
COMPACTNESS AND INCOMPACTNESS PHENOMENA IN SETTHEORYJAMES CUMMINGS
Abstrat. We prove two results with a ommon theme: the tension betweenompatness and inompatness phenomena in ombinatorial set theory. The-orem 1 uses PCF theory to prove a sort of \ompatness" for a version ofDzamonja and Shelah's strong non-reetion priniple. Theorem 2 investi-gates Jensen's subompat ardinals and their relationship with stationary setreetion and the failure of the square priniple.1. IntrodutionA persistent theme in ombinatorial set theory is the tension between ompat-ness and inompatness, or to put it another way between reetion and non-reetion. These are not very preise onepts, so we illustrate with two lists ofexamples; list one ontains ideas and results whih (in the view of the author) areinstanes of ompatness, and list two ontains some more or less omplementaryinstanes of inompatness.� Compatness:(1) The ompatness theorem for �rst-order logi(2) Large ardinals and generi embeddings(3) Stationary reetion priniples(4) The tree property(5) Silver's theorem that GCH an't �rst fail at �!1(6) Shelah's singular ompatness theorem� Inompatness:(1) The failure of ompatness for many in�nitary logis(2) The Axiom of Construtibility V = L and its onsequenes (e.g. squarepriniples)(3) Non-reeting stationary sets(4) Aronszajn trees(5) Magidor's theorem that GCH an fail �rst at �!(6) Construtions by Shelah and others for \almost free non-free" objets(e.g. groups)It is our thesis that many interesting problems arise from onsidering the extentof some form of ompatness, or the tension between some ompatness priniple(for example the existene of large ardinals) and a di�erent inompatness priniple(for example the existene of square sequenes). This way of thinking is one of themain motivations in our joint work with Foreman and Magidor on singular ardinalombinatoris [8, 7℄ to whih this paper is in some sense a sequel.To desribe a favourite problem about the extent of ompatness, we reall thata �-Aronszajn tree is a tree of height �, with every level of size less than � and with1



2 JAMES CUMMINGSno o�nal branhes. The ardinal � is said to have the tree property if there are no�-Aronszajn trees.It is provable in ZFC that �0 has the tree property and �1 does not, but bywork of Mithell [19℄ \�2 has the tree property" is independent of ZFC and has thestrength of a weakly ompat ardinal. Eah of the statements \�n has the treeproperty for all n with 2 � n < !" [6℄ and \�!+1 has the tree property" [18℄ isknown to be onsistent and of very high onsisteny strength, but the onsistenyof their onjuntion is open.Of ourse there are ideas and results whih do not �t niely into this piture.For example the priniple }� seems to be a reetion priniple, saying as it doesthat any subset of � is antiipated by the diamond sequene at many points below�; indeed }� follows from the assumption that � is a suÆiently large ardinal. Onthe other hand }� an be used to onstrut non-ompat objets.Theorem 1 is an appliation of PCF theory, whih shows that a version of aombinatorial priniple alled Strong Non-Reetion (SNR) does not fail �rst at�!+1. As the name suggests SNR is a priniple whih would not be out of plae inour \Inompatness" list, so we have a sort of ompatness for an inompatnessproperty.Theorem 2 is about the tension between large ardinal axioms and Jensen'ssquare priniple. We start by observing that Jensen's quasiompatness prinipleis suÆiently strong to derive the failure of �� for � singular. Theorem 2 shows thata similar proof idea from the weaker subompatness priniple is doomed to failure(whih is not to say that another proof may not sueed). An exat determinationof the onsisteny strength of the failure of �� for � singular will presumably haveto await progress in the inner model program.2. Strong non-refletionThe following \Strong Non-Reetion" priniple was introdued by Dzamonjaand Shelah [12℄: here � and � are regular and ! < � < �.De�nition 1. SNR(�; �) holds i� there is a funtion f : � ! � suh that for all� 2 � \ of(�) there is C � � lub with f � C stritly inreasing.It follows from SNR(�; �) that for every stationary S � � there is a stationaryT � S suh that T reets to no point of o�nality � (where T reets at � if T \�is stationary in �). To see this we just apply Fodor's theorem to �nd T on whihf is onstant and argue that this set an not reet.Remark 1. Dzamonja and Shelah observed that for any � and �, SNR(�; �) fol-lows from Jensen's global square priniple [16℄. In partiular SNR(�; �) holds inL.Dzamonja, Shelah and the author [5, 9, 11℄ studied the SNR priniples and usedthem to prove independene results about reetion. Dzamonja and Shelah madethe following de�nition, whih an be seen as a measure of the extent of a ertainkind of inompatness in the universe of set theory.De�nition 2. u(�) is the least regular � > � suh that SNR(�; �) fails, assumingthat suh a ardinal exists. If no suh ardinal exists then by onvention u(�) =1,where � <1 for all ardinals �.



