COMPACTNESS AND INCOMPACTNESS PHENOMENA IN SET
THEORY

JAMES CUMMINGS

ABSTRACT. We prove two results with a common theme: the tension between
compactness and incompactness phenomena in combinatorial set theory. The-
orem 1 uses PCF theory to prove a sort of “compactness” for a version of
Dzamonja and Shelah’s strong non-reflection principle. Theorem 2 investi-
gates Jensen’s subcompact cardinals and their relationship with stationary set
reflection and the failure of the square principle.

1. INTRODUCTION

A persistent theme in combinatorial set theory is the tension between compact-
ness and incompactness, or to put it another way between reflection and non-
reflection. These are not very precise concepts, so we illustrate with two lists of
examples; list one contains ideas and results which (in the view of the author) are
instances of compactness, and list two contains some more or less complementary
instances of incompactness.

o Compactness:

(1) The compactness theorem for first-order logic
(2) Large cardinals and generic embeddings
(3) Stationary reflection principles
(4) The tree property
(5) Silver’s theorem that GCH can’t first fail at R,,,

(6) Shelah’s singular compactness theorem

e Incompactness:

(1) The failure of compactness for many infinitary logics

(2) The Axiom of Constructibility V' = L and its consequences (e.g. square
principles)

(3) Non-reflecting stationary sets

(4) Aronszajn trees

(5) Magidor’s theorem that GCH can fail first at X,

(6) Constructions by Shelah and others for “almost free non-free” objects
(e.g. groups)

It is our thesis that many interesting problems arise from considering the extent
of some form of compactness, or the tension between some compactness principle
(for example the existence of large cardinals) and a different incompactness principle
(for example the existence of square sequences). This way of thinking is one of the
main motivations in our joint work with Foreman and Magidor on singular cardinal
combinatorics [8, 7] to which this paper is in some sense a sequel.

To describe a favourite problem about the extent of compactness, we recall that
a k-Aronszajn tree is a tree of height x, with every level of size less than xk and with
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no cofinal branches. The cardinal « is said to have the tree property if there are no
k-Aronszajn trees.

It is provable in ZFC that Ny has the tree property and X; does not, but by
work of Mitchell [19] “Ry has the tree property” is independent of ZFC and has the
strength of a weakly compact cardinal. Each of the statements “Y, has the tree
property for all n with 2 < n < w” [6] and “R, ;1 has the tree property” [18] is
known to be consistent and of very high consistency strength, but the consistency
of their conjunction is open.

Of course there are ideas and results which do not fit nicely into this picture.
For example the principle <>, seems to be a reflection principle, saying as it does
that any subset of k is anticipated by the diamond sequence at many points below
k; indeed {, follows from the assumption that  is a sufficiently large cardinal. On
the other hand <>, can be used to construct non-compact objects.

Theorem 1 is an application of PCF theory, which shows that a version of a
combinatorial principle called Strong Non-Reflection (SNR) does not fail first at
N,41. As the name suggests SNR is a principle which would not be out of place in
our “Incompactness” list, so we have a sort of compactness for an incompactness
property.

Theorem 2 is about the tension between large cardinal axioms and Jensen’s
square principle. We start by observing that Jensen’s quasicompactness principle
is sufficiently strong to derive the failure of O, for A singular. Theorem 2 shows that
a similar proof idea from the weaker subcompactness principle is doomed to failure
(which is not to say that another proof may not succeed). An exact determination
of the consistency strength of the failure of [y for A singular will presumably have
to await progress in the inner model program.

2. STRONG NON-REFLECTION

The following “Strong Non-Reflection” principle was introduced by Dzamonja
and Shelah [12]: here x and )\ are regular and w < kK < .

Definition 1. SNR(\, ) holds iff there is a function f : A\ — k such that for all
a € AN cof(k) there is C C a club with f [ C strictly increasing.

It follows from SNR(), ) that for every stationary S C X there is a stationary
T C S such that T reflects to no point of cofinality  (where T' reflects at a if T N
is stationary in a). To see this we just apply Fodor’s theorem to find 7" on which
f is constant and argue that this set can not reflect.

