
MATH STUDIES ALGEBRA SPRING 2018: HOMEWORK 2

JC

This homework is due by class time on Monday 5 February. It must be typeset
(preferably in LATEX) and submitted as a PDF file on the Canvas site, with a
filename of the form

andrewID_alg_homeworknumber.pdf

For each minute that it is late, the grade will be reduced by 10 percent.

(1) Let R be a ring with 1, and consider a sequence of R-modules (Mi)i∈I for
some interval I in Z, together with morphisms φi : Mi → Mi+1 defined
when i, i+ 1 ∈ I. Such a sequence is said to be exact at i if i−1, i, i+ 1 ∈ I
and the image of φi−1 is equal to the kernel of φi, and to be exact if it is
exact at each relevant i.

Note: usually we describe exact sequences informally, by writing things
like

A B Cα β

Also we typically don’t name the arrows when it is clear what they must
be. In particular the zero module 0 is both initial and terminal, so we just
write 0→M or N → 0.

Prove that:
(a) The sequence

0 B Cα

is exact iff α is injective.
The image of 0→ B is always zero. The sequence is exact iff the kernel
of B → C is zero iff B → C is injective.

(b) The sequence

A B 0α

is exact iff α is surjective.
The kernel of B → 0 is always B. The sequence is exact iff the image
of A→ B is B iff A→ B is surjective.

(c) The sequence

0 A B 0α

is exact iff α is an isomorphism.
Combine the previous two parts.

(d) If the sequence
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0 A B C 0α β

is exact, then C ' B/α[A].
By the previous parts, α is injective and β is surjective. By the first IM
theorem applied to β, C ' B/ ker(β), and by exactness at B we have
ker(β) = im(α) = α[A]. Note that α[A] is just an isomorphic copy of
A, so the exact sequence gives a kind of abstract representation of a
quotient construction.

(2) Let H be a non-trivial torsion-free abelian group, and assume that H has
the following property: for all nonzero elements a, b ∈ H there exist nonzero
integers m,n such that ma = nb (groups with this property are sometimes
said to have “rank one”).

For any nonzero a ∈ H and any prime number p, define np(a) as follows:
np(a) is the largest integer k ≥ 0 such that there exists b with pkb = a
(b will necessarily be unique as H is torsion-free), or np(a) = ∞ if such b
exists for all k.

Let a, b ∈ H be nonzero. Prove that np(a) =∞ if and only if np(b) =∞,
and also that {p : np(a) 6= np(b)} is finite.

Hint: facts about gcd’s may be helpful.
To simplify matters, we start by proving that V is isomorphic to a sub-

group of (Q,+). This is similar to an exercise on HW1. Fix a 6= 0. Then
for every b ∈ H (including zero if you think about it) there exist m and n
such that n 6= 0 and ma = nb. We claim that the ratio m/n is independent
of the choice of m,n. To see this suppose that m1a = n1b and m2a = n2b,
then (m1n2−m2n1)a = n1n2b− n1n2b = 0, so as H is t-f and a is nonzero
m1n2 −m2n1. It is now routine to check that the map which takes b ∈ H
to m/n where ma = nb is an injective HM from H to (Q,+). For the rest
of the problem we assume that H ≤ Q, so that np(a) is literally the sup of
the k’s such that a/pk ∈ H (with right convention about ∞)

Now let a ∈ H, and consider the special case where b = Ma for some
nonzero integer M . Suppose first that p is a prime which does not divide
M , and let k ≥ 0. By elementary number theory gcd(pk,M) = 1 and there
exist integers X and Y such that Xpk + YM = 1. Then b/pk = M(a/pk),
and a/pk = Xa+Y b/pk, so that a/pk ∈ H ⇐⇒ b/pk ∈ H. It follows that
np(a) = np(b).

Now suppose that p is a prime which divides M , say M = pjM0 where p
does not divide M0. Now as before b/pk = M(a/pk), so that if np(a) =∞
then np(b) = ∞. For all k ≥ 0 we may find X and Y such that Xpk +
YM0 = 1. It follows that a/pk = Xa+Y b/pk+j , so that if np(b) =∞ then
np(a) =∞.

Since M has only a finite number of prime divisors, we have established
the special case. The general case follows easily from the special case since
any two elements of H have a common integer multiple.

(3) Recall that a subset A ⊆ R is open if for all a ∈ A there is ε > 0 such that
(a − ε, a + ε) ⊆ A, and closed if its complement is open. It is a standard
fact that a subset C of R is closed if and only if every convergent sequence
(xn) with xn ∈ C converges to a point of C. It is also standard that if B is
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a subset of R and C is the set of limits of convergent sequences of elements
of B, then C is closed and is the least closed set containing B: in this case
we write C = B̄ and call C the closure of B.
(a) Give an example of a non-closed subgroup of (R,+).

Q.
(b) Prove that the closure of a subgroup of (R,+) is also a subgroup.

Easy, because (x, y) 7→ x − y is a continuous function. So if H is
a subgroup and x, y ∈ H̄ we fix xn ∈ H such that xn → x, and
yn ∈ H such that yn → y; xn − yn ∈ H because it’s a subgroup and
xn − yn → x− y by continuity.

(c) Prove that a non-trivial closed subgroup of (R,+) must either be an
infinite cyclic group or be R itself.
Let H be a non-trivial closed subgroup. Note that a ∈ H ⇐⇒ −a ∈
H, so H has positive elements. If a ∈ H is nonzero then easily every
real number is within |a| of some integer multiple of a (which is also
an element of H).
Let b equal the inf of {a ∈ H : a > 0}, and distinguish two cases:

(i) b = 0. Then for every real c there are elements of H arbitrarily
close to c, so we can choose cn ∈ H such that cn → c. As H is
closed, c ∈ H. So H = R.