COMPACTNESS AND INCOMPACTNESS PHENOMENA IN SET THEORY 3Dzamonja and Shelah showed by a hard foring argument that u(�) an be thesuessor of a singular ardinal (other kinds of regular ardinal are onsiderablyeasier to ahieve). We state and prove a result whih sheds some light on thediÆulties. Theorem 1 is losely related to a theorem from our joint work withForeman and Magidor [7℄ whih gives a similar kind of ompatness for the squarepriniple.It is onvenient to work with a variation on SNR: here � < � < � and they areall regular ardinals.De�nition 3. SNR(�; �; �) holds i� there exists f : � \ of(�)! � suh that forall � 2 � \ of(�) there is C � � lub with f � C \ of(�) stritly inreasing.The priniple SNR(�; �; �) implies that every stationary subset of � \ of(�)ontains a stationary set reeting at no points in � \ of(�). Priniples of thistype an be used [9℄ to separate the phenomena of stationary reetion at di�erento�nalities.Theorem 1 (CH). If the priniple SNR(�n;�2;�1) holds for all �nite n > 2, thenthe priniple SNR(�!+1;�2;�1) holds.Before proving Theorem 1 we need a few PCF-theoreti preliminaries. We notethat the hypothesis of CH in Theorem 1 may not be neessary, and that this isrelated to an important open question in PCF theory whih we disuss below. Werefer the reader to the survey papers [4, 1℄ and Shelah's book [20℄ for bakgroundon PCF theory.For an in�nite set A � !, we let Qn2A �n be the set of funtions f suh thatdom(f) = A and f(n) 2 �n for all n 2 A. There are various relations on Qn2A �nwhih will onern us. Given f; g 2 Qn2A �n we say that f is dominated by g(f < g) if and only if f(n) < g(n) for all n 2 A. We say f is eventually dominatedby g (f <� g) if and only if f(n) < g(n) for all suÆiently large n 2 A, and alsode�ne f �� g if and only if f(n) � g(n) for all large n 2 A. Similarly f is eventuallyequal to g (f =� g) if and only if f(n) = g(n) for all suÆiently large n 2 A. Finallyf <1 g if and only if f(n) < g(n) for unboundedly many n 2 A.We will use the following theorem by Shelah; apart from our appeal to this basiresult, this setion of the paper is essentially self-ontained.Fat 1. There is an in�nite A � ! and a sequene hf� : � < �!+1i inreasing ando�nal in Qn2A �n with the eventual domination ordering.For the rest of this setion we �x A and hf� : � < �!+1i as in Fat 1. 1If � is a limit ordinal less than �!+1, then we say that a funtion g 2 Qn2A �nis an exat upper bound (eub) for hf� : � < �i if and only if(1) For all � < �, f� <� g.(2) For all h 2Qn2A �n, if h <� g then there is � < � suh that h <� f�.This is equivalent to demanding that hf� : � < �i is inreasing and o�nal modulo�nite in Qn2A g(n). It is not diÆult to see that an exat upper bound, if it exists,is unique modulo �nite.1It is interesting to note that there is a anonial maximal hoie for A whih is well-de�nedmodulo �nite, though we will not use this.