Remark 1. Dzamonja and Shelah observed that for any k and A, SNR(\, k) fol-
lows from Jensen’s global square principle [16]. In particular SNR(\, k) holds in
L.

Dzamonja, Shelah and the author [5, 9, 11] studied the SNR principles and used
them to prove independence results about reflection. Dzamonja and Shelah made
the following definition, which can be seen as a measure of the extent of a certain
kind of incompactness in the universe of set theory.

Definition 2. u(k) is the least reqular X\ > k such that SNR(X, k) fails, assuming
that such a cardinal exists. If no such cardinal exists then by convention u(k) = oo,
where A < oo for all cardinals .
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Dzamonja and Shelah showed by a hard forcing argument that u(k) can be the
successor of a singular cardinal (other kinds of regular cardinal are considerably
easier to achieve). We state and prove a result which sheds some light on the
difficulties. Theorem 1 is closely related to a theorem from our joint work with
Foreman and Magidor [7] which gives a similar kind of compactness for the square
principle.

It is convenient to work with a variation on SNR: here ;1 < k < A and they are
all regular cardinals.

Definition 3. SNR(\, k, 1) holds iff there exists f : AN cof(n) — k such that for
all a € AN cof(k) there is C C o club with f | C' N cof(u) strictly increasing.

The principle SNR(A, k, ) implies that every stationary subset of A N cof(u)
contains a stationary set reflecting at no points in A N cof(x). Principles of this
type can be used [9] to separate the phenomena of stationary reflection at different
cofinalities.

Theorem 1 (CH). If the principle SNR(R,, Ng, N1) holds for all finite n > 2, then
the principle SNR(Ry, 41, Ra, Ry) holds.

Before proving Theorem 1 we need a few PCF-theoretic preliminaries. We note
that the hypothesis of CH in Theorem 1 may not be necessary, and that this is
related to an important open question in PCF theory which we discuss below. We
refer the reader to the survey papers [4, 1] and Shelah’s book [20] for background
on PCF theory.

For an infinite set A C w, we let J], ., R, be the set of functions f such that
dom(f) = A and f(n) € R, for all n € A. There are various relations on [],. 4 X,
which will concern us. Given f,g € [],.4 R, we say that f is dominated by g
(f < g)if and only if f(n) < g(n) for all n € A. We say [ is eventually dominated
by g (f <* g) if and only if f(n) < g(n) for all sufficiently large n € A, and also
define f <* g if and only if f(n) < g(n) for all large n € A. Similarly f is eventually
equal to g (f =* g)if and only if f(n) = g(n) for all sufficiently large n € A. Finally
f < g if and only if f(n) < g(n) for unboundedly many n € A.

We will use the following theorem by Shelah; apart from our appeal to this basic
result, this section of the paper is essentially self-contained.

Fact 1. There is an infinite A C w and a sequence (f, : o < W, 411) increasing and
cofinal in [],c 4 Nn with the eventual domination ordering.

For the rest of this section we fix 4 and (f, : @ < R,11) as in Fact 1. !
If 8 is a limit ordinal less than X, 11, then we say that a function g € [],,c 4 X
is an ezact upper bound (eub) for (f, : a < B) if and only if

(1) For all a < B, fo <* g.
(2) For all h € ] W, if h <* g then there is o < 8 such that h <* f,.

This is equivalent to demanding that (f, : @ < ) is increasing and cofinal modulo
finite in [T, cA g(n). Tt is not difficult to see that an exact upper bound, if it exists,
is unique modulo finite.

ncA

It is interesting to note that there is a canonical maximal choice for A which is well-defined
modulo finite, though we will not use this.
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We will need a resullt by Shelah guaranteeing many points where an eub exists.
The result is an easy corollary 2 of Shelah’s quite technical “trichotomy theorem”,
but in the interests of making this paper self-contained we sketch a more direct
proof (we are really just working through the trichotomy construction and cutting
some corners with the help of CH).

Fact 2. Let CH hold. If cf(8) = Ry then (fo : o < ) has an eub H such that
cf(H(n)) = Ny for all but finitely many n.

