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(1) Prove that a finite group G is solvable if and only if its compo-

sition factors are cyclic groups of prime order.

Solvability is inherited by quotients and subgroups, so the

factors of a composition series in a finite solvable group will

be finite groups which are both solvable and simple, hence are

cyclic of prime order. Conversely if the composition factors are

cyclic of prime order, then any composition series is a subnormal

series with abelian quotients, so that G is solvable.

(2) Compute the derived series of S4. Hint: Keep in mind that

[G,G] is the smallest normal subgroup of G with an abelian

quotient, this can save you computing too many commutators.

Is the derived series of S4 a composition series? Find the com-

position factors of S4. Is S4 nilpotent?

Since S4/A4 is abelian, the derived subgroup of S4 is con-

tained in A4. Also (12)(13)(12)(13) = (123), so that (nor-

mality!) every 3-cycle is a commutator. Finally (123)(124) =

(13)(24) so all permutations of type (2, 2) are in the derived

subgroup. Alternative way of finishing once we have the 3-

cycles: the derived subgroup is a subgroup of A4 with at least

9 elements so it is A4.

For the next step: V = {e, (12)(34), (13)(24), (14)(23)} is a

normal subgroup ofA4 with abelian quotient, and (123)(124)(132)(142) =
1
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(12)(34), so the derived subgroup of A4 is V . Since V is abelian

the derived series is S4, A4, V, 1 and is not a composition series

since V is not simple.

We can refine to a composition series by inserting (eg) {e, (12)(34)},

then the composition factors are C2 (3 times) and C3 (1 times).

S4 is not nilpotent because it has non-normal Sylow sub-

groups (or if you prefer it is not the product of its Sylow sub-

groups). We could also do it by direct calculation.

(3) Prove that if G is a non-trivial finite p-group then [G,G] < G.

Hint: Use Z(G) 6= 1 to power an induction.

Taking the hint, let G be a non-trivial finite p-group. If

Z(G) = G then G is abelian and [G,G] = 1 < G, otherwise

G/Z(G) is a non trivial p-group in the scope of the induc-

tion hypothesis, so [G/Z(G), G/Z(G)] = [G,G]Z(G)/Z(G) <

G/Z(G), hence [G,G] < G.

(4) Suppose that G is a simple group of order 60. Derive as much

information about the Sylow p-subgroups of G as you can: their

number, their structure, their normalisers. Hint: You can use

HW1Q5 to get some information.

HW1Q5 tells us that there are no proper subgroups of index

less than 5, so that for each relevant prime p the number np of

Sylow p-subgroup must satisfy np > 4.

n5 is a factor of 12 which is greater than 4 and congruent

to 1 mod 5, so n5 = 6. The Sylow 5-subgroups have type C5

and any two have trivial intersection, so there are exactly 24

elements of order 5. The normaliser of a Sylow 5-subgroup will

have order 10.
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Similarly n3 is a factor of 20 which is greater than 4 and

congruent to 1 mod 3, so n3 = 10. The Sylow 3-subgroups have

type C3, so there are 20 elements of order 3. The normaliser of

a Sylow 5-subgroup will have order 6.

n2 and the Sylow 2-subgroups (which have order 4) seem a

bit more mysterious. n2 > 4 and n2 is an odd factor of 15, so

n2 = 5 (in which case normalisers have order 12) or n2 = 15 (in

which case each subgroup of order 4 is its own normaliser).

This is about as far as we can go just using the numerical

data from Sylow’s theorem. With more work we can show that

G ' A5, which tells us everything.

(5) Prove that if p and q are distinct primes there is no simple group

of order p2q.

Suppose G is a such a group. Then np > 1 and np divides q,

so np = q and hence q is congruent to 1 mod p, in particular

q > p. Also nq > 1 and divides p2, and since p < q it is not

possible that p is congruent to 1 mod q, so nq = p2. Hence there

are p2(q−1) elements of order q, leaving only p2 elements, hence

there is a unique Sylow p-subgroup and np = 1. Contradiction.

(6) Let S be the subgroup of ΣN generated by the set of transposi-

tions. Prove that S 6= ΣN.

S is countable but ΣN is uncountable. In fact S is equal to

the set of permutations which only move a finite set of elements.

Let A be the subgroup of ΣN generated by the set of products

of two transpositions, prove that A = [S, S], [S : A] = 2 and

A is simple. Hint: It is a standard fact that An is simple for

n ≥ 5, this statement and/or its proof may be helpful.
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Breaking with our usual convention we let N = {1, 2, . . .} and

also identify Sn with a subgroup of SN in the natural way. Using

standard facts about Sn and An it is easy to see that S =
⋃
Sn,

A =
⋃
An and so A ∩ Sn = An.

Since the Sn form an increasing chain, {[a, b] : a, b ∈ S} =⋃
n{[a, b] : a, b ∈ Sn}, and since the sets {[a, b] : a, b ∈ Sn} form

an increasing chain we have [S, S] =
⋃

n[Sn, Sn] =
⋃

nAn = A.

Routine calculation shows that (12) /∈ A and S = A ∪ (12)A,

so [S : A] = 2.

Finally let N CA and observe that N ∩An CAn, so that for

all n > 4 we have N ∩ An = 1 or N ∩ An = An. Note that the

groups N ∩ An form an increasing chain: so if N ∩ An = 1 for

infinitely many n then N = 1 while if N∩An = An for infinitely

many n then N = A.

(7) Let G be the group of symmetries of the Euclidean plane. Prove

that G is solvable. Hint: You may find it helpful to note that if

S and T are symmetries then STS−1 is the map which moves

S(P ) to S(T (P )) for each point P , so in some sense it’s just a

shifted version of T . Optional not for credit brainteaser: Is the

symmetry group of Euclidean 3-space solvable?

It is a standard fact that the symmetries are rotations, trans-

lations, reflections and glide reflections: note that the first two

types are orientation-preserving and the second two types are

orientation reversing.

Let G0 = G and let G1 be the subgroup of orientation pre-

serving symmetries. A little thought shows that G0/G1 has

type C2. Now let G2 be the subgroup of translations: for any
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σ ∈ G1 the coset σG2 contains a unique element which fixes

the origin, and so is a rotation about the origin: it follows that

G1/G2 is isomorphic to the abelian group of rotations about

the origin. Since G2 is abelian we have a subnormal series with

abelian quotients.

Brain teaser: The answer is no. One amusing proof: the

symmetry group contains as a subgroup the group of rotational

symmetries of an icosahedron, which is isomorphic to A5 and

so is not solvable.


