MATH STUDIES ALGEBRA SPRING 2018: HOMEWORK 2
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This homework is due by class time on Monday 5 February. It must be typeset
(preferably in I4TEX) and submitted as a PDF file on the Canvas site, with a
filename of the form

andrewID_alg_homeworknumber.pdf

For each minute that it is late, the grade will be reduced by 10 percent.

(1) Let R be a ring with 1, and consider a sequence of R-modules (M;)cy for
some interval I in Z, together with morphisms ¢; : M; — M; 1 defined
when 7,741 € I. Such a sequence is said to be exact at i if 1 —1,4,0+1 € [
and the image of ¢;_1 is equal to the kernel of ¢;, and to be exact if it is
exact at each relevant i.

Note: usually we describe exact sequences informally, by writing things
like
A—<2sB-Ls¢

Also we typically don’t name the arrows when it is clear what they must
be. In particular the zero module 0 is both initial and terminal, so we just
write 0 - M or N — 0.

Prove that:

(a) The sequence

00— B—25C

is exact iff « is injective.
The image of 0 — B is always zero. The sequence is exact iff the kernel
of B — C'is zero iff B — C' is injective.

(b) The sequence

A—23B——0

is exact iff « is surjective.
The kernel of B — 0 is always B. The sequence is exact iff the image
of A— Bis B iff A — B is surjective.
(¢) The sequence
0 A—- B 0

is exact iff « is an isomorphism.
Combine the previous two parts.
(d) If the sequence
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0 A—,p_P,¢ 0

is exact, then C ~ B/a[A].
By the previous parts, « is injective and [ is surjective. By the first IM
theorem applied to 8, C ~ B/ ker(3), and by exactness at B we have
ker(8) = im(«) = a[A4]. Note that a[A] is just an isomorphic copy of
A, so the exact sequence gives a kind of abstract representation of a
quotient construction.
Let H be a non-trivial torsion-free abelian group, and assume that H has
the following property: for all nonzero elements a,b € H there exist nonzero
integers m,n such that ma = nb (groups with this property are sometimes
said to have “rank one”).

For any nonzero a € H and any prime number p, define n,(a) as follows:
np(a) is the largest integer & > 0 such that there exists b with p*b = a
(b will necessarily be unique as H is torsion-free), or np(a) = oo if such b
exists for all k.

Let a,b € H be nonzero. Prove that n,(a) = oo if and only if n,(b) = oo,
and also that {p: n,(a) # n,(b)} is finite.

Hint: facts about ged’s may be helpful.

To simplify matters, we start by proving that V is isomorphic to a sub-
group of (Q,+). This is similar to an exercise on HW1. Fix a # 0. Then
for every b € H (including zero if you think about it) there exist m and n
such that n # 0 and ma = nb. We claim that the ratio m/n is independent
of the choice of m,n. To see this suppose that mia = n1b and moa = nab,
then (mins —mang)a = ningb —ningb = 0, so as H is t-f and a is nonzero
ming — meoni. It is now routine to check that the map which takes b € H
to m/n where ma = nb is an injective HM from H to (Q,+). For the rest
of the problem we assume that H < Q, so that n,(a) is literally the sup of
the k’s such that a/p* € H (with right convention about oc)

Now let @ € H, and consider the special case where b = Ma for some
nonzero integer M. Suppose first that p is a prime which does not divide
M, and let k > 0. By elementary number theory ged(p*, M) = 1 and there
exist integers X and Y such that Xp¥ + Y M = 1. Then b/p* = M(a/p*),
and a/p* = Xa+Yb/p*, so that a/p* € H <= b/p* € H. It follows that
np(a) = np(b). _

Now suppose that p is a prime which divides M, say M = p’ My where p
does not divide My. Now as before b/pt = M (a/p*), so that if n,(a) = co
then n,(b) = co. For all k > 0 we may find X and Y such that Xp* +
Y My = 1. It follows that a/p* = Xa+ Yb/p**J, so that if n,(b) = oo then
ny(a) = co.

Since M has only a finite number of prime divisors, we have established
the special case. The general case follows easily from the special case since
any two elements of H have a common integer multiple.

Recall that a subset A C R is open if for all a € A there is € > 0 such that
(a —€,a+¢€) C A, and closed if its complement is open. It is a standard
fact that a subset C of R is closed if and only if every convergent sequence
() with z, € C converges to a point of C. It is also standard that if B is
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a subset of R and C' is the set of limits of convergent sequences of elements
of B, then C'is closed and is the least closed set containing B: in this case
we write C' = B and call C' the closure of B.

(a)
(b)

Give an example of a non-closed subgroup of (R, +).

Q.

Prove that the closure of a subgroup of (R, +) is also a subgroup.
Easy, because (z,y) — x — y is a continuous function. So if H is
a subgroup and z,y € H we fix z, € H such that 2, — z, and
Yn € H such that y, — vy; x,, — yn € H because it’s a subgroup and
Ty — Yn — & — y by continuity.

Prove that a non-trivial closed subgroup of (R, +) must either be an
infinite cyclic group or be R itself.