Proof. We define a sequence of functions H¢ € ][, .4 X, which are attempts to
build a least upper bound (lub), that is to say a function H such that

(1) fo <* H for all a < . B B
(2) There is no H <* H such that H <* H and f, <* H for all a < .

Our construction will be such that if ¢ < n then H, <* H; and H, <* H¢. The
construction will proceed for at most Ny many steps.

Hy = fg. If H¢ is an lub then we stop the construction, otherwise we choose
Heyy <" He such that Hep g <*° He and fo <* Heyq for all o < 3. At limit
A < XNy we work as follows: let X,, = {H¢(n) : ¢ < A} and for every v < 3 let
G(n) = min(X, \ fy(n)), or zero if X,, C f,(n).

It is routine to check that f, <* G, for all a < 3, that G, <* H¢ for all ¢ < A
and that v <0 = G, <* G5. By CH there are only N?O = N; possibilities for
the =*-equivalence class of G, and since cf(8) = N, that equivalence class must
stabilise: we choose Hy so that H) =" G for all large v < 3.

We claim that the constuction of the H, must halt before Ny steps. Otherwise
we may define a function F' from [R]? to w, by F(¢,n) = n for n minimal with
H,(n) < H¢(n). The Erdos-Rado theorem then gives a decreasing R;-sequence of
ordinals, which is impossible.

We have constructed an lub H. We claim it is an eub. To see this let g <* H
and suppose for a contradiction that Y, = {n : g(n) > f,(n)} is infinite for all ~.
Clearly v < ¢ implies that Y; is contained in Y, mod finite, and so by CH again
there is a fixed Z such that Y, is equal to Z mod finite for all large v < 5. Define
H by H(n) = H(n) for n ¢ Z, H(n) = g(n) for n € Z; clearly H <* H, H < H
and f, <* H for all o, contradiction!

To finish we show that cf(H(n)) = Rg for all but finitely many n. Suppose
first that cf(H(n)) < Rq for every n in some infinite subset B of A, and fix A, C
H(n) cofinal with ot(A4,) = cf(H(n)) for every n € B. Now by CH [[,.5 4n
has cardinality N;, so we may find f, such that for every f € [[,.z An we have
[ <* fo | B. Since fo <* H we may find g € [[,.p such that f, [ B <* g, which
is a contradiction.

Now suppose that cf(H(n)) > Ry for every n in some infinite subset B of A. Let
(Bi : 1 < N2) be increasing and cofinal in 8 and define f € ], 5 H(n), by setting
f(n) = sup; fg,(n) for all n € B. Then since H is an eub and the §; are cofinal we
may find 7 such that f <* fg, | B, which is a contradiction.

O

Fact 2 is our only use of CH. As we discuss further at the end of this section, it is
unclear whether the assumption of CH can be removed from Fact 2 or indeed from

2For the experts: we just observe that points of cofinality greater than the continuum can not
fall into the Bad or Ugly cases of the trichotomy.
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Theorem 1. Next we characterise those points where an eub of uniform uncountable
cofinality exists. Again this result is due to Shelah.

Fact 3. The following are equivalent for B of uncountable cofinality.

(1) There exists g an eub for (fo : o < B) with cf(g(n)) = cf(B) for all but
finitely many n.

(2) There exists g an eub for (fo : a < B) and an uncountable regular \ with
cf(g(n)) = X for all but finitely many n.

(3) There exists a sequence of functions (h, : n < cfB) in “*ON which is
pointwise increasing and is cofinally interleaved with (f, : @ < ) in the
eventual domination ordering (which is to say that each function in each
of the sequences is eventually dominated by some function from the other
sequence).

(4) For every Y C B which is unbounded in B there is Z C Y unbounded in
B and n < w, such that ot(Z) = cf(B) and (fa(m) : a € Z) is strictly
increasing for m € A with m > n.

Proof. 1t is immediate that 1 implies 2. Given 2, define a pointwise increasing
sequence of functions (h, : n < A) such that (h,(n) : n < A) is increasing and
cofinal in g(n) for all but finitely many n. Since h, <* g, h, <* f, for some
a < B: conversely if a < 3 then f, <* g, and since A is uncountable and the h,, are
pointwise increasing we may choose 7 such that f, <* h,. It follows that A = cf(3)
so 2 implies 3.

