I. Prove carefully from the axioms of ZF set theory that if X is a set then the collection of all wellorderings of subsets of X is a set. You should say which axiom(s) are needed at each step in your proof.

Clarification: I mean the collection of those S such that for some $Y \subseteq X$, S is a wellordering of Y.

II. Let α and β be ordinals. Order the cartesian product of α and β, i.e. $\alpha \times \beta := \{(\gamma, \delta) | \gamma < \alpha \land \delta < \beta\}$ by $(\gamma_1, \delta_1) < (\gamma_2, \delta_2)$ if and only if one of the three following conditions holds:

i. $\gamma_1 = \gamma_2 \land \delta_1 < \delta_2$

ii. $\gamma_1 < \gamma_2 \land \delta_1 = \delta_2$

iii. $\gamma_1 < \gamma_2 \land \delta_1 < \delta_2$

Prove that this binary relation is wellfounded.

For each of the following values of α and β, determine the least ordinal γ such that there is a function $F : \alpha \times \beta \to \gamma$ with the property that $$(\gamma_1, \delta_1) < (\gamma_2, \delta_2) \implies F(\gamma_1, \delta_1) < F(\gamma_2, \delta_2)$$

(a) $\alpha = \beta = \omega$

(b) $\alpha = \beta = \omega + \omega$

III. Recall the definition of ordinal exponentiation: if α is an ordinal such that $\alpha > 0$ then

$\alpha^0 = 1$

$\alpha^{(\beta+1)} = \alpha^\beta \cdot \alpha$

$\alpha^\lambda = \cup \{\alpha^\beta : \beta < \lambda\}$ for λ a limit ordinal.

Prove that α^β could also have been defined by the following recursion equations: $\alpha^0 = 1$, and for $\beta > 0$

$$\alpha^\beta = \{\alpha^\gamma \cdot \delta + \epsilon : \gamma < \beta, \delta < \alpha, \epsilon < \alpha^\gamma\}$$

Using whichever definition you prefer, prove that $\alpha^{(\beta_1+\beta_2)} = \alpha^{\beta_1} \cdot \alpha^{\beta_2}$

IV. Let X be a nonempty set. We make two definitions:

(a) A filter on X is a subset $F \subseteq \mathcal{P}(X)$ such that

- X is in F, and \emptyset is not in F.
- For every A and B in F, the intersection of A and B is in F.
- For every A in F, every subset of X which contains A (has A as a subset) is also in F.

(b) An ultrafilter on X is a filter U on X with the additional property that for every subset A of X, exactly one of A, and $X \setminus A$ is in U.

\textit{Date: Due: 5 March 2009, 17:00.}
Prove that U is an ultrafilter on X if and only if the following two conditions are satisfied:

- U is a filter on X.
- There is no filter on X which properly contains U.

Use ZL to show that for every filter on X there is an ultrafilter U on X which contains F.

V. By finding explicit bijections between them, or otherwise, show that all of the following sets have the same cardinality:

(a) $\mathcal{P}(\omega)$
(b) $\mathcal{P}(\omega) \times \mathcal{P}(\omega)$
(c) The set of all functions from ω to ω
(d) The set of all permutations of ω (that is, functions from ω to ω which are both injective and surjective)