4 JAMES CUMMINGSWe will need a resullt by Shelah guaranteeing many points where an eub exists.The result is an easy orollary 2 of Shelah's quite tehnial \trihotomy theorem",but in the interests of making this paper self-ontained we sketh a more diretproof (we are really just working through the trihotomy onstrution and uttingsome orners with the help of CH).Fat 2. Let CH hold. If f(�) = �2 then hf� : � < �i has an eub H suh thatf(H(n)) = �2 for all but �nitely many n.Proof. We de�ne a sequene of funtions H� 2 Qn2A �n whih are attempts tobuild a least upper bound (lub), that is to say a funtion H suh that(1) f� <� H for all � < �.(2) There is no �H �� H suh that �H <1 H and f� <� �H for all � < �.Our onstrution will be suh that if � < � then H� �� H� and H� <1 H� . Theonstrution will proeed for at most �2 many steps.H0 = f� . If H� is an lub then we stop the onstrution, otherwise we hooseH�+1 �� H� suh that H�+1 <1 H� and f� <� H�+1 for all � < �. At limit� < �2 we work as follows: let Xn = fH�(n) : � < �g and for every  < � letG(n) = min(Xn n f(n)), or zero if Xn � f(n).It is routine to hek that f� <� G for all � < �, that G �� H� for all � < �and that  < Æ =) G �� GÆ. By CH there are only ��01 = �1 possibilities forthe =�-equivalene lass of G , and sine f(�) = �2 that equivalene lass muststabilise: we hoose H� so that H� =� G for all large  < �.We laim that the onstution of the H� must halt before �2 steps. Otherwisewe may de�ne a funtion F from [�2℄2 to !, by F (�; �) = n for n minimal withH�(n) < H�(n). The Erdos-Rado theorem then gives a dereasing �1-sequene ofordinals, whih is impossible.We have onstruted an lub H. We laim it is an eub. To see this let g <� Hand suppose for a ontradition that Y = fn : g(n) > f(n)g is in�nite for all .Clearly  < Æ implies that YÆ is ontained in Y mod �nite, and so by CH againthere is a �xed Z suh that Y is equal to Z mod �nite for all large  < �. De�ne�H by �H(n) = H(n) for n =2 Z, �H(n) = g(n) for n 2 Z; learly �H �� H, �H <1 Hand f� <� �H for all �, ontradition!To �nish we show that f(H(n)) = �2 for all but �nitely many n. Suppose�rst that f(H(n)) < �2 for every n in some in�nite subset B of A, and �x An �H(n) o�nal with ot(An) = f(H(n)) for every n 2 B. Now by CH Qn2B Anhas ardinality �1, so we may �nd f� suh that for every f 2 Qn2B An we havef <� f� � B. Sine f� <� H we may �nd g 2 Qn2B suh that f� � B <� g, whihis a ontradition.Now suppose that f(H(n)) > �2 for every n in some in�nite subset B of A. Leth�i : i < �2i be inreasing and o�nal in � and de�ne f 2 Qn2B H(n), by settingf(n) = supi f�i(n) for all n 2 B. Then sine H is an eub and the �i are o�nal wemay �nd i suh that f <� f�i � B, whih is a ontradition. �Fat 2 is our only use of CH. As we disuss further at the end of this setion, it isunlear whether the assumption of CH an be removed from Fat 2 or indeed from2For the experts: we just observe that points of o�nality greater than the ontinuum an notfall into the Bad or Ugly ases of the trihotomy.



