(1) Proof 1: Let A be a nonempty subset of ω^2, let $a = \min \{x : (x, y) \in A\}$ and $b = \min \{y : (a, y) \in A\}$. Then (a, b) is minimal in A.

Proof 2: Suppose for contradiction that (a_n, b_n) for $n \in \omega$ form an infinite decreasing sequence. Then $a_{n+1} \leq a_n$ for all n so a_n is eventually constant. Say $a_n = A$ for all $n \geq N$. But then $b_{n+1} < b_n$ for $n \geq N$, contradiction.

(2) The union of C is clearly a subset of X^2, thus it is a binary relation on X. We call this relation R and check that R has the needed properties.

(a) Let $a \in X$. Since C is nonempty there is $S \in C$, and since S is a partial ordering S is reflexive. Hence $(a, a) \in S$, so $(a, a) \in R$.

(b) Let $(a, b) \in R$ and $(b, c) \in R$. By definition there are S_1, S_2 in C with $(a, b) \in S_1$ and $(b, c) \in S_2$. Since C is a chain either $S_1 \subseteq S_2$ or $S_2 \subseteq S_1$, hence for some $i \in \{1, 2\}$ we have $(a, b), (b, c)$ both in S_i. Now S_i is transitive so $(a, c) \in S_i$ and thus $(a, c) \in R$.

(c) Let (a, b) and (b, a) both be in R. As in the last part there is $S \in C$ with (a, b) and (b, a) both in S. As S is a partial ordering $a = b$.

(3) We show that a partial ordering R is linear iff it is maximal.

Linear implies maximal: let R be linear and let S be a partial ordering with $R \subseteq S$. Let aSb, we will show that aRb.

As R is linear we know that either aRb or bRa. If aRb we are done. If bRa then bSa since $R \subseteq S$. But then aSb and bSa, so $a = b$, and then aRb because R is reflexive.

Maximal implies linear: We show that if R is not linear then it is not maximal. Suppose that R is not linear and fix a, b such that neither aRb nor bRa holds. We will define a larger partial ordering in which a is related to b.

Define S as follows: xSy iff either xRy or xRa and bRy. We claim this is a partial order:

(a) For all x, xRa and so xSx.

(b) Let xSy and ySz. There are (a priori) four possibilities:

(i) xRy and yRz. In this case xRz by transitivity of R, so xSx.

(ii) xRy, yRa and bRz. Then xRa by transitivity of R, so xSx.

(iii) xRa, bRy and yRz. Then bRz, so xSx.

(iv) xRa, bRy, yRa, bRz. This is actually impossible because bRy and yRa would imply that bRa, which is not the case.

(c) Let xSy and ySz. We do the same case analysis as above:

(i) xRy and yRx. In this case xRy since R is a partial ordering.

(ii) xRy, yRa and bRx. Then bRz by transitivity of R, which is impossible.

(iii) xRa, bRy and yRx. Then bRa, which is impossible

(iv) xRa, bRy, yRa, bRz. This implies bRa, which is impossible.

So $x = y$.

We showed that S is a strictly larger partial ordering than R.

(4) We take each claim in turn:

(a) It is transitive. let $fRgRb$. Find m_1 such that $f(n) < g(n)$ for $n > m_1$ and m_2 such that $g(n) < h(n)$ for $n > m_2$. If $m = \max(m_1, m_2)$ then $f(n) < h(n)$ for $n > m$.

(b) It is not well-founded. Define for each i a function f_i such that $f_i(m) = \max(0, m - i)$. It is easy to see that $f_{i+1}Rf_i$ for all i.

(c) It is true that every countable set has this property. Let us enumerate the set Y as f_0, f_1, \ldots and define $h(n) = \sum_{i=0}^{\infty} f_i(n) + 1$. Then $h(n) > f_i(n)$ for $n \geq i$.

1