c

(3.41)
< C(lImy — &ollz + llgn — pol

O;QI) V(nhaqh) EXhXQ}f.

By setting

vor =& plo, and  wi = &g pla, (3.42)

we see that (3.41) is equivalent to (3.34) and that (3.32)—(3.33) are satisfied. The
uniqueness of the solution (vo. x, po,n, u1,n) for (3.32)-(3.33) follows from the unique-
ness of the solution (& 1, po,n) for (3.39)-(3.40).

Next, assuming that vo € H™(Q), po € H" (1) and u; € H" () for some
r € [1,k], we proceed to prove (3.35) by making a particular choice of n;, in (3.34).
Let (Vo,n,Po.5) € X{" X Q' be the unique finite element solution of the following Stokes
system on 2;:

a1[Vo,n, 2] + bzn, Py ] = a1[vo, 2] + blzn, o] Vzn € X N H(Q1),
14



b[¥o,n,qn] =0 Yan € QY N LE(Q),

Yo,nlr, =0 and [Yo.h,Snlo.re = [Vo,Snlore  Vsn € X1r,,

where pg = po— (1/]21]) le po dx. Using the results of [23] concerning error estimates
for the finite element approximations of the Stokes equations with inhomogeneous
boundary conditions we obtain

%o, — volli,0, + [Po.n, — Pollo.o,
(3.43)

< Ch([[vollrt1.0, + [[Pollr,) < CR(IVollr+1.0, + lIPollr0:)-

Analogously, let U1, € X5 be the unique finite element solution of the following
elliptic system on 29 with an inhomogeneous boundary condition:

[Vﬁlyh, VW}-L]Q2 = [Vul, VW]-L]Q2 Vwy € Xél n H(l)(QQ), (3 44)
Uy plr, =0 and [@1.h,8hlore = [W,snlor, Vs € X2|r,.

Then, we have

@1, —uillo,0, <UL — w10, < CR"||wilrt1,0,- (3.45)

The assumption vo|r, = ui|r, implies Vo »|r, = U1,1|r, so that the element 77;, defined
by

_ | . Vo,, in 0
Ml = ui,p in Qy

satisfies 77, € X". By choosing n;, = 7, and q» = Py, + (1/|]) Jo, podx in (3.34)
and using (3.43)—(3.45) we arrive at (3.35). O

We now derive a strong a priori energy estimate for the auxiliary finite element
solution &;,.

THEOREM 3.8. Assume that f1,vo, {2, up and u; satisfy (2.6) and

ot € L*(0, T; L2()), i = 1,2, vo € H*(Q1), u; € H*(Qy), up € H*(Q). (3.46)
Assume further that there exists a pg € H'(Q1) such that

(3.47)

= (/LQVUO ‘o + ()\2 + ‘LLQ)(le 110)112)

(pOnl — 1 Vv - 111) -

0 To

where n; denotes the outward-pointing normal along 92;, i = 1,2. Then, there exists
a unique solution &, € C*([0,T); ®") for (3.21)~(3.22) with the initial condition &on
defined by

Sonlar =vonr and &oplo, =uin (3.48)
where vo p, and uy p, are determined by (3.32)—(3.33). Moreover, &;, satisfies the esti-

mates

¢
H&h”%?(O,T;L?(Q)) + ||§h||%2(o,T;H1(Ql)) + 1 Jo &n(s) dSH%oo(o,T;Hl(sb)) (3.49)
3.49

= “r %Q(O,T;LQ(Q)) 0 %,Qz 0 %,Ql 1 3792 0 g,Ql
< Ce™ ([If] + ol 0, + [Ivolli e, + lwillo.0, + [lpol
15



and

t
||at€h||2Loo(o7T;L2(Q)) + ||at€h||2L2(o7T;Hl(Ql)) + || fo atéh(s) ds”%oo(o,T;Hl(Qz)) ( )
3.50

< CeCT(”fH%ﬂ(O,T;L?(Q)) + ||‘10||§,Q2 + [[vol %,Ql + [[pol %,Ql + ||u1|\§,92)-

Proof. By Theorem 3.1, there exists a unique solution &, € C*([0,T]; ®") for
(3.21)—(3.22) and (3.24). We note that by virtue of Lemma 3.7, the initial condition
&on € T satisfies the estimate

