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ABSTRACT

We discuss algorithms for multidisciplinary simula-
tion and optimization that efficiently couple existing
single-discipline codes. The algorithms are based on
a strategy in which unknown data at the interfaces
is determined through an optimization process. The
strategy allows for the user to select the data type at
the interfaces for each discipline, so that the method
can be tailored to existing codes. We focus on the
fluid-structure interaction problem for which we de-
scribe the optimization-based methods.

INTRODUCTION

Multidisciplinary simulation and optimization prob-
lems arise in a variety of settings in which more than
one media, or more than one mathematical model,
or more than one dominant effect are present. The
direct solution of such problems are a formidable
challenge, especially whenever the individual disci-
plinary problems are themselves complex and when-
ever their solution are computationally intensive.
For this reason, methods which, at the price of re-
quiring an iterative procedure, uncouple the differ-
ent disciplines are of interest. Here, we discuss un-
coupling procedures which are based on using an
optimization strategy.

A main virtue of our approach is that it allows for

the user to use existing codes for each discipline as
black boxes and only requires that the user write
a simple code that effects the coupling between the
disciplines. One reason we are able to do this is that
our methodology allows for complete flexibility with
regards to the boundary conditions imposed on each
discipline. Another virtue of the optimization-based
decoupling is that it allows for the use of efficient
iterative strategies, e.g., the fast convergence of the
iterative process by which solutions of a sequence of
uncoupled problems converge to the solution of the
coupled, multidisciplinary problem. Our methodol-
ogy has other important virtues as well such as al-
lowing for the use of mismatched grids and different
discretization methods for each discipline.

Our ultimate goal is to develop robust, efficient,
and accurate algorithms for the simulation of mul-
tidisciplinary problems, and then apply them to
control and optimization problems as well. Here,
for the sake of concreteness, we will describe the
optimization-based domain decomposition method
for fluid-structure interaction problems. The
methodologies we describe for fluid-structure inter-
action problems can also be applied to many other
multidisciplinary simulation and optimization prob-
lems.

Of course, the subjects of multidisciplinary simula-
tion and optimization have been extensively studied
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in the past and continue to be the focus of much
attention today. As a result, there is a vast litera-
ture on the subject. For example, one may consult
the conference proceedings [1]–[6] and the references
cited therein.

FLUID-STRUCTURE INTERACTION
PROBLEMS

The interactions between fluid flows and solid struc-
tures immersed in the flow are of great interest. In
practice, fluid-structure interactions are often mod-
eled using elementary fluid models, e.g., involving
loading functions, or ordinary differential equations,
or linearized models such as panel methods, even
when sophisticated models for the solid are used.
There is considerable interest in including sophis-
ticated fluid models as well. Although considerable
effort has been devoted to such settings, the efficient
and robust simulation and control of high-fidelity
fluid-structure interactions is still not currently pos-
sible.

There are a number of different types of mathe-
matical models for fluid-structure interactions that
involve sophisticated fluids, e.g., the Navier-Stokes
equations. Each model has a different regime of ap-
plicability. We briefly summarize three of the possi-
bilities.

Rigid body motion of solids in a fluid flow. Here,
the fluid sees the solids as moving rigid bodies. The
motion of the solids is then simply described by a set
of ordinary differential equations (6 for each body in
three dimensions); the fluid motion is governed by
unsteady flow equations, e.g., Navier-Stokes or Euler
or potential. Coupling occurs since the region occu-
pied by the fluid changes in time due to the motion
of the solids and that motion is affected by the forces
exerted by the fluid on the solids. Among the many
applications of such fluid-structure interactions are
store separation from aircraft, aircraft maneuvers in-
cluding avoidance and pursuit strategies, response of
aircraft to wind gusts and other sudden encounters,
electromagnetic or acoustic nondestructive evalua-
tion of pipelines and pipes by remote controlled ve-

hicles swimming in the pipeline or pipe, and medical
diagnosis and treatment using microdevices inserted
into blood vessels, intestinal track, etc.

