Recall that a division ring is a ring (with 1 as usual) such that $1 \neq 0$ and every nonzero element is a unit. A field is of course a commutative division ring.

A ring R is simple iff it is simple as two-sided R-module, that is the only two-sided ideals of R are $\{0\}$ and R.

(1) Let N be a left R-module. Recall that a submodule $M \leq N$ is maximal iff $M < N$ and there are no intermediate modules, equivalently N/M is a non-trivial simple left R-module.

(a) If $I \neq R$ is a left ideal of R, then R/I (considered as a left R-module) has a maximal submodule.

(b) If M is a nonzero cyclic left R-module, then M has a maximal submodule.

(c) If m_1, \ldots, m_n is a generating set of minimal size for the nonzero fg left R-module M, and $M' = Rm_2 + \ldots + Rm_n$, then $M' < M$ and M/M' is cyclic.

(d) Every fg nonzero left R-module has a maximal submodule.

(2) Let R be a commutative ring with 1. Recall that a prime ideal of R is an ideal P such that

(a) $P \neq R$.

(b) For all a and b, $ab \in P$ implies $a \in P$ or $b \in P$.

By considering the least n such that $r^n \in P$ or otherwise, show that if r is nilpotent and P is prime then $r \in P$.

(3) Let R be a commutative ring with 1, then a set $S \subseteq R$ is multiplicatively closed iff $1 \in S$, and S is closed under \times.

Given a multiplicatively closed set S such that $0 \notin S$, define \mathcal{X} to be the set of ideals I such that $I \cap S = \emptyset$.

(a) Show that \mathcal{X} is not empty.

(b) Show that the union of a chain of elements of \mathcal{X} is an element of \mathcal{X}.

(c) Show that any maximal element of \mathcal{X} is a prime ideal of R.

Use Zorn’s Lemma to show that if $r \in R$ is not nilpotent, then $r \notin P$ for some prime ideal P.

(4) The ring \mathbb{H} of real quaternions is defined as follows: the underlying set is \mathbb{R}^4, and by convention we write the element (a, b, c, d) as “$a + bi + cj + dk$”, so that the elements $1, i, j, k$ of \mathbb{H} form the standard basis of \mathbb{R}^4. At the risk of some confusion we sometimes identify the element $(a, 0, 0, 0)$ of \mathbb{H} with the real number a.

The addition is the usual addition in \(\mathbb{R}^4 \). The multiplication is defined by the following conditions:

(a) 1 is the identity.
(b) Multiplication is \(\mathbb{R} \)-bilinear.
(c) \(i^2 = j^2 = k^2 = -1 \).
(d) \(ij = k, \; jk = i, \; ki = j \).
(e) \(ji = -k, \; kj = -i, \; ik = -j \).

This may be clarified by an example:

\[
(1 + 2i + 3j)(3 + 2k) = 3 + 2k + 6i + 4ik + 9j + 6jk = 3 + 2k + 6i - 4j + 9j + 6i = 3 + 12i + 5j + 2k.
\]

It can be shown that \(\mathbb{H} \) is a division ring.

(a) Find the centre of \(\mathbb{H} \), that is to say the set of \(a \in \mathbb{H} \) such that \(ab = ba \) for all \(b \in \mathbb{H} \). Labour saving hint: find a small set of \(b \)'s such that \(a \) is in the centre iff it commutes with everything in the small set.
(b) How many solutions has the equation \(x^2 = -1 \) in \(\mathbb{H} \)?
(c) Consider the linear map \(x \mapsto (a + bi + cj + dk)x \) from \(\mathbb{H} \) to \(\mathbb{H} \).

Write down the matrix of this transformation with respect to the basis \(\{1, i, j, k\} \). What are the trace and determinant?
(d) Use the last part to give an isomorphism between \(\mathbb{H} \) and a subring of \(\text{Mat}_4(\mathbb{R}) \) (the ring of \(4 \times 4 \) matrices with real entries).
(e) It is easy to see that the subset of \(\mathbb{H} \) consisting of elements \(a + bi \) forms a ring isomorphic to \(\mathbb{C} \). We usually identify elements of this form with the corresponding complex numbers.

Show that \(\mathbb{H} \) is a vector space over \(\mathbb{C} \) if we define scalar multiplication by \(zh = z \times_\mathbb{H} h \). Show further that \(\{1, j\} \) is a basis.
(f) Find the matrix of \(x \mapsto (a + bi + cj + dk)x \) with respect to the basis \(\{1, j\} \), and use your answer to give an isomorphism between \(\mathbb{H} \) and a subring of \(\text{Mat}_2(\mathbb{C}) \).

(5) Let \(k \) be a field and let \(R = \text{Mat}_2(k) \) be the ring of \(2 \times 2 \) matrices with entries in \(k \).

(a) Find the centre of \(R \).
(b) Show that \(R \) is simple, but that it has a left ideal which is neither \(\{0\} \) nor \(R \).
(c) Show that \(R \) is left Noetherian and left Artinian. Hint: linear algebra ideas may help!
(d) Find \(J(R) \).
(e) Show that there are nilpotent elements not lying in \(J(R) \).

Optional and not for credit: generalise to \(\text{Mat}_n(k) \).

(6) Is \(\text{Mat}_2(\mathbb{H}) \) simple?