10,111,020 + 1€0.1ll0.2, < C(lIvoll1.e, + lIPollo.2, + [[uillo.0,)-

Thus (3.49) follows from the last estimate and (3.24).
Defining ¢;, = :£;, and differentiating (3.21) we obtain that for each ¢ € [0, T,

p1[0:Chs Mo + p2l0Crs i) + a1[Chyma) + aslfiy Ci(s) ds,my) s

= p1[0uf1, mp]a, + p2(0if2, myla, — a2[€,(0),m,] ¥y, € T

Setting n;, = €5, (t) in (3.51) and integrating in ¢ we obtain
[[€A (1), Ch(D)]] +/0 a1(Ch(9), ()] ds + az[ [y € (s) ds, [y Culs) ds]

t
< C(HCh(O)H(QJ,Q + ||f||2L2(o,T;L2(Q))) + az[uo, fot Cn(s)ds] +/0 1€ (5)]15.0 ds

2
1,Q2

gl Gu(s) s Jy Ca)as)+ [ 160 B ds

< C(I1¢u ()13 0 + IE132(0 7inz (e + 1ol

so that

1640+ [ a1(6(0): Gy e de + aalf§ (o) ds, [y Cu(s) ]
0 (3.52)

t
< C(ICu(0) 1 0+ 1068132 0 2,02y + 16O 0, ) + / 1€h ()10 ds.

Dropping the second and third terms on the left side of (3.52) and then applying the
following version of Gronwall’s inequality [12, p.625]:

if r(t) <Oy + Oy f(f r(s)ds, then r(t) < Cy(1+ Cot)eC?t, (3.53)
we deduce
1<h 30 < CeCT(”Ch(O)H%),Q + €017 o, + ||8tf||%2(0,T;L2(Q)))'

The last estimate and (3.52) yield

HCh(t)Hg,Q +/0 a1y (t), Cp(t)] dt + a2[f(f Cn(s)ds, f(f Cn(s)ds]

< CeT (A (0) 3.2 + 1968132 07,02 ) + €A O g, )
16
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The term [|€,,(0)]17 , on the right hand side of (3.54) can be estimated with the help
of inverse inequality (3.13), (3.45) and (3.35) with r = 1:

1€,,(0) 11,0, < €0, — T nlli0, + (W n — i1, + [[ufl1,0,

C _
< — €0, — Wi nllo,0, + Chlluill2,0, + [luill1,0,
(3.55)

Q

C _
< E”éo,h —uiflo,Q, + EHul — 1y 40,0, + Chllui||2,0, + 11,0,

O,Ql) 9

where 5, is defined by (3.44). The term [|¢,(0)[[§ ¢, can be estimated as follows.
Evaluating (3.21) at t = 0, then setting 1, = 9;£,,(0) and using (3.52) we have

< 0(Ival

2.0, + [[urll2,0, + [|Ipo

[[0:£1,(0), 0:£,(0)]] = [[£(0), 8:£,,(0)]] — az[uo, 0:€,,(0)] — a1[£5,(0), 9:&,,(0)]

= [[£(0), 0:£,(0)]] — az[uo, 9:&,(0)] — b[0:&,,(0), po] — a1[vo, 9¢&;, (0)]
—[u1,0:€,(0)]a, + [£,,(0), 0:€,(0)] o,

= [[£(0), 9:£,(0)] + [Aug + V(divup), 91, (0)]e, + [Avo — Vo, 0:€;,(0)]

"F/F ( - ;LgVuo Ny — ()\2 + ,ug)(div uO)l’l2 + pon; — VVQ . 1’11) . 6t£h(0) dr’
—[u1, 9:€,(0)]e, + [€4(0), 0:€,(0)] e, -

Applying assumption (3.47) and initial condition (3.32)—(3.33) to the last relation, we
are led to

[[0:£1,(0), 0:£,,(0)]] = [[£(0), 0:£,(0)]] + [Aug + V(div ug), 9:£1(0)] e,
+ [AVO — Vo, 6755}1(0)] - [u17 at{h(o)]ﬂz + [Sh(o)ﬂ 8155}1(0)]92

< C(I1£0) 120 + ol o, + Ivol3 + l[asl3, + Ipoll o, )

1
+Cléonllin + 5110:£,(0), 0:£,,(0)]]

so that using (3.55), the last relation simplifies to

10,30 < (I8 o ran@y + ol3a, + Vol o, + ol o, + i la,)-
Combining (3.54), (3.55) and the last relation, we obtain (3.50). O
REMARK 2. The particular choice of the initial condition (3.32)—(3.33) played a

key role in the estimation of [[0:&,,(0), 9:&;,(0)]].