Elastic body motions in a fluid flow. Usually, the
elastic motions of a solid body immersed in a fluid do
not affect the fluid flow because the displacements
in the solid are infinitesimal; the solid is affected
by the fluid motion through the stress forces ex-
erted by the the fluid on the solid. Such motions
are uncoupled in the sense that one may solve for
the fluid motion first, and then use that solution to
define boundary data for the elastic motion of the
solid. However, there is a very important situation
for which the fluid and solid motions are fully cou-
pled; this is when the solid is undergoing high fre-
quency vibrations. In this case, although the elastic
displacement of the solid may be small, the velocity
is large. Then, the adherence (or the no penetration)
condition that the fluid motion satisfies at the sur-
face of the solid has the velocity of the solid as data.
Among the many applications of such fluid-structure
interactions are small amplitude flutter of wings, res-
onant vibrations of other aircraft components, and
structural and other noise producing mechanisms.

Large displacement body motions in a fluid flow.
When a solid body immersed in a fluid undergoes
large displacement, then obviously the motions of
the solid and fluid are coupled. Here, the difficulties,
e.g., moving boundaries, associated with rigid body
motions are present, but are made much more diffi-
cult by the fact that the motion of the solid is now
governed by a system of partial differential equa-
tions. Among the many applications of such fluid-
structure interactions are flutter problems involving
large amplitude vibrations and the buckling of solid
structures under aerodynamic loads.

Of course, the three types of interactions given above
may be present in more complex situations. For ex-
ample, rigid body motions and elastic motions may
both be present when a wing is undergoing flutter.

In this paper, we focus on the second case, i.e., elas-
tic body motions in a fluid flow.



THE MODEL PROBLEM

Let Ωf and Ωs denote the regions occupied by the
fluid and solid, respectively. Let Γ denote the in-
terface between the fluid and the solid and let Γf

and Γs denote the boundaries of the fluid and solid
regions (other than the interface Γ.)

We assume that the fluid flow is incompressible and
viscous so that, in the fluid region, we apply the
Navier-Stokes system






ρf
∂v
∂t

+ v · ∇v − µf∇ · (∇v + ∇vT )

+∇p = 0 in Ωf × (0, T )

∇ · v = 0 in Ωf × (0, T )

v = 0 on Γf × (0, T )

v = v0 in Ωf at t = 0 .

(1)

Here, ρf and µf denote the (constant) fluid den-
sity and viscosity, v the fluid velocity, p the fluid
pressure, and v0 the initial velocity. The boundary
condition imposed on Γf can be replaced with other
ones, e.g., outflow conditions, without affecting the
sequel in any appreciable way.

In the solid, we apply the equations of linear elas-
ticity






λs∇(∇ · u) + µs∇ · (∇u + ∇uT )

−ρs
∂2u
∂t2

= ρsb in Ωs × (0, T )

u = 0 on Γs × (0, T )

u = u0 in Ωs at t = 0

∂u
∂t

= u1 in Ωs at t = 0 .

(2)

Here, µs and λs are the Lame constants and ρs the
constant density of the solid, b denotes a given load-
ing force per unit mass, u the displacement of the
solid, and u0 and u1 are given initial data.

Along the interface Γ, the velocity of the fluid and
solid are equal, as are the stress vector in the fluid

and solid. Thus, we have

v =
∂u
∂t

on Γ × (0, T ) (3)

and

λs(∇ · u)n + µs(∇u + ∇uT ) · n = pn

−µf (∇v + ∇vT ) · n on Γ × (0, T ) .
(4)

Solving (1)–(4) as a coupled system is a formidable,
even impossible, task. Thus, one looks for means to
uncouple the computations. There have been pro-
posed numerous ways to effect the uncoupling; here,
we present another such method.

A DECOMPOSITION INTO SINGLE
DISCIPLINES

Suppose, for some function g, we add to the system
(1) the boundary condition

pn − µf (∇v + ∇vT ) · n = g on Γ × (0, T ) . (5)

Then, (1) and (5) form a closed system, i.e.,we may
solve for v and p. Likewise, if we add to the system
(2) the boundary condition

λs(∇ · u)n + µs(∇u + ∇uT ) · n
= g on Γ × (0, T ) ,

(6)

then we may solve (2) and (6) for u. For any choice
of g, we thus have that (1), (2), and (4) are satisfied.
However, for an arbitrary choice for g, the interface
condition (3) will not be satisfied. On the other
hand, we know that there exists a g such that the
solution of (1), (5) and (2), 6) coincides with the
solution of the coupled system (1)–(4); one merely
has to let

g = ĝ = p̂n − µf (∇v̂ + ∇v̂T ) · n
= λs(∇ · û)n + µs(∇û + ∇ûT ) · n ,

(7)

where (v̂, p̂, û) denotes the exact solution of (1)–(4).

