(1) Recall from last lecture that $K = E(t_1, \ldots, t_n)$, $k = \text{Fix}(S_n)$, $S_n = \Gamma(K/k)$, $[K : k] = n!$. We saw that
(a) $k = E(s_1, \ldots, s_n)$ where the s_i are the elementary symmetric polynomials.
(b) K/k is a splitting field for f_n.
(c) For each i, t_i has degree i over $k(t_n, \ldots, t_{i+1})$ and f_i is the minimal polynomial.
(d) The coefficients of f_i are polynomials (not just rational functions) in $s_1, \ldots, s_n, t_{n}, \ldots, t_{i+1}$ with coefficients from E.

(2) Multiplying bases as in the proof that degrees of extensions are multiplicative, we find a basis M for K/k consisting of all the $n!$ monomials $t_{a_1}^{a_1} \cdot \ldots \cdot t_{a_n}^{a_n}$ where $0 \leq a_j < j$.

Since f_j is monic, the equation $f_j(t_j) = 0$ and an easy induction permit us to express $t_{j}^{a_j}$ for $0 \leq a < j$, where each coefficient is a polynomial in $s_1, s_2, \ldots, s_n, t_{n}, \ldots, t_{i+1}$ with coefficients in E.

Accordingly, any polynomial in $E[t_1, \ldots, t_n]$ can be expressed as a linear combination of elements of M, where each coefficient is a polynomial in s_1, s_2, \ldots, s_n with coefficients in E. Since M is a basis for K as VS over k, this expression is unique!

(3) Suppose now that $f \in E[t_1, \ldots, t_n]$ is symmetric and express it in the form described above; that is $f = \sum a_{\bar{a}} P_{\bar{a}} m_{\bar{a}}$ where $\bar{a} = (a_1, \ldots, a_n)$, $a_j < j$, $P_{\bar{a}}$ is a polynomial in the s_i, and $m_{\bar{a}} = t_{a_1}^{a_1} \cdot \ldots \cdot t_{a_n}^{a_n}$. It is easy to see that only the coefficient associated with $\bar{0}$ is nonzero.

(4) Conclusion: any symmetric polynomial in the t_i is a polynomial in the t_i. In particular any symmetric polynomial in the roots of the polynomial f can be expressed as a polynomial in the t_i in the coefficients of f.

(5) Now we sketch how find the general solution of the cubic, leaving the messy formulae to the handout (which was made using computer algebra).

Suppose that E has characteristic zero and contains ζ a primitive cube root of 1. As above let $k = E(s_1, s_2, s_3)$ and $K = E(t_1, t_2, t_3)$. Our task is obtain formulae for the t_i in terms of the s_i; this amounts to finding the general formula for solving the cubic.

Consider the intermediate field $l = \text{Fix}(A_3)$. On general grounds we know that $[l : k] = 2$, so that l should be obtained by adjoining to k a square root. Let $\Delta = (t_1 - t_2)(t_2 - t_3)(t_3 - t_1)$, then easily $\Delta \in \text{Fix}(A_3) = l$ but $\Delta \notin \text{Fix}(S_3) = k$. So $l = k(\Delta)$. What is more $\Delta^2 \in \text{Fix}(S_3) = k$, and Δ^2 is symmetric so can be written as a polynomial in s_1, s_2, s_3.

Cultural note: the expression Δ is called the discriminant of the cubic, and we have more to say about discriminants next week.
(6) Of course \(\Gamma(K/l) = A_3 \), which is cyclic. We note that there are exactly three characters \(\sigma_0, \sigma_1, \sigma_2 \) of \(A_3 \) in \(l \), obtained by mapping the generating element \((123)\) to \(1, \zeta, \zeta^2 \) respectively.

Now we use an idea from the general analysis of cyclic Galois extensions, which we did using such characters. The linear combination \(\rho = 1e + \zeta(123) + \zeta^2(132) \) is not zero, and if we can find an element \(b \) on which it does not take the value zero then various good things happen: notably if \(a = \rho(b) \) then \(K = l(a), \ a^3 \in l \).

But easily \(\rho(t_1) = t_1 + \zeta t_2 + \zeta^2 t_3 \), so if we let \(a_1 = t_1 + \zeta t_2 + \zeta^2 t_3 \) then \(a_1^3 \in l \) (not astonishing when we consider that \((123)\) maps \(a_1 \) to \(\zeta^2 a_1 \)). So \(a_1^3 \) can be expressed in terms of \(s_1, s_2, s_3, \Delta \). A similar argument holds for \(a_2 = t_1 + \zeta^2 t_2 + \zeta t_3 \), and of course \(a_0 = t_1 + t_2 + t_3 = s_1 \).

This gives us three linearly independent expressions (again this is no surprise, characters form an independent set) so we can solve for \(t_1, t_2, t_3 \) by linear algebra.