(ii) b > 0. There are elements of H arbitrarily close to b, so arguing
as above b ∈ H. We claim that H is the infinite cyclic group
generated by b. To see this let c ∈ H, and let n be the unique
integer such that nb ≤ c < (n + 1)b. Then 0 ≤ c − nb < b and
c ∈ H, so c = 0.

(d) (Challenging, not for credit) Describe with proof the closed subgroups
of (R2,+)
If L is a line through the origin then L is a closed subgroup isomorphic
to R. Now consider L ∩ H, this is a closed subgroup of L which we
can analyse as above: L∩H is either trivial, infinite cyclic, or L itself.
If L ∩H is trivial for all L then H is trivial.
Suppose that L ∩ H = L for some L, that is L ⊆ H. Let M be the
line through the origin orthogonal to L, then every element of H can
be written uniquely as l + m where l ∈ L and m ∈ M ∩H. Now the
three possibilities for M ∩H give us three possibilities for H; H = L,
H = R2 and H = {l + nv : l ∈ L, n ∈ Z} where v is nonzerto and
orthogonal to L.
So we reduced to the case where H is non-trivial and L ∩H is either
trivial or infinite cyclic for every L. We claim that in this case there is
d > 0 such that every nonzero v ∈ H is at distance at least d from 0.
Otherwise we choose a sequence of nonzero vi = ri(cos(θi), sin(θi)) ∈
H such that ri > 0, θi ∈ [0, 2π], ri → 0. By an easy compactness
argument we may thin out the sequence so that θi → θ for some θ.
Now for any nonzero r we may choose integers ni such that niri → r,
so that nivi → r(cos(θ), sin(θ)): so H contains a line through the
origin contradicting our case assumption.
Now we know that for each v ∈ H, there is no other w ∈ H within
distance d (otherwise w − v is too close to 0). So H is a discrete
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subgroup. If H is contained in a line we know that H is an infinite
cyclic subgroup of that line, so we may assume that H contains two
linearly independent elements a and b say. If Λ = 〈a, b〉 then Λ ≤ H
and it is easy to see that H/Λ is finite (because we can view the torus
R2/Λ as a compact space or as a probability space). If H/Λ has order
n then easily nH ⊆ Λ, that is H ≤ Λ/n = 〈a/n, b/n〉. So H is a free
abelian group of rank 2, generated by two elements c and d which are
linearly indepedendent.

(4) Let R be a commutative ring with 1, let M be an R-module, and recall
from class the definition of the functor Hom(M,−).

Give a proof or a counterexample for each of the following statements:
(a) If α : N1 → N2 is injective, then Hom(M,α) : Hom(M,N1) →

Hom(M,N2) is injective.
This is true. Suppose that φ, ψ ∈ Hom(M,N1) with φ 6= ψ. Fix
m such that φ(m) 6= ψ(m). As α is injective, αφ(m) 6= αψ(m), so
αφ 6= αψ,

(b) If α : N1 → N2 is surjective, then Hom(M,α) : Hom(M,N1) →
Hom(M,N2) is surjective.
This is false in general. The assertion that Hom(M,α) is surjective
amounts to saying that every morphism from M to N2 factors through
α. But let R = Z, M = N2 = Z/2Z, N1 = Z and α the quotient map.
Then α is surjective but the identity map from M to N2 can’t be
factored through α, because the only morphism from M to N1 is the
zero map.

(c) If α : N1 → N2 is an isomorphism, then Hom(M,α) : Hom(M,N1)→
Hom(M,N2) is an isomorphism.
This is true. If β : N1 → N1 is α−1, then since Hom(M,) is a functor

it is easy to see that Hom(M,β) = Hom(M,α)−1.
(5) A function from R to the set of real N ×N matrices is differentiable if each

of the N2 functions corresponding to the entries is differentiable, and the
derivative is the matrix made up of the derivatives of the entries. Let A be
a real N ×N matrix. Prove that the matrix exponential function exp(At)
is a differentiable function of t, and find its derivative.

Hint 1: sinceAtAh = AhAt you can simplify the expression exp(At+Ah)−exp(At)
h

in a helpful way.

Hint 2: You may find it useful to bound the entries in
∑∞
i=2

(Ah)i

i! .
Taking the hint, we use the fact that exp(At + Ah) = exp(At) exp(Ah)

to write exp(At+Ah)−exp(At)
h = exp(At) exp(Ah)−I

h .

Now exp(Ah) = I + hA+
∑∞
i=2 h

i Ai

i! .
We already saw that there is a constant M > 0 such that the absolute

values of the entries in Ai is bounded by M i. So the absolute values of

the entries in the partial sum
∑n
i=2 h

i Ai

i! are bounded by
∑n
i=2

(|h|M)i

i! , and

in the limit the absolute values of the entries in
∑∞
i=2

(Ah)i

i! are bounded

by
∑n
i=2

(|h|M)i

i! = exp(|h|M) − 1 − |h|M . It is now easy to see that∑∞
i=2

(Ah)i

i!

h → 0 as h → 0, so exp(At) is differentiable with derivative
exp(At)A.



MATH STUDIES ALGEBRA SPRING 2018: HOMEWORK 2 5

A little thought (rearrange partial sums) shows that exp(At)A = A exp(At).


