(1) Before proof of JH, a few trivial remarks.
 (a) If \(\{ G_i \} \) is a subnormal series \(\{ G_i \cap H \} \)
 in \(H \leq G \), and a subnormal series \(\{ G_i/N \} \) in \(G/N \) for \(N \triangleleft G \).
 (b) If \(G \) is simple and \(\{ G_i \} \) is a subnormal series then there is \(k \) such that
 \(G_j = \{ e \} \) for \(j > k \), \(G_j = G \) for \(j \geq k \).

(2) Proof of JH: show by induction on \(m \) that if \(\{ H_i : 0 \leq i \leq m \} \) a composition
 series for \(G \) then any other series has same length and “same” quotients.

 \(m = 1 \). \(G \) is simple which makes it easy.

 Let \(m \geq 1 \) and assume we have established the IH for \(m \). Consider a CS
 \(\{ H_i : 0 \leq i \leq m + 1 \} \) for \(G \) and let \(H = H_m \), so that \(\{ H_i : 0 \leq i \leq m \} \) is a
 CS for \(H \). Note that \(e < H < G \). Now let \(\{ G_j : 0 \leq j \leq n + 1 \} \) be another CS,
 where \(n \geq 1 \) since \(G \) not simple. Choose \(k \) least such that \(G_k \not\triangleleft H \) and
 note that \(0 < k \leq n + 1 \).

 We will show that \(G_k/G_{k-1} \cong G/H \) and produce a CS for \(H \) whose
 quotients are IMic to \(G_j/G_{j-1} \) for \(j \neq k \). The IH then shows that \(m = n \)
 and this new CS for \(H \) has quotients IMic to \(H_i/H_{i-1} \) for \(i \neq m + 1 \), so we
 are done.

 Note that by the minimal choice of \(k \), \(G_j \cap H = G_j \) for \(j < k \). Also
 \(\{ G_j \cap H \} \) is a subnormal series in \(H \). Our desired new composition series
 for \(H \) will be made by taking \(\{ G_j \cap H \} \) and deleting the entry \(G_k \cap H \). In
 fact we will show that
 (a) \(G_j/G_{j-1} \cong (G_j \cap H)/(G_{j-1} \cap H) \) for \(j > k \).
 (b) \(G_k \cap H = G_{k-1} \cap H = G_{k-1} \).
 (c) \(G/H \cong G_k/G_{k-1} \).

 The sequence \(\{ G_j/H \} \) is subnormal in the simple group \(G/H \), so by
 choice of \(k \) we have \(G_j/H = G \) for \(j \geq k \). So for \(j \geq k \) \(G_j/H = G_{j-1}/H \cong
 G_{j-1}/(G_j \cap H) \), and the quotient \(G_j/(G_j \cap H) \) is simple.

 Now let \(j \geq k \) and observe that \(G_{j-1} \) and \(G_j \cap H \) are normal in \(G_j \), so
 that \(G_{j-1} \cap (G_j \cap H) < G_j \) and thus \(G_{j-1}/(G_j \cap H) < G_j/(G_j \cap H) \).
 It follows by simplicity that \(G_{j-1}/(G_j \cap H) \) is either \(G_j \cap H \) or \(G_j \). In
 the case that \(j > k \) we know that \(G_j \not\leq H \) and the first case fails, so
 that \(G_j = G_{j-1}(G_j \cap H) \); it follows that for \(j > k \) we have \(G_j/G_{j-1} =
 G_{j-1}/(G_j \cap H) \), so \(G_j \) is subnormal in \(G_j \cap H \).

 Now we note that \(G_{k-1} \) and \(G_k \cap H \) are both subgroups of \(H \) and
 normal in \(G_{k-1} \), so that \(G_{k-1}/G_{k-2} \leq H \) and \(G_{k-1}/G_{k-2} < G_k \). So
 \(G_k/G_{k-1} \triangleleft H \). But in the latter case we have \(G_k \not\leq H \) in contradiction to choice
 of \(k \), so that \(G_k \cap H = G_{k-1} \) and \(G_k \cap H \triangleleft G_{k-1} \). Since \(G_{k-1} \) is a
 subgroup of both \(G_k \) and \(H \), we see \(G_k \cap H = G_{k-1} \cap H = G_{k-1} \).
Finally we recall that $G = G_jH$ for $j \geq k$, in particular $G = G_kH$. So $G/H = G_kH/H \cong G_k/(G_k \cap H) = G_k/G_{k-1}$.

3) If G is finite, solvable, simple and non-trivial then it’s cyclic of prime order.

4) If G has a composition series then the composition factors are the (IM classes) of simple groups which appear as quotients.

5) Let G be finite. G solvable iff its factors are cyclic of prime order.

6) Sketch of a proof that A_n is simple for $n \geq 5$.

First show that A_n is generated by 3-cycles, and that all 3-cycles are conjugate in A_n. Then take $N < A_n$ non-trivial and argue it contains a 3-cycle; let $\sigma \in N$ be a non-identity element where $\{i : \sigma(i) \neq i\}$ has minimal size, and argue that σ must be a 3-cycle by showing that o/w we can contradict minimality.