Using relation (3.20) reversely, i.e., setting up, = ug p + fot &1,(8)|a, ds and vy, =
&1 lq,, we arrive at the following theorem.

THEOREM 3.9. Assume that f1,vo,f2,uo and u; satisfy (2.6) and (3.46). As-
sume further that there exists a pg € H*(Q1) such that (3.47) holds. Then there exists
a unique solution (vi,pn,up) € CH([0,T]; X1 x C([0,T]; Q%) x CH([0,T]; X%) for
(3.14)—(3.19) with the initial conditions (von,u1) defined by (3.32)~(3.33). More-
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over, (Vi,Dn,Un) satisfies the estimates
VAl 0,m51200)) + 19000 1T 0,7:12(02))
2 2
+||Vh||L2(O,T;H1(Ql)) + ||uhHL°°(O,T;H1(Qg)) (3.56)

< O (IE1132(0 ey + ol

2+ Ivolld o, + llpolld o, + il e,)
and
10V R Lo 0,322 (020)) + 100N T 0,720

+||8ch H%2(01T;H1(Ql)) + ||atuh H%N(O,T;Hl(ib)) (357)

< Ce (€130 rywaqeny + Ioli3., + IV0ll3 0, + IlpolEy + IuwtllE g, )-

Recall that Theorem 3.6 only stated the existence and uniqueness of a discrete
pressure pj, satisfying (3.28), (3.27) and (3.14). By virtue of the strong energy esti-
mates (3.57) and the discrete inf-sup conditions we now can establish an estimate for
Ph-

THEOREM 3.10. Assume that f1,vg, 2, ug and uy satisfy (2.6) and (3.46). As-
sume further that there exists a po € H*(Q1) such that (3.47) holds. Let (vi,pn,us) €
CH[0,T); X2)x C([0, T); Q1) x CL([0, T); X}) be the solution for (3.14)~(3.19) with the
initial conditions (vo p,ur ) defined by (3.32)~(3.33). Then py, satisfies the estimate

||ph||%2(0,T;L2(91)) < CecT (||f||§{1 (0,TL2())
(3.58)

Hlwoll3 0, + voll3 o, + lIpoll? o, + ||u1||§,92)-
Proof. We observe that from (3.28) we have
Iprllzzoriza 00 < C(10ER12 0, 72200)

t
11720, 2y + 1€Rlz200,7530) + 1| Jo €n(s) d3||L2(0,T;X1))-

Thus, (3.58) follows from the last relation and energy estimate (3.50) for &,. O

REMARK 3. Note that Theorems 3.8, 3.9 and 3.10 require the specification of an
initial pressure pp and the initial interface stress condition (3.47). From a physical
point of view, these requirements are entirely reasonable.

4. The convergence of finite element solutions and error estimates.
Having proved the existence of finite element solutions (v, pn, uy,) for problem (3.14)—
(3.19) and (3.32)—(3.33), we now prove the convergence of the finite element solutions
and derive error estimates.

4.1. The convergence of finite element solutions. We first consider the
convergence of the finite element approximations.

THEOREM 4.1. Assume that f1,vo, f2,up and uy satisfy (2.6) and (3.46) and that
there exists a pg € H'(Qy) such that (3.47) holds. Let (v, pn,us) € CH([0,T]; X7) x
C([0,T]; Q%) x C'([0,T]; X%) be the unique solution of (3.14)—(3.19) with the initial
conditions (Vo n,u1,p) defined by (3.32)(3.33). Assume further that the finite element

