
ALGEBRA HOMEWORK SET 2

JAMES CUMMINGS (JCUMMING@ANDREW.CMU.EDU)

Due by class time on Wednesday 14 September. Homework must be

typeset and submitted by email as a PDF file.

(1) Let H and N be groups and let ψ be a HM from H to Aut(N).

Define a binary operation on the set of pairs (h, n) with h ∈ H

and n ∈ N by

(h1, n1)(h2, n2) = (h1h2, ψ(h−12 )(n1)n2)

(a) Prove that this operation makes the set of pairs into a

group G.

This is quite routine, but you should be careful about one

point. The inverse of the pair (h, n) is not (h−1, n−1) but

(h−1, ψ(h)(n−1)).

(b) Prove that if H ′ = H × 1 and N ′ = 1 × N then H ′ ≤ G,

N ′ CG, H ′ ' H and N ′ ' N .

This is routine.

(c) Prove that G = H ′N ′ and H ′ ∩N ′ = 1.

It is clear that H ′∩N ′ = 1. For the other part just observe

that

(h, e)(e, n) = (h, n).

(2) Suppose that (as in a question from last week) we have H ≤ G,

NCG, G = HN and H∩N = 1. We saw that every element of

G can be written as hn for unique h ∈ H and n ∈ N . Prove that
1
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G is isomorphic to the group constructed in Q1 for a suitable

choice of HM ψ.

This is a simple calculation:

h1n1h2n2 = (h1h2)(h
−1
2 n1h2n2),

where h−12 n1h2n2 ∈ N . So setting ψ(h) to be “conjugate by h”

we are exactly in the situation of Q1.

(3) Let G = S5. For each relevant prime p:

(a) Describe and count the elements of G whose order is a

power of p.

Elements of order 2 are the 10 2-cycles and the 15 elements

of cycle type (2, 2) (products of disjoint 2-cycles). Elements

of order 4 are the 30 4-cycles.

Elements of order 3 are the 20 3-cycles.

Elements of order 5 are the 24 5-cycles.

Sanity check: 1 + 10 + 15 + 30 + 20 + 24 = 100, the ele-

ments we did not count are those of type (2, 3) (the order

6 elements) and there are 20 of these.

(b) Describe the Sylow p-subgroups of G, and determine how

many there are.

The Sylow 2-subgroups have order 8. Clearly S5 contains a

copy of the symmetry group of the square (D4), for example

H = {e, (12)(34), (14)(23), (13)(24), (13), (24), (1234), (1432)}.

The other Sylow 2-subgroups are the conjugates of H.

A little thought shows that each conjugate of H is deter-

mined by the inverse pair of 4-cycles which it contains so

we will have 15 2-subgroups. We will verify this in several
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other ways. By Sylow the number n2 of Sylow 2-subgroups

must be 1, 3, 5 or 15. The answer must be at least 15 to

have a chance of getting all the elements of order 4, so it

is exactly 15. Also we can use the normaliser calculation

from the last part, and by this part we should expect H to

be its own normaliser.

The Sylow 3-subgroups have order 3, each contains an in-

verse pair of 3-cycles and any two have trivial intersection,

so n3 = 10. We expect the normalisers to have order 12.

The Sylow 5-subgroups have order 5, each contains 4 5-

cycles and any two have trivial intersection, so n5 = 6. We

expect the normalisers to have order 20.

(c) Describe the normalisers of the Sylow p-subgroups of G

(it is enough to compute the normaliser of one Sylow p-

subgroup, the others will be its conjugates)

Let H be the typical Sylow 2-subgroup as above. By the

nature of conjugation in Sn, no element of the normaliser

can move 5, so the normaliser is contained in the natural

copy of S4 in S5. Since H has prime index in this subgroup

and (1324) conjugates (1234) to (3421) /∈ H, we see that

the normaliser is H (as predicted).

Now let H = {e, (123), (132)}. Elements of the normaliser

are clearly those which permute {1, 2, 3}, so the normaliser

has structure S3 × C2.

Finally let H = {e, (12345), (13524), (14253), (15432)}. We

can view it as the normal subgroup of “rotations” in the
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dihedral group K generated by (12345) and (25)(43), so

K ≤ NG(H). One can check that nothing else is there.

(4) Let G be a group of order 20. Prove that:

(a) G has a normal subgroup N of order 5.

(b) G has a subgroup H of order 4.