COMPACTNESS AND INCOMPACTNESS PHENOMENA IN SET THEORY 5Theorem 1. Next we haraterise those points where an eub of uniform unountableo�nality exists. Again this result is due to Shelah.Fat 3. The following are equivalent for � of unountable o�nality.(1) There exists g an eub for hf� : � < �i with f(g(n)) = f(�) for all but�nitely many n.(2) There exists g an eub for hf� : � < �i and an unountable regular � withf(g(n)) = � for all but �nitely many n.(3) There exists a sequene of funtions hh� : � < f�i in AON whih ispointwise inreasing and is o�nally interleaved with hf� : � < �i in theeventual domination ordering (whih is to say that eah funtion in eahof the sequenes is eventually dominated by some funtion from the othersequene).(4) For every Y � � whih is unbounded in � there is Z � Y unbounded in� and n < !, suh that ot(Z) = f(�) and hf�(m) : � 2 Zi is stritlyinreasing for m 2 A with m > n.Proof. It is immediate that 1 implies 2. Given 2, de�ne a pointwise inreasingsequene of funtions hh� : � < �i suh that hh�(n) : � < �i is inreasing ando�nal in g(n) for all but �nitely many n. Sine h� <� g, h� <� f� for some� < �: onversely if � < � then f� <� g, and sine � is unountable and the h� arepointwise inreasing we may hoose � suh that f� <� h�. It follows that � = f(�)so 2 implies 3.Given 3, let Y � � be unbounded. We may learly hoose �j < f(�) and�j 2 Y suh that g�j <� f�j <� g�j+1 for j < f(�), and then hoose nj 2 A suhthat g�j (m) < f�j (m) < g�j+1(m) for m > nj . Sine f(�) is unountable we may�nd T � f(�) unbounded and n suh that nj = n for all j 2 T , and then letZ = f�j : j 2 Tg. If j1 < j2 are in T and m > n then f�j1 (m) < g�j1+1(m) �g�j2 (m) < f�j2 (m), so 3 implies 4.Given 4 we let Y = �, hoose a suitable Z and n and de�ne H by H(m) =sup�2Z f�(m). Clearly f(H(m)) = f(�) for all but �nitely many m, and f� <� Hfor all H. Now if f <� H, then sine f(�) is unountable and hf�(m) : � 2 Zi isstritly inreasing for m 2 A with m > n we may hoose � 2 Z suh that f <� f�.It follows that H is an eub so 4 implies 1. �Remark 2. In the ourse of this proof, we saw that for any o�nally interleavedsequene hh� : � < f�i as in 3, the pointwise supremum of hh� : � < f�i is anexat upper bound for hf� : � < �i.Let G be the set of all those � < �!+1 of unountable o�nality suh that thereis an eub g for hf� : � < �i with f(g(n)) = f(�) for all but �nitely many n. Welaim that if  2 G there is a lub subset C of  suh that all points of C withunountable o�nality are in G. To see this we use \1 implies 3" from Fat 3 toonstrut hh� : � < f()i whih is o�nally interleaved with hf� : � < i, andthen let C be the set of Æ <  suh that hf� : � < Æi is o�nally interleaved withhh� : � < ��i for some �� < �; C is learly lub, and by \3 implies 1" from Fat 3every element of C with unountable o�nality is in G.The laim of the last paragraph and the fat that under CH every point ofo�nality �2 is in G are the keys to the proof of Theorem 1. We will use the set Gas a sa�olding on whih to build a funtion witnessing SNR(�!+1;�2;�1).



