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SCRIBE: JEREMY BRADFORD

A one lecture digression into algberaic number theory (hobbled to a certain
extent by a lack of Galois theory!)

Definition: a Dedekind domain (DD) is ID which is N’ian, integrally closed and
has dimension one.

These are important in number theory.
Definition: a number field is a subfield of C which is FD when considered as

a VS over Q. Equivalent: F = Q(α1, . . . αn) where the αi are algebraic complex
numbers.

The ring of integers oF is the set of β ∈ F which are algebraic integers, that is
are integral over Z.

Examples: in Q(i) the integers are Z[i]. But watch out, if α =
√

5 then (1+α)/2
is an integer in Q(α).

Fact: oF is a DD.
Proof: Using more field theory than we have available, it can be shown that

oF is a free abelian group whose rank is n = dimQ(F ). That is to say there is a
so-called “integral basis” β1, . . . βn such that βi ∈ oF and every element of oF is a
unique Z-linear combination.

Examples: 1, i for F = Q(i), 1, (1 +
√

5)/2 for Q(
√

5).
Since Z is Noetherian, oF is a N’ian Z-module and hence is a N’ian ring.
To check integral closure we need to know the FOF. It is easy to see that if β

is algebraic over Q then there is an integer n such that nβ is integral over Z. It
follows that every element of F has form β/n where β ∈ oF and n ∈ Z, so F is the
FOF. Integral closure is immediate.

Finally need to check dimension one. Let β be in oF and let f ∈ Z[x] be monic
of minimal degree such that f(β) = 0. The constant term of f is nonzero so 0 is
not among the roots. If β1 = β, . . . βk are the roots of f they are all integral over
Z and β1 . . . βk ∈ Z (after all f =

∏
i(x − βi)). It follows that β2 . . . βk ∈ oF , so

that the principal ideal βoF intersects Z in a nonzero ideal. In particular if P is a
nonzero prime ideal of oF then P ∩ Z is a nonzero prime ideal pZ of Z. Now pZ is
maximal and oF is integral over Z so that P is maximal.

Next we recall that in a N’ian ID of dim one every ideal I 6= 0, R is uniquely a
product of primary ideals with distinct radicals. The extra hypothesis for DD’s is
integral closure, we see what this buys us.

Fact: in a DD every nonzero primary ideal is a power of a nonzero prime ideal.
Note: converse will be true since nonzero primes are maximal, and for P prime

the radical of Pn is P .
Proof: Let Q be P -primary and consider the localisation RP . Combining various

old theorems we see that R is a N’ian local ID of dimension one, and is also integrally
closed. So it is a DVR. The primary ideals of RP are precisely the powers of the
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unique maximal ideal and are in bijection with the primary ideals of R contained
in P ; it follows easily that Q = Pn for some n.

So we see that in DD’s every ideal I 6= 0, R is uniquely a product of prime ideals.
Five minutes of gossip about number fields and their rings of integers:
(1) oF is not always a PID but every ideal is generated by at most two elements.
(2) A fractional ideal is a fg oF -submodule of F . Equivalently it is I/β where

I is an ideal of oF and β 6= 0 is in oF . They can be multiplied just like
ideals.

(3) The nonzero frac ideals form a group under multiplication, with the princi-
pal frac ideals as a subgroup. The quotient is a finite group called the ideal
class group.

(4) oF is a UFD iff it is a PID, that is the ideal class group is trivial.
(5) If I is a nonzero ideal of oF then oF /I is finite.
(6) Let p be a prime number and factorise poF = P e1

1 . . . P
eg
g , where the Pi are

prime ideals of oF . Easily Pi ∩ Z = pZ, so that Z/pZ is a subfield of the
finite field oF /Pi. If we let fi be the dimension of oF /Pi over Z/pZ then
dimQ(F ) =

∑g
i=1 eifi.

Now for something completely different (or maybe I mean no one expects the
Spanish Inquisition).

We define rather general notions of diagram and limit.
Let I and C be categories. Then an I-indexed diagram in C is just a functor from

I to C.
Example: if we take a category with objects 0, 1, 2 where the arrows are ij from

i to j when i ≤ j then the diagrams indexed by this are the familar commutative
triangles.

A cone over F consists of an object c of C and a family fa : c → F (a) of
morphisms of C, for a running through the objects of I, subject to the following
commutativity requirements: for all objects a and b and morphism h : a → b of I,
we have F (h) ◦ fa = fb.

Now we make the class of cones over a fixed F into a category in the usual way.
To be explicit if c1 with f1

a and c2 with f2
a are two cones over F then a morphism

between them is a morphism g : c1 → c2 such that f2
a ◦ g = f1

a for all a.
Defn: a limit for the diagram F is a final object in the category of cones over F .
Remark: this is a generalisation of the notion of product. If we let I be the

category with two objects and no morphisms between them then the diagrams are
just ordered pairs of objects. The limits of the diagram c, d are exactly the products.