Given 3, let Y C 8 be unbounded. We may clearly choose n; < cf(5) and
¢j € Y such that g, <* f¢; <* gp;,, for j < cf(B), and then choose n; € A such
that g, (m) < f¢;(m) < gy,,,(m) for m > n;. Since cf(3) is uncountable we may
find T C cf(8) unbounded and n such that n; = n for all j € T, and then let
Z ={¢ 5T} If 1 < j2arein T and m > n then f¢; (m) < gy, ,,(m) <
In;, (M) < f¢;, (m), so 3 implies 4.

Given 4 we let Y = 3, choose a suitable Z and n and define H by H(m) =
sup,cz fa(m). Clearly cf(H(m)) = cf(5) for all but finitely many m, and f, <* H
for all H. Now if f <* H, then since cf(8) is uncountable and (f,(m) : a € Z) is
strictly increasing for m € A with m > n we may choose a € Z such that f <* f,.
It follows that H is an eub so 4 implies 1. O

Remark 2. In the course of this proof, we saw that for any cofinally interleaved
sequence (hy : m < cfB) as in 3, the pointwise supremum of (hy, : n < cff) is an
ezact upper bound for (f, : a < ().

Let G be the set of all those 8 < N, 11 of uncountable cofinality such that there
is an eub g for (f, : a < B) with cf(g(n)) = cf(B) for all but finitely many n. We
claim that if ¥ € G there is a club subset C of v such that all points of C' with
uncountable cofinality are in G. To see this we use “1 implies 3” from Fact 3 to
construct (h, : n < cf(v)) which is cofinally interleaved with (f, : o < %), and
then let C' be the set of § < v such that (f, : @ < d) is cofinally interleaved with
(hy : m < 7) for some 77 < n; C' is clearly club, and by “3 implies 1” from Fact 3
every element of C' with uncountable cofinality is in G.

The claim of the last paragraph and the fact that under CH every point of
cofinality N5 is in G are the keys to the proof of Theorem 1. We will use the set G
as a scaffolding on which to build a function witnessing SNR(Ry,41, X2, Ry).
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Before starting the proof of Theorem 1, it will be convenient to make some
cosmetic adjustments to A and the sequence (fy : @ < N, 11). It follows easily from
the discussion above that we may assume that

(1) The minimum element of A is at least 3.

(2) The sequence (fy : o < Nyy1) is continuous, that is to say that whenever
an exact upper bound for an initial segment (f, : & < ) exists then fz is
an exact upper bound.

(3) If B € G and cf(8) < R, then cf(fg(n)) = cf(B) for all n € A.

Proof of Theorem 1: We assume that CH holds. We fix F,, : R, Ncof(N;) — Ry
witnessing SNR(X,,, Ny, Ry) for 2 < n < w. We define F for v € G N cof(Ry) by
F(v) = sup,, F,(fy(n)) and verify that F' is a witness for SNR(R,, 11, Na, Ny).

We fix a point § < N1 of cofinality Ro. Since CH holds Fact 2 tells us that 6 €
G, so that by our cosmetic work above f5 is an exact upper bound for (f, : a < §)
and cf(fs5(n)) = Rq for all n € A. We fix for each n a club C, in fs(n) such that
F, is increasing on Cy, Ncof(X;), and C,, has order type R. Then we define h,, for
n < Ny by setting h,(n) to be the n*® point in C,; by the argument for “2 implies
3” in Fact 3, (hy : n < N3) is pointwise increasing and is cofinally interleaved with
(fo:a< ).