6 JAMES CUMMINGSBefore starting the proof of Theorem 1, it will be onvenient to make someosmeti adjustments to A and the sequene hf� : � < �!+1i. It follows easily fromthe disussion above that we may assume that(1) The minimum element of A is at least 3.(2) The sequene hf� : � < �!+1i is ontinuous, that is to say that wheneveran exat upper bound for an initial segment hf� : � < �i exists then f� isan exat upper bound.(3) If � 2 G and f(�) � �2 then f(f�(n)) = f(�) for all n 2 A.Proof of Theorem 1: We assume that CH holds. We �x Fn : �n \ of(�1) ! �2witnessing SNR(�n;�2;�1) for 2 < n < !. We de�ne F for  2 G \ of(�1) byF () = supn Fn(f(n)) and verify that F is a witness for SNR(�!+1;�2;�1).We �x a point Æ < �!+1 of o�nality �2. Sine CH holds Fat 2 tells us that Æ 2G, so that by our osmeti work above fÆ is an exat upper bound for hf� : � < Æiand f(fÆ(n)) = �2 for all n 2 A. We �x for eah n a lub Cn in fÆ(n) suh thatFn is inreasing on Cn \ of(�1), and Cn has order type �2. Then we de�ne h� for� < �2 by setting h�(n) to be the �th point in Cn; by the argument for \2 implies3" in Fat 3, hh� : � < �2i is pointwise inreasing and is o�nally interleaved withhf� : � < Æi.We may now �x E lub in Æ with order type �2, suh that for every point 2 E \ of(�1) there is a (neessarily unique) �() 2 �2 \ of(�1) suh that thesequenes hf� : � < i and hh� : � < �()i are o�nally interleaved. Thinning outE if neessary we may arrange that ot(�()\of(�1)) = �() for all  2 E\of(�1).Fixing for the moment some  2 E \ of(�1), it follows from the disussion abovethat the pointwise supremum of hh� : � < �()i is an exat upper bound forhf� : � < i, so by ontinuity and the fat that the sets Cn are losed we see thatf =� h�().Sine Fn is stritly inreasing on Cn \ of(�1), Fn(h�(n)) � ot(� \ of(�1)) forall n and �, so in partiular Fn(f(n)) = Fn(h�()(n)) � �() for all large n. By thede�nition of F it follows that F () � �() for all  2 E \ of(�1). Clearly �() isstritly inreasing with , and so we may thin out E to a lub subset E� of Æ withthe property that �(1) > F (0) for all 1 2 E�\of(�1) and 0 2 E�\1\of(�1).If 0 and 1 are points of E� \ of(�1) with 0 < 1 then F (0) < �(1) �F (1). We have veri�ed that F witnesses SNR(�!+1;�2;�1) and this onludesthe proof. �The set G (the set of \good points") turns out to be an interesting invariant ofthe universe of set theory; for more about this point of view see the papers [8℄ and[7℄ and To whet the reader's appetite we note that� Modulo the lub �lter, G is independent of the hoie of the sale hf� : � <�!+1i.� Jensen's weak square priniple ���! implies that almost all points of un-ountable o�nality are good.� Starting from very large ardinals it is known [14, 7℄ that we may buildmodels in whih there are stationarily many ungood points of o�nality�1. In partiular this statement follows from Martin's Maximum (whihimplies the negation of CH) and also from the strong Chang onjeture(�!+1;�!)� (�1;�0) (whih is onsistent with CH), so is onsistent bothwith CH and its negation.



COMPACTNESS AND INCOMPACTNESS PHENOMENA IN SET THEORY 7� It is open whether or not there may be stationarily many ungood points ofo�nality �2. It is known that any point of o�nality greater than 2�0 isgood. 3. Quasiompat and subompat ardinalsJensen showed [16℄ that �� holds in L for all �, and also [10℄ that if 0℄ does notexist then L omputes orretly the suessors of V -singular ardinals; it followsthat if 0℄ does not exist then �� holds for all singular �, and so ombinatorial state-ments whih are inompatible with �� (e.g. the non-existene of a �+-Aronszajntree) must have a substantial onsisteny strength.Workers in the inner model program have onstruted L-like models (the so-alled \L[ ~E℄-models") whih an ontain substantial large ardinals. We refer thereader to the survey paper [21℄ for more details. The L[ ~E℄-models are only knownto exist up to a ertain point in the large ardinal hierarhy (roughly a measurablelimit of Woodin ardinals). It is antiipated they will be shown to exist at higherlevels of the large ardinal hierarhy, going past the subompat and quasiompatardinals de�ned below; modulo the assumption of existene it is already possibleto