18



meshes are nested, i.e., the triangulation T"2(Q) is a refinement of the triangulation
T"1(Q) whenever hy < hy. Then, there exists a unique (v,p,u) such that

v € L*(0,T; L2(1)) N L%(0,T; X1),
v € L0, T3 L2(Q))) N L2(0,T5 X1, p € L2(0,T; LA(h), (4.1)
uc LOO(O,T, XQ), ou € LOO(O,T,XQ), Oyu € LOO(O,T, L2(QQ)),

vi, = v in L?(0,T; X1), v, = v in L0, T; L3()), (4.2)
Ovy = 0yv in L*=(0,T; L3 (1)), ovi, — Oyv in L*(0,T; X1), (4.3)
u, ~u in L®(0,T; Xy), (4.4)

oy, = 9 in L°°(0,T; L2 (Qy)), o, = o in L°°(0,T; Xs),  (4.5)

Opap, = Oguin L°°(0, T; L2(Q)) (4.6)
and
p" = p  weakly in L?(0,T; L*(Q)). (4.7
Furthermore, (v,p,u) satisfies equations (3.3)~(3.6) and the estimates
HV”%OO(O,T;L?(QI)) + HatuH%OO(O,T;L?(Sb))
HIVIZ20,rm @) + 1012 0,780 (20)) (4.8)
< Ce (€120 ey + I0ll3 0, + IV0ll3 0, + llpoliE g, + il 0, )
and
100117 (0.7:1200)) + 100V 172 0,11 00y T+ 1PN 20, 7522000

+||6ttu(t) ||%oo(01T;L2((22)) + ||atu||%°°(0,T;H1 (Q2)) (49)

< Ce (I£11301 0,220 + 1ol

2 0+ IVoll3.0 + lpoll3.0, + w30, ).

Proof. We have that {(vp, pn, up)} satisfies the estimates (3.56)—(3.57) and (3.58).
Using these estimates we may extract a subsequence {(vy,,, Pn,,, un, )} of {(Vr,pr,up)},
with {h,} decreasing to 0 as n — oo, such that (4.2)—(4.7) hold for the subsequence
{(Vh,, ,Ph,,un, )} for a (v,p,u) satisfying (4.1).

Equation (3.17) holds for h = h,, and thus by passing to the limit as n — oo in
that equation we obtain (3.6). Also, u(0) = uy trivially holds.

To prove that (v,p,u) satisfies (3.3) we begin from (3.14) with h = h,. We
arbitrarily fix an integer N and a function n € C'([0,T]; X"~). For each n > N
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we obtain from (3.14) and the nesting assumption on the triangulation family 7"(Q)
that

T
| (o110, i, + arlvi, n) + b, pn, ) + pofduw, e
0

T (4.10)
+a2[uhm77]) dt = / (Pl [f1, n]o, + p2 [fzvn]m) dt.
0
Passing to the limit as n — oo we find
T
/ (pl [0v,mla, + a1[v,n] + b[n,p] + p2(0nu, n]a, + azlu, 77]) dt
0 (4.11)

T
=/ (pl[flan]ﬂl +P2[f2777]92) dt.
0

Equality (4.11) then holds for all n € L2(0,T;H(Q)), as U,y C([0,T]; X"n) is
dense in L2(0,T; H(2)) for the L?(0,T; H}(Q)) norm. Hence,

p1[0:v,nla, + a1[v,n] + +b[n, p] + p2[0:u, n]a, + az(u, ]

= p1[f1, nlo, + p2(f2, ], Vn € HY(Q), ae. t,

which is precisely (3.3).
From (3.15) we obtain

T
/ b[vh,,qlds =0
0

for all ¢ € L%(0,T; Q}l”\’) and all n > N. Passing to the limit as n — oo leads us to

/ bl glds 0 (4.12)

for all ¢ € L2(0,T; Q™). Using the denseness (with respect to the L2(0,T; L2(€;))
norm) of (J°° v L2(0,T; Q") in L2(0,T;L*()), we see that (4.12) holds for all
q € L*(0,T; L?(£21)). In particular, this implies (3.4).

