Due by start of class time on Fri 2. Submit it in \LaTeX{} by email to Yimu Yin (yimuy@andrew.cmu.edu)

(1) Let G be a group and X be a set. An action of G on X is transitive if and only if X forms a single orbit, equivalently for all $x, y \in X$ there is $g \in G$ such that $gx = y$.

Suppose that we are given actions of some group G on sets X and X'. The actions are equivalent iff there is a bijection $\alpha : X \to X'$ such that $\alpha(gx) = g\alpha(x)$ for all g, x.

(a) Let G act transitively on X, let $x \in X$ and let $H = \text{Stab}(x)$. Let X' be the set of left cosets of H. Show that the action of G on X is equivalent to the action of G on X' by left multiplication.

(b) Let G act transitively on X. Show that if $x, y \in X$ then the stabiliser subgroups $\text{Stab}(x)$ and $\text{Stab}(y)$ are conjugate.

(c) Let G act transitively on X, and let $H \leq G$ be such that H also acts transitively on X. Show that for any $x \in X$, $G = H \text{Stab}(x)$.

(d) Let G act transitively on X and define an action of G on X^2 by $g(x, y) = (gx, gy)$. Show that if $|X| > 1$ then the action of G on X^2 is not transitive.

(2) Let G act transitively on X and let F be a function with domain X. We say that the function is G-invariant iff $F(x) = F(y) \implies F(gx) = F(gy)$ for all $x, y \in X$. The action is said to be primitive if and only if every G-invariant F is either constant or 1-1.

For any group G a subgroup H is maximal iff $H < G$, and there is no subgroup K with $G < K < H$ (that is to say H is maximal among proper subgroups of G).

Let G act transitively on X with $|X| > 1$, and let $x \in X$. Show that the action is primitive iff $\text{Stab}(x)$ is a maximal subgroup of G.

Hint: what can you say about $\{g : F(gx) = F(x)\}$?

(3) Let G be finite, let $H \leq G$ and let p be a prime dividing $|H|$. Let $H < G$ and let p be a prime dividing $|H|$. Let P be any Sylow p-subgroup of H. Then $G = HN_G(P)$.

(a) Show that if P is any Sylow p-subgroup of H, then $G = HN_G(P)$.

Hint: an earlier question may help.

(b) Show that if Q is a Sylow p-subgroup of G then $Q \cap H$ is a Sylow p-subgroup of H.

(4) Recall that G is simple iff the only normal subgroups of G are $\{e\}$ and G. Let G be a finite simple group, let $H < G$ and consider the action of G on the set X of left cosets of H by multiplication from the left. Show that this action is an injective map from G to $\text{Sym}(X)$, and deduce that $|G| \leq [G : H]!$.

Hint: HW1.

(5) Let G be a simple group of order 60, and for $p = 2, 3, 5$ let n_p be the number of Sylow p-subgroups. Find n_p.

1
(6) (You only \textit{have} to do this one if you know about categories. Anyone who took Math Studies or Commutative Algebra with me will be considered to know about categories.)

Recall that if \(A \) and \(B \) are objects then an \textit{isomorphism} from \(A \) to \(B \) is \(f : A \rightarrow B \) such that for some (necessarily unique) \(g : B \rightarrow A \) we have \(fg = id_B \) and \(gf = id_A \). We write \(g = f^{-1} \) in this case.

If \(\mathcal{C} \) is a category and \(X \) is an object of \(\mathcal{C} \), then \(Aut(X) \) is the set of all isomorphisms from \(X \) to \(X \).

(a) Prove that \(Aut(X) \) forms a group under composition.

(b) Prove that if \(\alpha : A \rightarrow B \) is an isomorphism in \(\mathcal{C} \), then \(\beta \mapsto \alpha \beta \alpha^{-1} \) is an isomorphism from \(Aut(A) \) to \(Aut(B) \).