(1) We will show that every simple L artinian ring is of the form $\text{End}_D(M)$ for D a division ring and M a (finite dimensional) left D-module.

(2) When M is a left R-module we may set $S = \text{End}_R(M)$, and make M into a left S-module by defining $\beta m = \beta(m)$. For each $r \in M$ we let $\lambda_r : m \mapsto rm$, then in general λ_r may not be in $\text{End}_R(M)$ but is in $\text{End}_S(M)$.

Moreover if we define $\phi : r \mapsto \lambda_r$ then ϕ is a ring HM from R to $\text{End}_S(M)$.

(3) (Rieffel’s lemma) Let R be simple, let M be a nonzero left ideal of R. Define S, λ_R, ϕ as above. Then ϕ is a ring HM between R and $\text{End}_S(M)$.

Proof: $\phi(1) = id_M$ which is not the zero map, so ker(ϕ) $\neq R$, so by simplicity ker(ϕ) $= \{0\}$ and ϕ is injective.

We claim that $\phi[M]$ is a left ideal of $\text{End}_S(M)$. To see this let $m \in M$ and $\alpha \in \text{End}_S(M)$, we will show that in fact $\alpha \lambda_m = \lambda_{\alpha(m)}$. let $u \in M$, then by definition $(\alpha \lambda_m)(u) = \alpha (mu)$. Since $u \in M$, the map $\beta : x \in M \rightarrow xu$ is a map from M to M, and we may verify that $\beta \in \text{End}_R(M) = S$. So by S-linearity of α, $\alpha (mu) = \alpha (\beta m) = \beta (am) = \alpha (m)u$, that is $\alpha \lambda_m = \lambda_{\alpha(m)}$.

Now MR is a nonzero two sided ideal of R, so $R = MR$ and thus $\phi[R] = \phi[MR]$. It follows easily that $\phi[R]$ is a left ideal of $\text{End}_S(M)$, and since $\lambda_1 = id_M \in \phi[R]$, we see that $\phi[R] = \text{End}_S(M)$.

(4) Let R be a nonzero simple L artinian ring. Then $R \simeq \text{End}_D(M)$ for some division ring D and some FD left D-module M.

Proof: we may as well assume that R is nonzero. By the L artin property we may find a minimal L ideal M. M is a nonzero simple left R-module so if we set $D = \text{End}_R(M)$ then D is a division ring. By Rieffel R is isomorphic to $\text{End}_D(M)$.

To finish we need to see that M is FD as a left D-module. But it is easy to see (next HW) that if M is an infinite dimensional left D-module then $\text{End}_D(M)$ is not Artinian.

(5) Remark: a very mild generalisation of last week’s homework shows that if M is a FD left D-module and D is a division ring then in fact $\text{End}_D(M)$ is a left (and right) artinian (and noetherian) simple ring.