MATH STUDIES ALGEBRA SPRING 2018: HOMEWORK 1

 \mathbf{JC}

This homework is due by class time on Monday 29 January. It must be typeset (preferably in LATEX) and submitted as a PDF file on the Canvas site, with a filename of the form

andrewID_alg_homeworknumber.pdf

For each minute that it is late, the grade will be reduced by 10 percent.

- (1) Let G be a finite group, let k be a field and let R be the set of all functions from G to k. In a suggestive notation we will write a typical element $f \in R$ in the form $\sum_{i=1}^{n} a_i g_i$, where $g_1, \ldots g_n$ enumerates G and $f(g_i) = a_i$.

 - We define operations + and × on R as follows: $\sum_{i=1}^{n} a_i g_i + \sum_{i=1}^{n} b_i g_i = \sum_{i=1}^{n} c_i g_i$, where $c_i = a_i + b_i$. $\sum_{i=1}^{n} a_i g_i \times \sum_{j=1}^{n} b_j g_j = \sum_{k=1}^{n} c_k g_k$, where $c_k = \sum_{k=1}^{n} \{a_i b_j : g_i g_j = g_k\}$.
 - (a) Prove that R forms a ring with 1, given these definitions of + and \times .
 - (b) Prove that (R, \times) contains an isomorphic copy of G.
 - (c) Prove that R contains an isomorphic copy of k.
 - (d) Identify (with proof) the class of groups G for which R is commutative.
- (2) Let k be a field, G a finite group and V a vector space over k (IE a kmodule). Suppose that G acts on V in such a way that the map $v \mapsto g \cdot v$ is linear for each $g \in G$. Let R be the ring constructed from k and G in the preceding question.
 - (a) Prove that if we define $(\sum_{i=1}^{n} a_i g_i)v = \sum_{i=1}^{n} a_i (g_i \cdot v)$, then V becomes a left *R*-module.
 - (b) Prove that all left *R*-modules arise in this way.
- (3) Consider the ring R of $N \times N$ real matrices. We will generalise some familiar ideas from calculus to this setting:
 - If $(M_n)_{nin\mathbb{N}}$ is a sequence of elements of R, then (M_n) is convergent if and only if for each i and j the sequence formed by the (i, j)-entries in M_n is convergent. In this case the *limit* is the matrix M whose (i, j)-entry is the limit of the sequence formed by the (i, j)-entries in M_n .
 - M_n.
 Similarly, an infinite sum ∑_{n=0}[∞] M_n of elements of R is convergent iff the sequence of partial sums ∑_{n=0}^j M_n is convergent, and in this case ∑_{n=0}[∞] M_n is defined as the limit of the sequence of partial sums.
 (a) Prove that for any matrix A ∈ R, the power series ∑_{n=0}[∞] A_n/n converges.
 - Hint: Let K be the maximum of the absolute values of the entries in A. Find an upper bound for the absolute values of the entries in A^n in terms of K, N and n. Now use the Comparison Test.
 - (b) Compute the sum of the series $\sum_{n=0}^{\infty} \frac{A^n}{n!}$ when N = 2 and A = $\left(\begin{array}{cc}\lambda & 0\\ 1 & \lambda\end{array}\right)$

- (c) (Challenging, not for credit) We define $\exp(A) = \sum_{n=0}^{\infty} \frac{A^n}{n!}$. Prove that if AB = BA then $\exp(A + B) = \exp(A) \exp(B)$.
- (4) Review the following basic definitions from category theory: *category*, *object*, *morphism*, *initial object*, *terminal object*.
- (5) Let C be a category, let I be some (potentially infinite) set I and let $(a_i)_{i \in I}$ be an I-indexed family of objects of C. A cone over this family consists of an object b and an I-indexed family of morphisms $(f_i : b \to a_i)_{i \in I}$ (I usually imagine (a_i) as a horizontal line of objects and b sitting above them all with arrows going down into each a_i)

We will make a new category \mathcal{D} as follows: The objects of \mathcal{D} are cones over (a_i) . If B is a cone consisting of an object b and morphisms $(f_i : b \rightarrow a_i)_{i \in I}$, and C consists of an object c and morphisms $(g_i : c \rightarrow a_i)_{i \in I}$, then a morphism from B to C in \mathcal{D} is a morphism h from b to c in \mathcal{C} such that $f_i = g_i \circ h$.

(a) Verify that \mathcal{D} is a category.

 $\mathbf{2}$

- (b) A product for the sequence $(a_i)_{i \in I}$ is a terminal object in the category \mathcal{D} . Prove that if \mathcal{C} is the category of left *R*-modules over a ring *R* then every sequence has a product.
- (6) Let G be an abelian group. A torsion element of G is an element $g \in G$ such that ng = 0 for some integer n > 0, and G is torsion-free if 0 is the only torsion element.
 - (a) Let G be any abelian group. Prove that the set H of torsion elements forms a subgroup of G, and that the quotient G/H is torsion-free.
 - (b) Given an example of an infinite abelian group in which every element is a torsion element.
 - (c) Let G be a torsion-free abelian group. Prove that there is a vector space V over the field \mathbb{Q} such that G is a subgroup of (V, +) and every element of V has the form $\frac{1}{n}g$ for some integer n > 0 and $g \in G$ (n and g will not be unique here).