To verify the initial condition (3.5) we first note that the regularity results (4.1)
imply that v € C([0,T]; L?(Q1)) N C([0,T; X1), u € C([0,T); L3(22)) N C([0,T; X2)
and 9yu € C([0,T]; L*(Q2)). For eachm € C1([0, T); H(2)) with (T") = 0 we obtain,
from (4.11), by integration by parts that

T
/ ( —pP1 [Vu at,r]]ﬂl — P2 [atua 31677]92 + a; [V, T]] + b[’f]7ﬁ] + a2 [U., 77]) dt
0 (4.13)

T
—/0 [[E, )] dt + p1[v(0), n(0)]o, + p2[0:u(0),n(0)]a,

On the other hand, from (4.10), we deduce that for all 5 € C'([0,T]; X"V) and all
n>N,

T
/ ( = p1[Vh,, Omla, — p2(0iun, , Omla,
0

+aivn,,n) +0[n, pn,] + az[uhn,n]) dt (4.14)

=A[Wﬂﬁ+mMA%MWm+m@%AWMWm-
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Holding N fixed and passing to the limit as n — oo in (4.14) and utilizing (3.35) we
arrive at

—p1[v,0mla, — p2[0ra, dimla, + ai[v,n] + bn, p] + az(u, 77]) dt
T (4.15)
- / [, )} dt + pr [vo, n(0)]e, + palus, n(0)]e,

for all 5 € C1([0, T]; X"~). Comparing (4.13) and (4.15) we obtain
p1[v(0) = vo,n(0)lo, + p2[01u(0) —u1,N(0)]o, =0 (4.16)
for all n(0) € X"~ Since |J7, X" is dense in L?(Q) for the L?($2) norm, we derive
v(0) =vo in L*(Q) and oru(0) = u;  in L*(Qy).
To check u(0) = ug we first note that with regularity (4.1) we are justified to
write

u=u(0)+ /0 Opu(s) ds. (4.17)

From the compact embedding H'(0,T; B) << L?(0,T; B) for any Banach space B
and the weak convergence (4.2)—(4.5) we deduce that for a further subsequence h,,
we have

Oy, — Opu in L%(0,T; L%(Q)) and u,, —u in L*0,T;L%*(Q))

n;

so that passing to the limit in the relation

t
up, = U, —|—/ Oruy,, (s)ds
0

and noting that [|ug,, — uollo,0, — 0 as h — 0, we obtain

t
u=ug+ / dyu(s)ds. (4.18)
0

A comparison of (4.17) and (4.18) yields u(0) = uy.

Hence we have verified that (v, p,u) satisfies (3.1)—(3.6). Of course, (v,u) is also
a solution for (2.7)—(2.10) so that by Theorem 2.2, (v,u) is the unique solution of
(2.7)—(2.10) and estimate (4.8) holds. Then by Theorem 2.3 we obtain the uniqueness
of p. Estimate (4.9) follows from (3.57) and (3.58).

Finally, it follows from the uniqueness of the limit (v,p,u) that the entire family
of finite element solutions (v, pp,uy) satisfies (4.2)—(4.7) as h — 0. O

We also have the following strong convergence, the proof of which is contained in
that of Theorem 4.1.

COROLLARY 4.2. Assume that all hypotheses of Theorem 4.1 hold. Then

v, — v in L?(0,T;L%()), u, —u in L*(0,T; Xy)
and

oy, — du in L?(0,T;L*(Q)). O
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4.2. Error estimates for finite element approximations. We will estimate
the error between the continuous solution defined by (3.3)—(3.6) and the finite element
solution defined by (3.14)—(3.19) and (3.32)—(3.33). To this end we introduce the
weighted L?(Q) projection operator onto the discretely divergence-free space o (\Ilh
is discretely divergence-free in ;.)

The projection operator P" : L2(Q) — ®" with respect to the weighted L2(Q)
inner product is defined as follows: for every n € L2(Q), P'n ¢ U" is the solution of

[P, 2" = [In,2")] V2" e ¥ (4.19)
Note that the definition of ¥" implies
b[P"n,¢" =0  V¢" Q! (4.20)

We assume that the domains €2, and 2 satisfy the following regularity assump-
tions.
Hypothesis (H1). The problem

(v,p) € Hg(u) x L§(),
[Vv,Vzlo, + b[z,p] = [fi,2]o, Vz e H{(O) (4.21)
blv,q) =0 Vqe L?()

is H2=< regular for an ¢; € (0,1), i.e., for every fi € L2(Qy), the solution (v,p)
to Problem (4.21) belongs to H2~(Qy) x H'=4(Qy), —png + (Vv + Vvi)n; €
H'/2=<(I'y) and

