
CA LECTURE 28

SCRIBE: JONATHAN GROSS

Another Krull corollary: If R is N’ian local with unique maximal ideal M then
∩nMn = {0}.

Proof: Apply Krull to the map R→ R̂ and note that 1 + M consists of units.
Now for a couple of easy remarks about the {Gn} topology on a group G.
Remark 1: G is Hausdorff (T2) in that topology iff ∩nGn = {0}.
Proof: As we saw G is T2 iff {0} is closed. Now easily x ∈ ∩nGn iff every open

set which contains x also contains 0, that is x ∈ {0}. (Recall that in any space if we
intersect all the closed sets containing some A we get Ā, which is the least closed
set containing A).

Remark 2: Ĝ is always Hausdorff in the {Ĝn} topology.
Proof: Let (gn) be a Cauchy sequence whose class is in ∩nĜn, then it is easy to

see that for any j we have gn ∈ Gj for all large j, so (gn) is in the zero class. Now
appeal to the precding remark.

Ultimate goal for this lecture: show that if R is N’ian, I is any ideal and R̂ is
the completion wrt the I-adic topology then R̂ is N’ian. We approach this by an
indirect route: ultimately we will use the fact that În/În+1 ' In/In+1 to get a
handle on the structure of R̂.

Definition: a filtered group is a group A together with a filtration {An}. If A
and B are filtered groups then a HM of filtered groups from A to B is a group HM
φ : A→ B such that φ[An] ⊆ Bn.

Remark: Such a φ induces maps αn : A/An → B/Bn given by αn : a + An 7→
φ(a) + Bn, and a map φ̂ : Â→ B̂. φ̂ can be seen two ways: in the cauchy sequence
picture it maps the class of (an) to the class of (φ(an)), in the inverse limit picture
the αn comprise a HM of inverse systems from the system ~A = A/A0 ← A/A1 . . .

defining Â to the system ~B = B/B0 ← B/B1 . . . defining B̂, and φ̂ is the image of
this HM under the inverse limit functor.

You could see it this way; we have a functor (which we have implicitly just
described) from the category of filtered groups to the category of inverse systems
and then the inverse limit functor from the category of inverse systems to the
category of groups. The completion functor from filtered groups to groups is the
composition of those functors.

Now we introduce another functor from filtered groups to groups, which maps
a filtered group to the “associated graded group” defined as follows: G(A) =
⊕nGn(A) where Gn(A) = An/An+1. If φ is a HM of filtered groups then φ in-
duces Gn(φ) : Gn(A)→ Gn(B) by a+An+1 7→ φ(a)+Bn+1 and then as you expect
G(φ) : (xn) ∈ G(A) 7→ (Gn(φ)(xn)) ∈ G(B).

The key idea in today’s proof is that this functor is more tractable than the
completion functor (roughly because direct sums are simpler than inverse limits,
after all they are finitary and all coordinates are independent).
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DIGRESSION: We digress briefly into a discussion of when the map φ̂ is surjec-
tive. I was a little too glib in class when I said it would suffice for all the αn to be
surjective, the real situation is trickier.

General case: Suppose we have inverse systems ~C = C0 ← C1 . . . and ~D = D0 ←
D1 . . . and a HM {βn : Cn → Dn} of inverse systems, with the property that all
the βn are surjective. Then it may happen that the induced map from lim

←
Cn to

lim
←

Dn is not surjective: if we consider the problem of inductively constructing a

preimage (cn) for some (dn) in the inverse limit of ~D, then (even if ~C is surjective)
we may get stuck when trying to satisfy the conditions βn+1 : cn+1 7→ dn+1 and
πC

n : cn+1 7→ cn.
This is a situation where abstract nonsense is actually very helpful. Observe

that for each index n if Kn = ker(βn) we have a short exact sequence 0 → Kn →
Cn → Dn → 0. As usual the restriction of πC

n induces a map Kn+1 → Kn so
we can form an inverse system ~K and a short exact sequence of inverse systems
0 → ~K → ~C → ~D → 0. As we showed in geeneral this just lets us conclude that
0→ lim

←
~K → lim

←
~C → lim

←
~D is exact, but if the system ~K is surjective then in fact

0→ lim
←

~K → lim
←

~C → lim
←

~D → 0 is exact, so in particular lim
←

βn is surjective.
Remark: A direct argument or the same game with diagrams and exact sequences

should convince you that all βn being injective suffices for the inverse limit map of
the βn to be injective. HERE ENDETH THE DIGRESSION.