The question then remains: how does one determine
the correct ĝ? Since we wish for the interface con-
dition (3) to hold, we attempt to find the correct g



by solving the problem

min
g

J (g) , (8)

where

J (g) =
1
2

∫ T

0

∫

Γ0

(
∂u
∂t

− v)2 dΓdt , (9)

where u and v are related to g through (1), (5) and
(2), (6), respectively. Clearly, if the coupled system
(1)–(4) has a solution, this constrained minimization
problem has a solution and, in fact, the two solutions
are the same. Thus, we propose to solve the cou-
pled fluid-structure interaction problem by solving
a constrained optimization problem in which uncou-
pled fluid and solid systems act as constraints and
in which the functional to be minimized measures
the discrepancy in one of the interface conditions.

Adjoint equations and the gradient of the
functional

In order to solve the optimization problem, we could
employ a method which uses the gradient of the
functional (9) with respect to the unknown inter-
face function g. That gradient may be determined
via sensitivities or adjoint variables. Since an ac-
curate discretization of g would involve many vari-
ables, e.g., nodal values, there results in the need to
calculate many sensitivities. Therefore, it is more
efficient to use adjoint variables, and that is the ap-
proach we follow here.

Consider the adjoint system





−ρf
∂ξ

∂t
− µf∇ · (∇ξ + ∇ξT ) + ∇η

= 0 in Ωf × (0, T )

∇ · ξ = 0 in Ωf × (0, T )

ξ = 0 on Γf × (0, T )

ξ = 0 in Ωf at t = T

−ηn + µf (∇ξ + ∇ξT ) · n
=

(
∂u
∂t

− v
)

on Γ × (0, T )

(10)

and





λs∇(∇ · φ) + µs∇ · (∇φ + ∇φT )

−ρs
∂2φ

∂t2
= 0 in Ωs × (0, T )

φ = 0 on Γs × (0, T )

λs(∇ · φ)n + µs(∇φ + ∇φT ) · n

=
∂2u
∂t2

− ∂v
∂t

on Γ × (0, T )

φ =
∂φ

∂t
= 0 in Ωs at t = T .

(11)

We refer to ξ, η, and φ as the adjoint fluid velocity,
fluid pressure, and solid displacement, respectively.
Note that the left-hand side is merely the adjoint
of the linearized state equations (1), (5) and (2), (6)
and the right-hand side involves the derivative of the
functional (9) with respect to the state variables v
and u. Note that that the adjoint system (10) and
(11) is posed with terminal conditions at t = T in
contrast to the state system (1) and (2) which is
posed with initial conditions at t = 0. Also, the
adjoint system is linear in the adjoint variables.

It can be shown that the gradient of the functional
(9) with respect to the unknown interface function
g can be expressed in terms of the state and adjoint
variables in the form

dJ
dg

= −
∫ T

0

∫

Γ

(ξ + φ) dΓdt (12)

A gradient method for the optimization prob-
lem

A simple gradient method for the solution of the
optimization problem (8) and thus of the fluid-
structure interaction problem (1)–(4) is given as fol-
lows.

• Choose an initial guess g(0);

• for n = 0, 1, 2, . . . until satisfactory convergence
is obtained,

1a. solve (1) and (5) to obtain v(n) and p(n);



1b. solve(2) and (6) for u(n);

2a. solve (10) to obtain ξ(n) and η(n);

2b. solve (11) to obtain φ(n)

3. choose a step size αn and then determine a
new guess for g from

g(n+1) = g(n)+αn

∫ T

0

∫

Γ

(ξ(n)+φ(n)) dΓdt .

Of course, in practice, this algorithm is implemented
on discretized versions of the various partial differ-
ential equations. It can be shown that, with ap-
propriate choices of the step sizes αn (which can be
determined in practice, e.g., by monitoring the value
of the functional J (·) or by a line search algorithm),
the gradient method converges to an optimal solu-
tion. The gradient of the functional (12) can also be
used in more sophisticated optimization algorithms,
e.g., nonlinear conjugate gradient and quasi-Newton
methods.