Let H be a non-trivial closed subgroup. Note that a € H <= —a €
H, so H has positive elements. If a € H is nonzero then easily every
real number is within |a| of some integer multiple of a (which is also
an element of H).

Let b equal the inf of {a € H : a > 0}, and distinguish two cases:

(i) b= 0. Then for every real ¢ there are elements of H arbitrarily
close to ¢, so we can choose ¢,, € H such that ¢,, — ¢. As H is
closed, c € H. So H =R.

(ii) b > 0. There are elements of H arbitrarily close to b, so arguing
as above b € H. We claim that H is the infinite cyclic group
generated by b. To see this let ¢ € H, and let n be the unique
integer such that nb < ¢ < (n+ 1)b. Then 0 < ¢ —nb < b and
ce H,soc=0.

(Challenging, not for credit) Describe with proof the closed subgroups
of (R?,+)

If L is a line through the origin then L is a closed subgroup isomorphic
to R. Now consider L N H, this is a closed subgroup of L which we
can analyse as above: LN H is either trivial, infinite cyclic, or L itself.
If LN H is trivial for all L then H is trivial.

Suppose that L " H = L for some L, that is L C H. Let M be the
line through the origin orthogonal to L, then every element of H can
be written uniquely as [ +m where [ € L and m € M N H. Now the
three possibilities for M N H give us three possibilities for H; H = L,
H=R?and H={l+nv:1l € Ln € Z} where v is nonzerto and
orthogonal to L.

So we reduced to the case where H is non-trivial and L N H is either
trivial or infinite cyclic for every L. We claim that in this case there is
d > 0 such that every nonzero v € H is at distance at least d from 0.
Otherwise we choose a sequence of nonzero v; = 1;(cos(6;),sin(f;)) €
H such that r; > 0, §; € [0,27], r; — 0. By an easy compactness
argument we may thin out the sequence so that 6; — 6 for some 6.
Now for any nonzero r we may choose integers n; such that n;r; — r,
so that n;u; — r(cos(#),sin(f)): so H contains a line through the
origin contradicting our case assumption.

Now we know that for each v € H, there is no other w € H within
distance d (otherwise w — v is too close to 0). So H is a discrete
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subgroup. If H is contained in a line we know that H is an infinite
cyclic subgroup of that line, so we may assume that H contains two
linearly independent elements a and b say. If A = (a,b) then A < H
and it is easy to see that H/A is finite (because we can view the torus
R2/A as a compact space or as a probability space). If H/A has order
n then easily nH C A, that is H < A/n = {a/n,b/n). So H is a free
abelian group of rank 2, generated by two elements ¢ and d which are
linearly indepedendent.

(4) Let R be a commutative ring with 1, let M be an R-module, and recall
from class the definition of the functor Hom(M, —).

Give a proof or a counterexample for each of the following statements:

(a) If & : Ny — Ny is injective, then Hom(M,«a) : Hom(M,N;) —
Hom(M, N») is injective.
This is true. Suppose that ¢,¢ € Hom(M,N;) with ¢ # ¢. Fix
m such that ¢(m) # ¥(m). As « is injective, ap(m) # ap(m), so
g # ay,

(b) If & : Ny — N is surjective, then Hom(M,«) : Hom(M,Ny) —
Hom(M, Ns) is surjective.
This is false in general. The assertion that Hom (M, «) is surjective
amounts to saying that every morphism from M to Ny factors through
a. But let R=7Z, M = Ny =7/2Z, N1 = Z and « the quotient map.
Then « is surjective but the identity map from M to Ny can’t be
factored through «, because the only morphism from M to Nj is the
Zero map.

(¢) If a: Ny — Ny is an isomorphism, then Hom(M, &) : Hom(M, N1) —
Hom(M, N») is an isomorphism.
This is true. If 8 : N; — N; is a~!, then since Hom(M, is a functor
it is easy to see that Hom(M,3) = Hom(M,«)~t.

(5) A function from R to the set of real N x N matrices is differentiable if each
of the N? functions corresponding to the entries is differentiable, and the
derivative is the matrix made up of the derivatives of the entries. Let A be
areal N x N matrix. Prove that the matrix exponential function exp(At)
is a differentiable function of ¢, and find its derivative.

Hint 1: since AtAh = AhAt you can simplify the expression CXP(AHAZ)%XP(A”

in a helpful way. _
Hint 2: You may find it useful to bound the entries in >, (Ai'!’)l

Taking the hint, we use the fact that exp(At + Ah) = exp(At) exp(Ah)
exp(AtJrAZ)fexp(At) _ exp(At) exp(ih)fl.

to write

Now exp(Ah) = I +hA+ 352, hi4r.

We already saw that there is a constant M > 0 such that the absolute
values of the entries in A’ is bounded by M?. So the absolute values of
the entries in the partial sum Y., h*4- are bounded by 7, M
(Ah)’

; il
by Z?:zM = exp(|h|M) — 1 — |h|M. Tt is now easy to see that

4!
oo (Ah)*

=i=2 7 — 0 as h — 0, so exp(At) is differentiable with derivative
exp(At)A.

, and

in the limit the absolute values of the entries in > :°, are bounded
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A little thought (rearrange partial sums) shows that exp(At)A = A exp(At).