IVl (i) + 1Bl - ol = pn1 + (Vv + Vv 1/2-e, o < Clifillo.c; -

Hypothesis (H2). The problem

{ ue H(l)(Ql),

) (4.22)
[Vfl, VW]QI = [fQ,W]Ql Vw e H(lJ(QQ)

is H27% regular for an ez € (0,1), i.e., for every fo € L2(f), the solution u to

Problem (4.22) belongs to H2~(Qy), Vi - ny € H/27%(T) and

[allgz—<2 () IV D212, 1y < Clitallo,0.-

REMARK 4. Hypotheses (H1)-(H2) are simply equivalent to angle conditions
on 7 and Qs owing to the well-known regularity results on polygonal domains for
boundary value problems (4.21) and (4.22); see [24] and [19]. In particular, if both
Q7 and Q are convex (in which case T’y is necessarily a straight line,) then €; and e
can be chosen arbitrarily small.

Under Hypothesis (H1)-(H2), we may prove the following error estimates for the
projection operator P":

16 = Pl < CH(IClrsn, + [¢li10,)

V¢ € ¥ with ¢|o, € H(Q,),i = 1,2, r€[0,k]
22

(4.23)



and

1< —P"¢llo.a < CR™ (¢ |lrs 1.0, + II€]lr41.00)

(4.24)
Q€ HT+1(Qi)7i = 1725 re [O7k} :

V¢ € U with ¢

The proof of (4.23)—(4.24) will be given in Section 4.3, Theorem 4.6.

Now we prove the following error estimates for the semidiscrete finite element
approximations of the fluid-solid interaction problem.

THEOREM 4.3. Assume that f1, v, f2,up and uy satisfy (2.6) and (3.46) and that
there exists a po € H' (1) such that (3.47) holds. Assume also that (H1)—(H2) hold.
Let (v,p,u) be the solution of (3.1)—(3.6) and (vn,pr,un) be the solution of (3.14)-
(3.19) and (3.32)—(3.33). Assume that for some r € [1,k], v € L*(0,T; H"T1(Qy)),
ov € L2(O,T, HTﬁl(Ql)), pc LQ(O,T, HT(Ql)), omu € LQ(O,T, HTJFI(QQ)), Ouu €
L2(O,T;HT_1(QQ)), Vo € Hr+1(Ql), u; € HT+1(92), ug € HT+1(QQ) and py €
H" (). Then,

[v(t) — Vh(t)”g,ﬂl +v - Vh||2L2(0,T;X1)
+0wu(t) — dan(®)[3 o, + [ult) —un(®)i o,
< C€CTh2T(||V0||3+1,Q1 + ||‘11H£+1,Q2 + ||110||3+1,Q2 + ||PO||3,Q1 (4.25)
Hlpl L0, 77 (0)y) +CeCTRAC) (HV||2L2(0,T;HT+1(91))

2 2 2
ez o a1 00 + 10:VIT2 0,001 (1)) + ||8tt“||L?(oyT;HH(sm))

for allt € 10,T].
Proof. Let € and &, be defined by (2.11) and (3.20), respectively. We set v, (t) =
[PE®)]le, and Wi(t) = [P"E(t)]]q,-

By subtracting (3.14)—(3.15) from the corresponding equations of (3.3)—(3.4), we
obtain the “orthogonality conditions”.

p1[0:v — O v, myla, + 0[Ny, p — prl + a1[v — vu,my)
(4.26)

+p2[uy — Oan, My, + azlu—up,m,] =0 Vn, € X", ae. t,

bv —vi,qn] =0 Vg, €Q ae. t. (4.27)
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By adding/subtracting terms and using (4.26)—(4.27), we deduce that

p1[0:vh — OV, Vv — Vilo, + a1[v — vi, v — v
+p2[0r 1 — Oy, O — dyup]a, + az[u — up, dpu — uy)
= p1[0v — Ovi, v — Vila, + a1[v — v, v — V},]
+p2[0wu — Orpup, Ou — Wila, + az[u — uy, dyu — Wy,
—b[Vh — Vh,p = pr] + p1[0:v — Opvi, Vi — Vi,
(4.28)
+a1lv — v,V = vi] + p2[0s0 — Opun, Wi, — Opupla,
+az[u — up, Wy, — dup] + D[V, — Vi, p — pi)
= p1[Ov — Ovi, v — Vila, + a1[v — v, v — V},]

+p2[0wu — Oup, Opu — Wi, + az[u — up, Opu — Wy

+b[vh — Vi, p — phl.