Theorem: if G(φ) is surjective (resp injective) than φ̂ is surjective (resp injective).
Start by noting that (trivially!) G(φ) is surjective (resp injective) iff all the

Gn(φ) are surjective (resp injective).
Now we can form a diagram with exact rows as follows: the map An/An+1 →

A/An+1 is inclusion, the map A/An+1 → A/An is the usual map from the inverse
system defining Â and similarly for the second row.
0 // An/An+1

Gn(φ)

��

// A/An+1
//

αn+1

��

A/An
//

αn

��

0

0 // Bn/Bn+1
// B/Bn+1

// B/Bn
// 0

By a result from our excursion into homological algebra we can build an exact

0→ ker(Gn(φ))→ ker(αn+1)→ ker(αn)→ coker(Gn(φ))→ coker(αn+1)→ coker(αn)→ 0

Note that A0 = A and B0 = B so that α0 : 0→ 0 and ker(α0) = coker(α0) = 0.
If G(φ) is surjective then each Gn(φ) is surjective, so each coker(Gn(φ)) = 0 and
we get for every n an exact sequence

0→ coker(αn+1)→ coker(αn)→ 0

By an easy induction coker(αn) = 0 and αn is surjective. What is more

ker(αn+1)→ ker(αn)→ 0

is exact so ker(αn+1) → ker(αn) is surjective. By the digression we see that
φ̂ = lim

←
αn is surjective. The proof for the case when G(φ) is injective is easier.
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Now we introduce an extra layer of complexity by looking at associated graded
rings and modules. Start with rings: let R be a ring (not necessarily N’ian!) and I
an ideal. We have a filtration {In} where by convention I0 = R, so forgetting for
a moment about multiplication we can form the associated graded group GI(R) =
⊕nIn/In+1 as above. We want to make this into a graded ring.

We note that if a ∈ In and b ∈ Im then the coset ab + Im+n+1 depends only on
the cosets a+ In+1 and b+ Im+1, so we get a well-defined multiplication map from
In/In+1×Im/Im+1 to Im+n/Im+n+1. We extend this to GI(R) in the natural way
defining

(xn)× (ym) = (zk)
where zk =

∑
n+m=k anbm and of course xn ∈ In/In+1, ym ∈ Im/Im+1 and the

product xnym is formed as above. It is routine to check this works.
Note: in this construction it is important to keep clear the distinction between

a ∈ In, the coset a+ In+1 ∈ In/In+1 and the element of GI(R) which has a+ In+1

at coordinate n and zeroes elsewhere. We will write this last object as a∗ or possibly
as a∗n when n is not clear from context:

Note: The subset of GI(R) consisting of elements a∗0 is a subring and is IMic
to R/I. We call this subring R∗.

We claim that if R is N’ian then so is GI(R). In fact let b1, . . . bm ∈ I = I1 be
generators of I. We claim that the corresponding elements b∗1j generate GI(R) as
a ring over R∗. To see this proceed in steps: every element of I has form

∑
j rjbj

so every element of I/I2 has form
∑

j rj(bj + I2) so every element of I∗1 has form∑
j r∗0j b∗1j . Now go by induction (being sure to keep track of the grading) to show

that if a ∈ In then a∗n ∈ R∗[b∗1, . . . b
∗
j ]. We’ve shown GI(R) is ring finite over R,

now appeal to the Basissatz.
Now let M be an R-module with I-filtration {Mn} and define a group GI(M) =

⊕Mn/Mn+1. We aim to make this into a graded R-module. Start by noting that
IaMb ⊆Ma+b, so that both Ia+1Mb and IaMb+1 are subsets of Ma+b+1. It follows
that if r ∈ Ia and m ∈ Mb then rm ∈ Ma+b and the coset rm + Ma+b+1 depends
only on r + Ia+1 and m + Mb+1. Now we define the scalar multiplication in a very
similar way to the multiplication in GI(R). We also adopt the convention that if
m ∈ Mn then m∗ is the element of GI(M) with m + Mn+1 at coordinate n and
zeroes elsewhere.