We may now fix E club in § with order type No, such that for every point
v € ENcof(Xy) there is a (necessarily unique) () € Ng N cof(R;) such that the
sequences (fo : o < 7) and (hy, : 7 < {(7y)) are cofinally interleaved. Thinning out
E if necessary we may arrange that ot(¢(y)Ncof(Ry)) = ¢(v) for all v € ENcof(Xy).
Fixing for the moment some v € E N cof(Xy), it follows from the discussion above
that the pointwise supremum of (h, : 7 < ((v)) is an exact upper bound for
(fo : @ < 7), so by continuity and the fact that the sets C,, are closed we see that
fry =% he(y)-

Since F,, is strictly increasing on C, N cof(Ry), Fy,(hy(n)) > ot(n N cof(Ry)) for
all n and 7, so in particular F,(fy(n)) = Fn(h¢(y)(n)) > ¢(v) for all large n. By the
definition of F' it follows that F(y) > ((v) for all v € E Ncof(Ry). Clearly ¢(v) is
strictly increasing with 7, and so we may thin out E to a club subset E* of § with
the property that ((y1) > F (o) for all v; € E*Ncof(Ry) and 9 € E* Ny Necof(Ny).

If 49 and 7; are points of E* N cof(R;) with 79 < 71 then F(y) < ¢((71) <
F(vy1). We have verified that F' witnesses SNR(R,, 11, R2,R;) and this concludes
the proof. O

The set G (the set of “good points”) turns out to be an interesting invariant of
the universe of set theory; for more about this point of view see the papers [8] and
[7] and To whet the reader’s appetite we note that

e Modulo the club filter, G is independent of the choice of the scale (f, : a <
Nw+1>.

e Jensen’s weak square principle L§ ~implies that almost all points of un-
countable cofinality are good.

e Starting from very large cardinals it is known [14, 7] that we may build
models in which there are stationarily many ungood points of cofinality
N;. In particular this statement follows from Martin’s Maximum (which
implies the negation of CH) and also from the strong Chang conjecture
(Nw+1,Ry) = (Rq,Rg) (which is consistent with CH), so is consistent both
with CH and its negation.
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e It is open whether or not there may be stationarily many ungood points of
cofinality ®,. It is known that any point of cofinality greater than 2% is
good.

3. QUASICOMPACT AND SUBCOMPACT CARDINALS

Jensen showed [16] that () holds in L for all ), and also [10] that if 0% does not
exist then L computes correctly the successors of V-singular cardinals; it follows
that if 0% does not exist then [y holds for all singular A, and so combinatorial state-
ments which are incompatible with [0, (e.g. the non-existence of a A*-Aronszajn
tree) must have a substantial consistency strength.

Workers in the inner model program have constructed L-like models (the so-
called “L[E]-models”) which can contain substantial large cardinals. We refer the
reader to the survey paper [21] for more details. The L[E]-models are only known
to exist up to a certain point in the large cardinal hierarchy (roughly a measurable
limit of Woodin cardinals). It is anticipated they will be shown to exist at higher
levels of the large cardinal hierarchy, going past the subcompact and quasicompact
cardinals defined below; modulo the assumption of existence it is already possible
to analyse the fine structure of these hypothetical models.

A natural problem is to prove that [y holds in L[E)]—models7 but there are
limits on what can be done in this direction. Jensen has identified a large cardinal
property called subcompactness (qv) and has shown that if x is subcompact then
O, fails. Schimmerling and Zeman have closed the case in L[E]—models, by showing
that in such models [Jy holds exactly when A is not subcompact.

We recall that H)y is the set of those X such that the transitive closure of {X}
has cardinality less than A. Informally it is often helpful to think of H) as the set
of those X which can be coded by bounded subsets of A.

Definition 4 (Jensen). Let x be a cardinal.

(1) & is quasicompact iff for all A C H,+ there are A > k, m : H+ — Hy+
and B C Hy+ such that  is an elementary embedding from (H.+,€,A) to
(Hx+,€,B), m(k) = X and the critical point of w is k.

(2) & is subcompact iff for all A C H+ there are § < k, m : Hg+ — Hy+
and b C Hg+ such that 7 is an elementary embedding from (Hg+,€,b) to
(Hq+,€,A), m(B) = k and the critical point of 7 is 3.

Remark 3. The quasicompactness of k is witnessed by the existence of a family of
superstrong extenders with critical point k, and similarly the subcompactness of k
is witnessed by the existence of a family of superstrong extenders with target k.

If k is quasicompact then k is measurable and subcompact, and the least subcom-
pact cardinal is not measurable.