By the definition of vj, and (4.20), we obtain

b[Va(t), pn] = bIP"E(t), pr] = 0 = bIP"E(t), qn] = b[Vi(t), qn] Van € Q. (4.29)

Utilizing (3.15) we have

bvi(t),pr] =0=b[vi(t),qn]  Van € QF. (4.30)

Also,

p1[0:v — 0pvi, Vv — Vi]a, + p2[0su — Opup, Oru — W,

= [[0:(t) — 0:£,, (1), £(t) — PE)]] = [[0:£(1), £(t) — P E(®)]]

= [[0:E(t) — O, PRE(t), E(t) — PE(t)]] (4.31)

e o
= 5 6@ — PRE(D),£(1) — P EW)]

d ~ d ~
= B2V =Vl o, + 5 Tl =l o,
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Combining (4.28)—(4.31), we deduce that for all g5, € L2(0,T; Q%)

&d

5 E”V—Vh”g,szl +a1lv —vp, v —vp] + ?E”atu 8tuh”osz2
1 ]
——Q —Uup,u—1u
5 77 %21 — Un, h
p1 d ~ ~ P2
:gaHV—VhHg,Ql+a1[V—Vh7V—V] 2 dt”atu Wh||os22

+as[u —uy, du — W + b[v, — Vi, p — qu]

P1 d ~ kl ~
<5 glv- Villg.o, + 7 IvE = va®lig, + ClIv() = Va(B)li e,
p2 d ~
+5 1000 = Wil6 0, + [lu(t) — wn(®)ll50, + Cllora(t) = Wa(®)] o,

~ k
+C|v () = Vr ()l 0, + =

7 V@O =va®li g, +Clpt) — a0,
Applying (2.2)—(2.3) to the last relation and integrating in ¢, we obtain:
PV = VO, + kv = Vil rar o)
+p2l|Opu(t) — atuh(t)||(2),sz2 + [lu(t) - uh(t)H%,Qz
< C(IVO) = voulR g, + 1000(0) — w30, + w0 — ol 32)
+&o — P &0l o + 1€(t0) — P E(t0) 1., + 1€ = P €l (0,711 ()

+lp — (]h||L20TL2Q1 /||u — up( )||1Q2d5

for all g, € L?(0,T;Q%), where to € [0,7T] is such that

1€(t0) — hé(tO)Hosz—H%aX]Hﬂ) PrEWDRq-

The error estimate (3.34) yields

llvo — VO,h||(2),Q1 +[ug — ul,h||(2),sz2

. . (4.33)
= O (IvolZ1 0, + a2, + Ipol2g, ) -
Equation (3.19) and the approximation properties imply
o = uo.nll% 0, < CA [luoll 11 g, - (4.34)
Also, by virtue of (4.24), we have
€(to) = P e(t0)l13.0 < CHZ =2 ([Iv(to)l12.0, + rulto)]I2, )
< Chzr*k(||V||2L2(0,T;HT+1(QI)) + ||8tV||%2(o,T;HT—1(Ql)) (4.35)

T L [ B
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Thus, utilizing (4.33)—(4.35), (4.23) and (3.9), we may simplify (4.32) to
prllv(t) — Vh(t)Hg,Ql +k1lv — Vh”%?(o,T;Hl(Ql))
+p2(|0pu(t) — pun(t)[I§ o, + ult) — un(t)li o,
< Ch?r(”"oniﬂ,nl + ||U-1H72«+1,522 + ||POH72«,Q1 + ||U-0||§+1,Q1
+||p||%2(O,T;HT(Ql))) + Ch%i?é(||V||%2(0,T;HT+1(91)) (436)