analyse the �ne struture of these hypothetial models.A natural problem is to prove that �� holds in L[ ~E℄-models, but there arelimits on what an be done in this diretion. Jensen has identi�ed a large ardinalproperty alled subompatness (qv) and has shown that if � is subompat then�� fails. Shimmerling and Zeman have losed the ase in L[ ~E℄-models, by showingthat in suh models �� holds exatly when � is not subompat.We reall that H� is the set of those X suh that the transitive losure of fXghas ardinality less than �. Informally it is often helpful to think of H� as the setof those X whih an be oded by bounded subsets of �.De�nition 4 (Jensen). Let � be a ardinal.(1) � is quasiompat i� for all A � H�+ there are � > �, � : H�+ ! H�+and B � H�+ suh that � is an elementary embedding from (H�+ ;2; A) to(H�+ ;2; B), �(�) = � and the ritial point of � is �.(2) � is subompat i� for all A � H�+ there are � < �, � : H�+ ! H�+and b � H�+ suh that � is an elementary embedding from (H�+ ;2; b) to(H�+ ;2; A), �(�) = � and the ritial point of � is �.Remark 3. The quasiompatness of � is witnessed by the existene of a family ofsuperstrong extenders with ritial point �, and similarly the subompatness of �is witnessed by the existene of a family of superstrong extenders with target �.If � is quasiompat then � is measurable and subompat, and the least subom-pat ardinal is not measurable.Theorem 2 is motivated by the problem of alibrating the large ardinal strengthneeded to make �� fail for � singular. Before stating and proving Theorem 2 wenote that a quasiompat ardinal will suÆe for this.Fat 4 (Foreman and Magidor [8℄). Let � be measurable and let S = �+\of(< �).Assume that every stationary subset of S reets at a point of o�nality less then �;then the same reetion property holds in any generi extension by Prikry foring.Fat 5 (Jensen [15℄). If � is quasiompat then stationary subsets of �+\ of(< �)reet at some point of o�nality less than �.



8 JAMES CUMMINGSSketh of the proof of Fat 5: Suppose for a ontradition that T � �+ \ of(< �)is stationary and non-reeting, and let � : (H�+ ;2; T ) ! (H�+ ;2; U) be as inthe de�nition of quasiompatness. U may not be stationary (stationarity is not�rst-order) but every initial segment is non-stationary, and so we an hoose Cdisjoint from �\T . Pulling bak C we get D lub in �+ with �\D \ of(< �) � C,so D \ T = ;. Contradition! �Sine �� implies that every stationary subset of �+ has a non-reeting station-ary subset, it follows that doing Prikry foring at a quasiompat ardinal � givesa model where � is singular and �� fails. The following result shows that the samesenario an not be made to work starting with a measurable subompat ardinal.We will use the idea of strategi losure [13℄ for a poset P. Consider a game inwhih two players I and II ollaborate to build a dereasing sequene of onditionspi in P, with player I playing pi for i odd and player II playing pi for i even; playerII loses a run of the game when a position is reahed in whih she an not move.If � is an unountable regular ardinal and for every Æ < � II has a strategy whihenables her to play for Æ moves, then P adds no sequenes of length less than �.Theorem 2. It is onsistent (modulo the existene of a superompat ardinal) thatthere exists � whih is measurable and subompat, and every stationary subset of�+ ontains a non-reeting stationary subset.Sketh of the proof of Theorem 2: We use arguments similar to those of Apter andShelah's papers [2, 3℄. Let � be a Laver indestrutible [17℄ superompat ardinal,that is to say � remains superompat in any extension by �-direted losed foring.Let GCH hold at and above �.We de�ne a poset P0 for adding a non-reeting stationary set in �+. Conditionsare funtions f suh that dom(f) < �+, rge(f) � f0; 1g and for every Æ � dom(f)of unountable o�nality there is a lub subset C of Æ suh that f � C is onstantwith value zero. The ordering is extension.It is easy to see that in the strategi losure game player II an keep going for�+ moves by extending I's play by a single zero at every suessor step, and takingunions at limit steps. In the next paragraph we will hek this in some detail. Inpartiular P0 adds no �-sequenes.We