ALGEBRA HOMEWORK SET 7

JAMES CUMMINGS (JCUMMING@ANDREW.CMU.EDU)

Due by class time on Wednesday 2 November. Homework must be typeset and submitted by email as a PDF file.

- (1) Recall that a subset S of a ring R is multiplicatively closed (MC) if 1 ∈ S and S is closed under multiplication. Let S ⊆ R be MC and define a binary relation ~ on R × S as follows:
 (r,s) ~ (r',s') iff there is t ∈ S such that t(rs' r's) = 0. Prove that:
 - (a) \sim is an equivalence relation.
 - (b) Defining + and × as in the definition of field of fractions makes the set of ~-classes into a ring (which we write RS⁻¹). Just check the operations are well-defined, it is then clear that the ring axioms are satisfied.
- (2) Let G be a torsion-free Z-module (abelian group) of rank 1 and let P be the set of prime numbers.
 - (a) Prove that G is isomorphic to a subgroup of $(\mathbb{Q}, +)$.
 - (b) Let $G \leq \mathbb{Q}$. For each nonzero $a \in G$, let $n_a : P \to \mathbb{N} \cup \{\infty\}$ be defined as follows:

$$n_a(p) = \sup\{n : a/p^n \in G\}.$$

Prove that if a and b are both nonzero then $n_a(p) = \infty \iff$ $n_b(p) = \infty$, and $\{p : n_a(p) \neq n_b(p)\}$ is finite.

- (3) Let A be an $n \times n$ integer matrix and let G_A be the subgroup of \mathbb{Z}^n generated by the columns of A. Prove that \mathbb{Z}^n/G_A is finite iff $det(A) \neq 0$, and that in this case \mathbb{Z}^n/G_A has order |det(A)|.
- (4) Prove that the intersection of any nonempty chain of prime ideals is prime.
- (5) Let R be a PID and let N be a free R-module on a countably infinite set of generators (for example the set of all functions from \mathbb{N} to R which are zero on a cofinite set). Prove that every submodule of N is free.