ALGEBRA HOMEWORK SET 7

JAMES CUMMINGS (JCUMMING@ANDREW.CMU.EDU)

Due by class time on Wednesday 3 November. Homework must be typeset and submitted by email as a PDF file.

- (1) Recall that a subset S of a ring R is multiplicatively closed (MC) if 1 ∈ S and S is closed under multiplication. Let S ⊆ R be MC and define a binary relation ~ on R × S as follows:
 (r,s) ~ (r',s') iff there is t ∈ S such that t(rs' r's) = 0. Prove that:
 - (a) \sim is an equivalence relation.
 - (b) Defining + and × as in the definition of field of fractions makes the set of ∼-classes into a ring (which we write RS⁻¹). Just check the operations are well-defined, it is then clear that the ring axioms are satisfied.

This is all routine computation. The point is that $r \mapsto r/1$ is a "universal" map such that the image of everything in Sis a unit, in the sense that every such map factors through it uniquely.

- (2) Let G be a torsion-free Z-module (abelian group) of rank 1 and let P be the set of prime numbers.
 - (a) Prove that G is isomorphic to a subgroup of (Q, +).
 Let g ∈ G be nonzero: then for every nonzero h ∈ G there must exist m and n nonzero integers such that mg = nh since otherwise the rank would be greater than one.

What is more if m'g = n'h for nonzero m' and n', then (mn' - m'n)g = nn'h - nn'h = 0, so m/n = m'/n'. It is now routine to check that setting $0 \mapsto 0$ and $h \mapsto m/n$ gives an injective HM from G to \mathbb{Q} .

(b) Let $G \leq \mathbb{Q}$. For each nonzero $a \in G$, let $n_a : P \to \mathbb{N} \cup \{\infty\}$ be defined as follows:

$$n_a(p) = \sup\{n : a/p^n \in G\}.$$

Prove that if a and b are both nonzero then $n_a(p) = \infty \iff$ $n_b(p) = \infty$, and $\{p : n_a(p) \neq n_b(p)\}$ is finite.

Let M and N be nonzero integers such that Ma = Nb. Suppose that p is a prime such that p does not divide N, and that $a/p^n \in G$. By standard number theory, since p^n is coprime with N there exist integers X and Y such that $Xp^n+YN = 1$, so $b/p^n = Xb+YNb/p^n = Xb+YMa/p^n \in$ G. Similarly if p does not divide M and $b/p^n \in G$ then $a/p^n \in G$. It follows that for all but finitely many primes p (those that divide M or N) we have $n_a(p) = n_b(p)$.

Now let $n_a(p) = \infty$. Clearly every integer multiple of a has the same property, so we may assume that a is an integer. Also ap^{-m} has the same property for every m so we may assume that a is an integer not divisible by p. Arguing as above for each n we can find X and Y such that $Xa + Yp^n = 1$. Now let $b \in G$ be arbitrary, so that $b/p^n = Xa/p^n + Yb \in G$.

(3) Let A be an $n \times n$ integer matrix and let G_A be the subgroup of \mathbb{Z}^n generated by the columns of A. Prove that \mathbb{Z}^n/G_A is finite iff $det(A) \neq 0$, and that in this case \mathbb{Z}^n/G_A has order |det(A)|.

Use the theorem on the structure of subgroups of free abelian groups to find a basis $b_1, \ldots b_n$ of \mathbb{Z}^n and nonzero numbers $c_1, \ldots c_m$ such that $c_1b_1, \ldots c_mb_m$ form a basis for G_A . det(A) is nonzero iff the columns are linearly independent over \mathbb{Q} iff they are independent over \mathbb{Z} iff G_A has rank n iff m = n iff \mathbb{Z}^n/G_A is finite. In this case it is clear that \mathbb{Z}^n/G_A has order $c_1 \ldots c_n$.

To finish we form a matrix M whose i column is b_i , and then let C be diagonal with diagonal entries c_i so that MC has icolumn $c_i b_i$. Expressing the columns of I_n in terms of the b_i we find an integer matrix N such that I = MN. Similarly we find integer matrices N_1 and N_2 such that $A = MCN_1$ and $MC = AN_2$. Now by routine calculation N_1 and N_2 are mutually inverse integer matrices, so have determinants ± 1 and the resulkt follows easily.

(4) Prove that the intersection of any nonempty chain of prime ideals is prime.

Let C be such a chain. Clearly the intersection P is an ideal. If anotinP and $b \notin P$ then by going far enough down the chain we find $Q \in C$ such that $a, b \notin Q$. Then as Q is prime $ab \notin Q$, hence $ab \notin P$.

(5) Let R be a PID and let N be a free R-module on a countably infinite set of generators (for example the set of all functions from N to R which are zero on a cofinite set). Prove that every submodule of N is free. Let N be the given free module, and note that:

- (a) If we define N_i to be the set of f such that f(j) = 0 for j > i, then N_i is a free module of rank i+1, and $N = \bigcup_i N_i$.
- (b) If we define $\pi_i : N \to R$ by $\pi_i(f) = f(i)$ then π_i is a HM.

For each $i, \pi_i[M \cap N_i]$ is an ideal of R, say (a_i) , and we may choose $m_i \in M \cap N_i$ such that $\pi_i(m_i) = a_i$. We claim that the nonzero elements m_i form a basis for M, so we must check that they are independent and spanning. Independence is easy, because a nonzero m_i has its last nonzero entry at coordinate i; so if $i_1 < \ldots i_n$ with m_{i_k} nonzero and $\sum_{k=1}^n \lambda_k m_{i_k} = 0$, then applying π_{i_n} we have $\lambda_n a_n = 0$ so that $\lambda_n = 0$.

For spanning we do an induction on the largest n such that $\pi_n(m) \neq 0$; since $m \in M \cap N_n$ we have that $\pi_n(m) = ra_n$ for some r, and now we can apply the induction hypothesis to $m - rm_n$.