
ALGEBRA HOMEWORK SET 7

JAMES CUMMINGS (JCUMMING@ANDREW.CMU.EDU)

Due by class time on Wednesday 3 November. Homework must be

typeset and submitted by email as a PDF file.

(1) Recall that a subset S of a ring R is multiplicatively closed

(MC) if 1 ∈ S and S is closed under multiplication. Let S ⊆ R

be MC and define a binary relation ∼ on R × S as follows:

(r, s) ∼ (r′, s′) iff there is t ∈ S such that t(rs′ − r′s) = 0.

Prove that:

(a) ∼ is an equivalence relation.

(b) Defining + and × as in the definition of field of fractions

makes the set of ∼-classes into a ring (which we write

RS−1). Just check the operations are well-defined, it is

then clear that the ring axioms are satisfied.

This is all routine computation. The point is that r 7→ r/1

is a “universal” map such that the image of everything in S

is a unit, in the sense that every such map factors through it

uniquely.

(2) Let G be a torsion-free Z-module (abelian group) of rank 1 and

let P be the set of prime numbers.

(a) Prove that G is isomorphic to a subgroup of (Q,+).

Let g ∈ G be nonzero: then for every nonzero h ∈ G

there must exist m and n nonzero integers such that mg =

nh since otherwise the rank would be greater than one.
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What is more if m′g = n′h for nonzero m′ and n′, then

(mn′ −m′n)g = nn′h − nn′h = 0, so m/n = m′/n′. It is

now routine to check that setting 0 7→ 0 and h 7→ m/n

gives an injective HM from G to Q.

(b) Let G ≤ Q. For each nonzero a ∈ G, let na : P → N∪{∞}

be defined as follows:

na(p) = sup{n : a/pn ∈ G}.

Prove that if a and b are both nonzero then na(p) =∞ ⇐⇒

nb(p) =∞, and {p : na(p) 6= nb(p)} is finite.

Let M and N be nonzero integers such that Ma = Nb.

Suppose that p is a prime such that p does not divide N ,

and that a/pn ∈ G. By standard number theory, since pn

is coprime with N there exist integers X and Y such that

Xpn+Y N = 1, so b/pn = Xb+Y Nb/pn = Xb+YMa/pn ∈

G. Similarly if p does not divide M and b/pn ∈ G then

a/pn ∈ G. It follows that for all but finitely many primes

p (those that divide M or N) we have na(p) = nb(p).

Now let na(p) = ∞. Clearly every integer multiple of a

has the same property, so we may assume that a is an

integer. Also ap−m has the same property for every m

so we may assume that a is an integer not divisible by p.

Arguing as above for each n we can find X and Y such

that Xa + Y pn = 1. Now let b ∈ G be arbitrary, so that

b/pn = Xa/pn + Y b ∈ G.
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(3) Let A be an n×n integer matrix and let GA be the subgroup of

Zn generated by the columns of A. Prove that Zn/GA is finite

iff det(A) 6= 0, and that in this case Zn/GA has order |det(A)|.

Use the theorem on the structure of subgroups of free abelian

groups to find a basis b1, . . . bn of Zn and nonzero numbers

c1, . . . cm such that c1b1, . . . cmbm form a basis for GA. det(A) is

nonzero iff the columns are linearly independent over Q iff they

are independent over Z iff GA has rank n iff m = n iff Zn/GA

is finite. In this case it is clear that Zn/GA has order c1 . . . cn.

To finish we form a matrix M whose i column is bi, and then

let C be diagonal with diagonal entries ci so that MC has i

column cibi. Expressing the columns of In in terms of the bi

we find an integer matrix N such that I = MN . Similarly

we find integer matrices N1 and N2 such that A = MCN1

and MC = AN2. Now by routine calculation N1 and N2 are

mutually inverse integer matrices, so have determinants ±1 and

the resulkt follows easily.

(4) Prove that the intersection of any nonempty chain of prime

ideals is prime.

Let C be such a chain. Clearly the intersection P is an ideal.

If anotinP and b /∈ P then by going far enough down the chain

we find Q ∈ C such that a, b /∈ Q. Then as Q is prime ab /∈ Q,

hence ab /∈ P .

(5) Let R be a PID and let N be a free R-module on a countably

infinite set of generators (for example the set of all functions

from N to R which are zero on a cofinite set). Prove that every

submodule of N is free.
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Let N be the given free module, and note that:

(a) If we define Ni to be the set of f such that f(j) = 0 for

j > i, then Ni is a free module of rank i+1, and N =
⋃

iNi.

(b) If we define πi : N → R by πi(f) = f(i) then πi is a HM.

For each i, πi[M ∩Ni] is an ideal of R, say (ai), and we may

choose mi ∈ M ∩ Ni such that πi(mi) = ai. We claim that

the nonzero elements mi form a basis for M , so we must check

that they are independent and spanning. Independence is easy,

because a nonzero mi has its last nonzero entry at coordinate

i; so if i1 < . . . in with mik nonzero and
∑n

k=1 λkmik = 0, then

applying πin we have λnan = 0 so that λn = 0.

For spanning we do an induction on the largest n such that

πn(m) 6= 0; since m ∈ M ∩ Nn we have that πn(m) = ran

for some r, and now we can apply the induction hypothesis to

m− rmn.