laim that P0 adds the harateristi funtion of a set whih is stationaryin every o�nality up to �. To see this let Æ � � be regular and let _C be a P0 -name for a lub subset of �+. Consider a run of the strategi losure game oflength Æ + 1 where fi is played at stage i. Player I plays so that for every eveni < Æ, fi+1 fores that _C \ (dom(fi); dom(fi+1)) 6= ;. For odd i < Æ player IIlets fi+1 = fi [ f(dom(fi); 0)g. For limit i she lets i = supj<i dom(fj) and thensets fi = Sj<i fj [ f(i; 0)g if i < Æ, fi = Sj<i fj [ f(i; 1)g if i = Æ. The keypoint is that for every limit i player II has arranged that fi is zero on a lub set ini, thereby guaranteeing that fi is a ondition. It is routine to hek that fÆ is aondition and that fÆ fores that Æ is in _C.In fat the stationary subset added by P0 has stationary intersetion with everystationary subset of �+ from the ground model. To see this �x T 2 V a stationarysubset of �+ and _C a name for a lub. Build a run of length �+ of the strategilosure game, where I plays as in the last paragraph and II adjoins a single zero tothe play so far at eah of her turns. With the same notation as in the last paragraph



COMPACTNESS AND INCOMPACTNESS PHENOMENA IN SET THEORY 9the i form a lub subset of �+, and so we may �nd i limit with i 2 T . Then thefuntion fi [ f(i; 1)g is a ondition foring that i is in _C.We now de�ne in V P0 a poset Q 0(S) to destroy the stationarity of the set Sadded by P0 . Conditions are losed bounded subsets disjoint from S, ordered byend-extension. It is easy to hek that P0 � Q 0 has a dense �+-losed subset,onsisting of those (f; �) suh that max() + 1 = dom(f) and f �  is onstantwith value zero. With more work it an be shown that P0 � Q 0 is equivalent to thestandard poset for adding a Cohen subset of �+.Let P be the produt of �++ opies of P0 with supports of size �, and let Si be thestationary set added by the ith opy. Let Q be the produt of Q 0(Si) for i < �++,again with supports of size �. As in the ase of P0 and Q 0 , it an be heked thatall the sets Si are stationary in V P and that P � Q has a dense �+-losed subset(and is in fat equivalent to the poset for adding �++ Cohen subsets of �+). Theusual �-system argument shows that P is �++-..Let V1 = V [G℄ for some P-generi G, and let V2 = V1[H℄ for some Q -generi H.V1 is the model we want, V2 is used in the proof that � is subompat in V1. Thefollowing laims are immediate.� The power set of � is the same in eah of V , V1 and V2. It follows that allthese models ompute H�+ in the same way, and also that � is measurablein V1.� By the assumption of indestrutibility, � is superompat in V2.We laim that in V1 every stationary subset of �+ ontains a non-reetingstationary subset. Let S 2 V1 be suh a stationary set. The foring P is �++-.. and so S is determined by the �rst � oordinates in P for some � < �++; anargument like that given above for P0 now shows that if T is the stationary setadded by opy � of T then S \ T is stationary in V P.We need to hek that � is subompat in V1. Let A be a prediate on H�+ withA 2 V1. Let j : V2 !M2 be an embedding in V2 witnessing � is �+-superompat.Then in V2 the map j � H�+ is elementary from (H�+ ;2; A) to (HM2j(�)+ ;2; j(A)).What is more the map j � H�+ lies in M2, and H�+ = HM2�+ .By reetion there are in V2 an ordinal � < �, a prediate b on H�+ and anelementary � from (H�+ ;2; b) to (H�+ ;2; A). This map � lies in V1, sine it is asubset of H�+ with ardinality less than �, and similarly HV2�+ = HV1�+ and b 2 V1.It follows that � is quasiompat in V1. �We onlude with a list of problems:(1) Can the methods of Theorem 1 be used to \step up" some other ombi-natorial priniples, for example the existene of a non-reeting stationaryset?(2) What is the largest L[ ~E℄ model suh that non-reeting stationary setsexist (or are dense) in every suessor ardinal?(3) Does a subompat ardinal (or a measurable subompat ardinal) suÆeto fore failure of �� for � singular?(4) Do quasiompat ardinals suÆe for any more of the notable appliationsof superompatness?(5) In partiular, is a quasiompat ardinal suÆient to produe a model where��� fails for � singular?
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