MATRIX THEORY AUTUMN 2011: HOMEWORK 8

JAMES CUMMINGS

Homework due at start of class on *Friday* 18 November. Recall that if $x, y \in \mathbb{C}^n$ then

$$x.y = \sum_{i=1}^{n} x_i \overline{y_i}$$

and

$$||x||^2 = x \cdot x$$

Some of these questions are about real linear algebra and some are about complex linear algebra. To avoid any confusion I have marked each question as "real" or "complex".

(1) (Complex) Exactly as for \mathbb{R}^n , a set X of vectors in \mathbb{C}^n is orthonormal if for all $x, y \in X$ we have x.y = 1 for x = y and x.y = 0 for $x \neq y$.

Prove that if $v_1, \ldots v_n$ enumerates an ON set in \mathbb{C}^n then for every $v \in \mathbb{C}^n$ we have $v = \sum_i (v.v_i)v_i$. What would be wrong with the formula " $v = \sum_i (v_i.v)v_i$ "?

- (2) (Complex) Find an ON basis for the subset of \mathbb{C}^4 spanned by the vectors (1, i, 0, 1), (0, 2, -i, 3) and (i, 1, -1, 2).
- (3) (Real) Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be an orthogonal linear map. Prove that T is either a rotation about the origin or a reflection in a line through the origin. Hint: T is determined by Te_1 and Te_2 .
- (4) (Real) Prove that if n is odd then every $n \times n$ real matrix has at least one eigenvector.

Hint: The characteristic polynomial has odd degree. Ask Paul or consult the internet if you don't see why this is helpful.

- (5) (Real) Let A be an orthogonal $n \times n$ matrix. Prove that every eigenvalue of A is either 1 or -1, and that det(A) is 1 or -1.
- (6) (Real) Let $v \in \mathbb{R}^3$ be a nonzero vector. Describe (with proof) in geometrical terms the orthogonal linear maps $T : \mathbb{R}^3 \to \mathbb{R}^3$ such that Tv = v.

Hint: knowing what the orthogonal maps from \mathbb{R}^2 to \mathbb{R}^2 are like may be useful.

(7) (Real) Describe (with proof) in geometrical terms all the orthogonal linear maps $T : \mathbb{R}^3 \to \mathbb{R}^3$.

Hint: Start by combining some of the previous exercises to prove that if R is the orthogonal map R(x, y, z) = (-x, -y, -z), then one of the orthogonal maps T and $R \circ T$ fixes at least one nonzero vector v.