Note that Step 1a of the above algorithm is simply a
single discipline fluid flow calculation and is totally
uncoupled from the single discipline elasticity calcu-
lation of Step 1b. Thus, two single-discipline codes
can be used without modification to effect the cal-
culations of Steps 1a and 1b. Likewise, the adjoint
fluid calculation of Step 2a is uncoupled from the ad-
joint elasticity calculation of Step 2b. The adjoint
fluid calculation of Step 2b involves a linear system
(as does, of course, Step 2b) so that these may be
effected at much less cost than that of the nonlinear
calculation of Step 1a. Also note that Steps 1a and
1b may be done in parallel as can Steps 2a and 2b.

Other boundary conditions

The single discipline problems solved in the above
algorithm involve the boundary conditions (5) and
(6) which were created as part of the optimization-
based algorithm. It is possible that these bound-
ary conditions are not convenient, e.g., available
single-discipline codes may not be able to handle
them. One would like to tailor the optimization-
based method so that the boundary conditions cre-

ated are the most convenient with regard to available
single discipline codes. This is entirely possible.

One obvious modification of the optimization-based
algorithm is to switch the roles of the Dirichlet and
Neumann boundary conditions. Thus, if the single
discipline codes are better suited to Dirichlet bound-
ary conditions, we replace (5), (6), and (9) with the
boundary conditions

∂u
∂t

= q or

u = u0 +
∫ t

0

q dt on Γ × (0, T )
(13)

and

v = q on Γ × (0, T ) (14)

and the functional

K(q) =
1
2

∫ T

0

∫

Γ

|τf − τs|2 dΓdt , (15)

where τf = −pn+µf (∇v+∇vT ) ·n and τs = λs(∇·
u)n+µs(∇u+∇uT ) ·n denote the stress vectors in
the fluid and solid, respectively. Then, uncoupling
between disciplines is effected by minimizing K(q)
over suitable q, where v, p, and u are related to q
through (1), (14) and (2), (13), respectively.

One does not need to use the same type of bound-
ary condition along the interface for the fluid and
solid. For example, one may one to use (14) for the
fluid and (6) for the solid. In this case, one would
minimize the functional

L(g,q) =
1
2

∫ T

0

∫

Γ

(
∣
∣∂u
∂t

− q
∣
∣2 + |τf − g|2

)

dΓdt

over suitable g and q, where v and p are related to
q through (1), (14) and u is related to g through
(2), (6).

Other functionals

The functionals we have explored in this paper pro-
vide for relatively easy implementations. However,



they may not provide for the fastest convergence
of optimizer iterations or the best accuracy of dis-
cretizations. For example, instead of (9), one can
employ the functional

1
2

∫ T

0

∫

Γ

∣
∣
∣
∣u − u0 −

∫ t

0

v dξ

∣
∣
∣
∣

2

dΓdt

which leads to more regular solutions of the opti-
mization problem. Using this functional instead of
(9) yields the same adjoint equations, e.g., (10) and
(11), except that the boundary conditions along the
interface Γ are now given by

−ηn + µf (∇ξ + ∇ξT ) · n =
∫ T

t

(
u − u0

−
∫ s

0

v(x, τ) dτ
)

ds on Γ × (0, T )

for the fluid and

λs(∇ · φ)n + µs(∇φ + ∇φT ) · n

= u − u0 −
∫ t

0

v(x, τ) dτ on Γ × (0, T )

for the solid.

MULTIDISCIPLINARY OPTIMIZATION

We close with a few words about the use of the meth-
ods we have described in the setting of multidisci-
plinary optimization. In this a setting, we are given
a functional that is to minimized (or maximized, de-
pending on the application) and some parameters
that can be varied in order to effect the optimiza-
tion. Thus, in general we have a problem of the type

min
α

F(v,u, p, α) (16)

subject to (1)–(4). We again want to solve this
problem by a decomposition algorithm which uses
already developed single discipline codes. As in the
multidisciplinary simulation case, we introduce the
functional (9) and the optimization problem (8),
where now we have the constraints (1), (2), (5), and
(6). As a result, we are let to a multiobjective opti-
mization problem involving the given functional (16)

and the functional (9) which is artificially introduced
in order to effect the decomposition into separate
disciplines.

The multiobjective minimization problem may be
solved by a variety of means, the simplest of which
is to form the single functional

F(v,u, p, α) + δJ (g)

which is minimized with respect to both g and α,
where δ is a penalty parameter. Optimization meth-
ods can again be defined that utilize single discipline
codes as black boxes. See [7] for an analytical and
computational study of this approach in a simplified
setting.
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