Important remark: if R is N’ian, I is an ideal, M is fg and {Mn} is stable then
GI(M) is a fg (and hence N’ian) GI(R)-module. Here is a sketch of the argument.
Choose n so large that Mm+1 = IMm for m ≥ n. Each Mn is fg (after all M is
an fg module over a N’ian ring) so we may choose finite generating sets Xj for Mj

where j ≤ n. Now we argue that
⋃

j X∗jj generates GI(M), showing that for all m
the set Mm∗

m is in the span. This is easy for m ≤ n. When m > n we use the fact
that Mm = IMm−1, and that we have available coefficients r∗1 for r ∈ I.

Now we are ready for the main technical result.
Theorem: let R be a ring, I an ideal, R complete in the I-adic topology, and M

an R-module with a filtration Mn such that ∩nMn = {0} (that is it is Hausdorff
in the {Mn}-topology. If GI(M) is fg as a GI(R)-module then M is fg as an R-
module. What is more, if GI(M) is N’ian as a GI(R)-module then M is N’ian as
an R-module.

Proof: Suppose we are given a finite generating set. Each element is a finite
sum of “homogeneous” elements of form m∗j , so we may as well assume that the
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generating set consists of such elements. Explicitly we fix mi ∈ Mn(i) where 1 ≤
i ≤ m such that the elements m

∗n(i)
i are a generating set.

Let’s parse this statement. It amounts to saying that for every n and and every
m ∈ Mn, m∗n is a GI(R)-linear combination of the m

∗n(i)
i . By considerations of

grading we may as well assume that in this linear combination the only relevant
i are those with n(i) ≤ n and the coefficient of m

∗n(i)
i is of the form r∗n−n(i) for

some r ∈ In−n(i).
Now let F = Rm and define φ : F → M by φ : (r1, . . . rm) →

∑
i rimi. We

will show R is surjective. To this end we filter F via Fi where Fi is the set of
tuples (r1, . . . rm) such that rj ∈ Ii−n(j) for all j such that n(j) ≤ i. This is a
stable I-filtration and (by the considerations of the preceding paragraph) has the
nice property that G(φ) : GI(F ) → GI(M) is surjective. A little thought shows
that a sequence of m-tuples in F is Cauchy for the Fi-topology iff on each of the m
coordinates we have a Cauchy sequence for the I-topology, and since R is complete
we see that F is also complete.

Since G(φ) is surjective, φ̂ : F̂ → M̂ is surjective. So we have the diagram

F

��

φ
// M

��

F̂
φ̂

// M̂

where F → F̂ is an IM, M → M̂ is injective (recall the kernel is ∩nMn which is
{0} by hypothesis) and φ̂ is surjective. A short diagram chase shows φ is surjective.

Finally suppose that GI(M) is a N’ian GI(R)-module. Let M ′ ≤M and consider
the filtration {M ′n = Mn ∩M ′}. It is routine to check that the map a + M ′n+1 7→
a + Mn+1 from M ′n/M ′n+1 to Mn/Mn+1 is injective so we may form GI(M ′) and
regard it as a submodule of GI(M). By hypothesis it is fg as a GI(R)-module so
that by the first part of the result M ′ is fg as an R-module, establishing that M is
N’ian.

Theorem: Let R be N’ian and I an ideal of R, then R̂ is N’ian.
Proof: Since În/În+1 ' In/In+1, we see that GÎ(R̂) ' GI(R). In particular

GÎ(R̂) is a Noetherian ring.
Now consider R̂ as a filtered R̂-module with the Î-topology. We know that

În = În so that R̂ is both complete and Hausdorff in this topology, Now apply the
preceding result with R̂ in the place of both M and R, to conclude that R̂ is N’ian
as a R̂-module so is a N’ian ring.