+||8tv||%2(01T;Hr—1(Ql)) + ||u||%2(O,T;H’”+1(Q2))
¢
+||atu||%2(01T;HT,l(92))) +/0 [u(s) — un(s)]|7.0,ds -

By dropping the first three terms on the left hand side of (4.36) and applying the
Gronwall’s inequality (3.53), we obtain

[a(t) — w ()12 0, < CeOTR [Ivoll2 1 + 1011210
+IpollZ 0, + lluoll? 110, + ||p||%2(O,T;H7‘(Ql))]
CT 1 2r—2¢ 2 2 (4'37)
+Ce""h (|\V||L2(0,T;Hr+1(91)) H10vT20mm7-1(00))
+||u||%2(O,T;H7‘+1(Qg)) + H6tu||%2(0,T;H7‘*1(Q2))) .
Hence, (4.25) follows from (4.36)—(4.37). O

4.3. (Appendix) Error estimates for the weighted L? projection onto
¥". The objective of this subsection is to prove error estimates (4.23)(4.24) for the
weighted L2 projection operator P" defined by (4.19).

We introduce an operator S : @ — " as follows. For each ¢ € ¥ C H}(Q),

Cip in
Sh¢ = { (4.38)
Cop In o,

where ¢, ), € X1 together with some o}, € Q¥ is the finite element solution of

a1[Cy p>Zn] + blzn, on] = [C, 21 Vz, € XPNHE(Q),

biCiman] =0 Van € QYN LE(Q),

Cinlry =0 and (¢ p.snlor, = [¢snlor, sk € Xir,
and Cy 5, € X2 is the finite element solution of

[VCon, VWila, = [V¢, Vwhrlo,  Ywy € X5 NH(Q),

{ Conlra =0 and [y p,8nlor, = [¢snlor, sk € X2,

Evidently, ¢; 4|, = Co.4lr, s0 that S"¢ defined by (4.38) indeed satisfies S"¢ € o,
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Using the results of [23] concerning error estimates for the finite element ap-
proximations of the Stokes equations (noting that div {|q, = 0) with inhomogeneous
boundary conditions we obtain

1€ = Cluon € CR ¢ lrsr0, i ¢lo, € HTH(Q). (4.39)

Furthermore, under assumption (H1), we may adapt straightforwardly the proof in
[23] for an Aubin-Nitsche-type result to obtain

161, = Cllo.en < CAIICy ), —Cllue, - (4.40)
Likewise,
1620 = Cll0s < CRICllrt1,0,  if Cla, € H'H(Q2) (4.41)
and, under assumption (H2),
162, = Cllo.. < CAI=2(I¢o = Cllrc, - (4.42)

To summarize, we have the following results.
PROPOSITION 4.4. If { € ¥ and |o, € H™H(Q;) (i = 1,2) for some r € [0, k],
then

15" ¢ = ¢l < CR™([¢llr+1.00 + I€]lr+1.02) - (4.43)
If, in addition, assumptions (H1)—(H2) hold, then
I8¢ = ¢llo.o < CA|IS"¢ = Cllv.0, (4.44)
where € = max{ey, €2} O

The following proposition establishes relationships between approximation prop-
erties for the operator P" and those for the operator S”.
PROPOSITION 4.5. Assume that (H1)—-(H2) hold. Then,

I¢=P"Clha < Ch¢ -~ "¢ha  VCEW. (4.45)

Proof. Let ¢ € ¥ be given. The best approximation property of a projection
operator implies that

1< = P"¢lloe < [18"¢ = ¢llo,o- (4.46)

Using the triangle inequality, the inverse inequality (3.13) and inequality (4.46), we
deduce that

1€ —P"¢lha < )I¢—8"¢lhia+[IS"¢ — P10
C
<€ =8¢0+ EHShC = P"¢[lo,0
C C
<€ =8¢0+ EHC —P"¢|lo.0 + EHShC —Clloe

C
<€ =8¢0+ EHShC —<¢llo,n -

Thus, (4.45) follows from the last inequality and (4.44). O

Finally, as obvious consequences of (4.45) and (4.43)—(4.44), we obtain the fol-
lowing error estimates for ¢ — P"¢:

THEOREM 4.6. Assume that (H1)—(H2) hold. Then the operator P" satisfies the
error estimates (4.23) and (4.24). g
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