MATH STUDIES ALGEBRA SPRING 2018: HOMEWORK 8

 \mathcal{JC}

This homework is due by class time on Monday 16 April. It must be typeset (preferably in LATEX) and submitted as a PDF file on the Canvas site, with a filename of the form

andrewID_alg_homeworknumber.pdf

For each minute that it is late, the grade will be reduced by 10 percent.

- (1) Let k be a subfield of l. We write P(l) for the set of subsets of l, and define a map acl from P(l) to P(l) as follows: acl(X) is the set of $b \in l$ such that b is algebraic over k(X). Prove that:
 - (a) $X \subseteq acl(X)$.
 - (b) If $X \subseteq Y$ then $acl(X) \subseteq acl(Y)$.
 - (c) acl(acl(X)) = acl(X).
 - (d) If $b \in acl(X)$ then there is finite $x \subseteq X$ such that $b \in acl(x)$.
 - (e) If $b \in acl(X \cup \{a\}) \setminus acl(X)$, then $a \in acl(X \cup \{b\})$.

What do these properties remind you of?

- (2) Let k be a subfield of l and let $a, b \in l \setminus k$ be such that [k(a) : k] and [k(b) : k] are coprime. Prove that $m_a^k = m_a^{k(b)}$.
- (3) Let p be a prime and let k be a field of characteristic p. Define $\phi: k \to k$ by $\phi: a \mapsto a^p$. Prove that:
 - (a) The map ϕ is a monomorphism from k to k.
 - (b) If k is finite then ϕ is an automorphism of k.
 - (c) If k is finite and $|k| = p^n$ then ϕ is an element of order n in the group Aut(k).
- (4) Let $k = \mathbb{Z}/2\mathbb{Z}$. Find an irreducible $f \in k[x]$ of degree three. Now let l = k[x]/(f), let $\alpha = x + (f)$ and identify $a \in k$ with $a + (f) \in l$.
 - (a) Show that $l = \{a + b\alpha + c\alpha^2 : a, b, c \in k\}.$
 - (b) Find the minimal polynomial of each element in l over k.
 - (c) Compute the group Aut(l/k).
- (5) Let k be a subfield of l and let $a \in l$ be transcendental over k.
 - (a) Prove that k(a) is isomorphic to k(x) (the field of fractions of k[x]).
 (b) Prove that k(a) is not finitely generated as a ring over k, that is to say there do not exist elements b₁,...b_n ∈ k(a) such that k(a) = k[b₁,...b_n]. Hint: There are infinitely many irreducibles in k[x].
- (6) Use the Eisenstein criterion to prove that for any prime p, the polynomial $\frac{(x+1)^p-1}{x}$ is irreducible.
- (7) Let p > 2 be prime and let β = exp(2πi/p), so that β is an element of order p in the multiplicative group of the complex numbers. Find the minimal polynomial of β over Q.