(c) G = HN and H ∩N = 1.

Use the information from the previous questions to classify

groups of order 20 up to isomorphism, then check your answer

against a table of groups of small order.

This one is quite painful!

Sylow implies that there is a normal Sylow 5-subgroup N

of order 5, and a Sylow 2-subgroup of order 4. By Lagrange

H∩N = 1, we also know that HN ≤ G and |HN | = 4×5 = 20,

so G = HN . We are now in the situation of questions 1 and 2.

Note that H and N are abelian, with N ' C5 and H ' C4

or H ' C2
2 . If ψ = id then G ' H × N and we pick up the

abelian groups C4 × C5 and C2
2 × C5 ' C2 × C10.

For the harder case where ψ 6= id we need to understand

Aut(C5). If C5 = 〈a〉 then every AM moves a to one of the

generators a, a2, a3, a4, and the AM is determined by the image

of a (and easily for each generator we get an AM). So Aut(C5) is

isomorphic to {1, 2, 3, 4} under multiplication mod 5, and this

group is cyclic with 2 as a generator.

Case 1: H ' C4. Say H = 〈h〉 and N = 〈n〉. A priori there

are 3 possibilities for ψ 6= id, but since H has an automorphism

which exchanges h and h3 there are actually only 2: in terms

of conjugation they are nh = n2 and nh = n4 = n−1. These
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will give non-isomorphic groups because the conjugation action

of H on N looks different in the two cases (in one case we can

induce an AM of order 4, in the other case not).

Case 2: H ' C2
2 . Say H = 〈a, b〉 and N = 〈n〉. We can use

the fact that H has AM’s permuting a, b and c = ab arbitrarily.

We know that at least one of a, b, c must induce the non-trivial

AM of order 2, say na = n4 = n−1. Either b induces this AM

and hence c induces id, or b induces id and c induces it. So

WLOG na = nb = n−1, nc = n.

Note: we know this group must be D10 because that group

has no elements of order 4, but it’s good to see it explicitly.

Since n commutes with c, we see that nc has order 10, and

easily (nc)a = n−1c = (nc)−1.

This gives 5 groups, which is right.

(5) Let G be a group with distinct elements a and b such that

|a| = 2, |b| = n and ba = b−1. Prove that a /∈ 〈b〉, and that the

subgroup generated by a and b is dihedral of order 2n.

Routine. b corresponds to a rotation through 2π/n and a to

a reflection.

(6) Let G be a nonabelian group of order 8. Prove that G has at

least one element of order 4 and no element of order 8.

If all elements of G have order one or two, a2 = e for all a

and so G is abelian. If there is an element of order 8 then G is

cyclic. Hence there is an element of order 4.

We saw in HW1 that Z(G) ' C2 and G/Z(G) ' C2 × C2.

Let Z(G) = 〈a〉. Prove that for any element b of order 4, b2 = a

and 〈b〉CG.
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(bZ(G))2 = Z(G) because G/Z(G) ' C2
2 , so b2 ∈ Z(G).

Since b2 has order 2 we see b2 = a. Since 〈b〉 has index 2 it is

normal.

Now fix an element b of order 4, and an element c /∈ 〈b〉.

Prove that G = 〈b, c〉, bc = b−1. Prove that if c has order 2 then

G is dihedral of order 8.

Thinking about cosets makes it clear that G = 〈b, c〉. bc must

lie in 〈b〉 by normality and must have order 4. If bc = b then b

commutes with c and G is abelian, so bc = b−1 as claimed.

Now suppose that c has order 4. Prove that G is not dihedral,

a is the only element of order 2, bc has order 4, cb = abc, and

G = {e, b, c, bc, a, ab, ac, abc}.

D4 has only 2 elements of order 4 so G is not dihedral. Any

element outside 〈b〉 could play the role of c, and if it had order

two then G would be dihedral, so a is the only element of order

2. bc 6= e because c /∈ 〈b〉, bc = a = b2 implies c = b, so bc has

order 4. Since bc = b−1 = b3, cb = b3c = b2bc = abc. Finally

〈b〉 = {e, a, b, b3 = ab}, and G = 〈b〉 ∪ 〈b〉c.

Consult a table of groups of small order to see if there is

a non-dihedral non-abelian group of order 8 (you have proved

enough to show that there is at most one such group).

There is such a group, the “quaternion group”. To see the

isomorphism take (for example) a = −1, b = i, c = j, bc = k.