Theorem 2 is motivated by the problem of calibrating the large cardinal strength
needed to make [Jy fail for A singular. Before stating and proving Theorem 2 we
note that a quasicompact cardinal will suffice for this.

Fact 4 (Foreman and Magidor [8]). Let k be measurable and let S = k* Ncof(< k).
Assume that every stationary subset of S reflects at a point of cofinality less then k;
then the same reflection property holds in any generic extension by Prikry forcing.

Fact 5 (Jensen [15]). If k is quasicompact then stationary subsets of k* Ncof(< k)
reflect at some point of cofinality less than k.
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Sketch of the proof of Fact 5: Suppose for a contradiction that T C k* N cof (< k)
is stationary and non-reflecting, and let 7 : (H.+,€,T) — (Hy+,€,U) be as in
the definition of quasicompactness. U may not be stationary (stationarity is not
first-order) but every initial segment is non-stationary, and so we can choose C
disjoint from 7“T". Pulling back C' we get D club in & with 7“D Ncof(< &) C C,
so DNT = . Contradiction! O

Since [J,. implies that every stationary subset of xT has a non-reflecting station-
ary subset, it follows that doing Prikry forcing at a quasicompact cardinal x gives
a model where & is singular and 0, fails. The following result shows that the same
scenario can not be made to work starting with a measurable subcompact cardinal.

We will use the idea of strategic closure [13] for a poset P. Consider a game in
which two players I and II collaborate to build a decreasing sequence of conditions
p; in P, with player I playing p; for ¢ odd and player II playing p; for i even; player
IT loses a run of the game when a position is reached in which she can not move.
If k is an uncountable regular cardinal and for every § < x II has a strategy which
enables her to play for § moves, then P adds no sequences of length less than x.

Theorem 2. [t is consistent (modulo the existence of a supercompact cardinal) that
there exists k which is measurable and subcompact, and every stationary subset of
kT contains a non-reflecting stationary subset.

Sketch of the proof of Theorem 2: We use arguments similar to those of Apter and
Shelah’s papers [2, 3]. Let x be a Laver indestructible [17] supercompact cardinal,
that is to say x remains supercompact in any extension by k-directed closed forcing.
Let GCH hold at and above k.

We define a poset Py for adding a non-reflecting stationary set in x*. Conditions
are functions f such that dom(f) < ™, rge(f) C {0,1} and for every § < dom(f)
of uncountable cofinality there is a club subset C of ¢ such that f | C' is constant
with value zero. The ordering is extension.

It is easy to see that in the strategic closure game player II can keep going for
xT moves by extending I's play by a single zero at every successor step, and taking
unions at limit steps. In the next paragraph we will check this in some detail. In
particular Py adds no k-sequences.

We claim that Py adds the characteristic function of a set which is stationary
in every cofinality up to . To see this let § < & be regular and let C be a P,-
name for a club subset of k. Consider a run of the strategic closure game of
length § + 1 where f; is played at stage i. Player I plays so that for every even
i < 68, fiq1 forces that C' N (dom(f;),dom(fiy1)) # 0. For odd i < & player II
lets fi11 = f; U{(dom(f;),0)}. For limit i she lets ; = sup,;.; dom(f;) and then
sets f; = Uj<i fj U {(7170)} ifi <9, fi = Uj<i fj U {('7131)} if ¢ = 0. The key
point is that for every limit ¢ player II has arranged that f; is zero on a club set in
v;, thereby guaranteeing that f; is a condition. It is routine to check that fs5 is a
condition and that f5 forces that 75 is in C.

In fact the stationary subset added by Py has stationary intersection with every
stationary subset of kT from the ground model. To see this fix T' € V a stationary
subset of kT and C a name for a club. Build a run of length k™ of the strategic
closure game, where I plays as in the last paragraph and II adjoins a single zero to
the play so far at each of her turns. With the same notation as in the last paragraph
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the ~y; form a club subset of kT, and so we may find i limit with 7; € T. Then the
function f; U {(v;,1)} is a condition forcing that +; is in C.

We now define in V¥ a poset Qy(S) to destroy the stationarity of the set S
added by Py. Conditions are closed bounded subsets disjoint from S, ordered by
end-extension. It is easy to check that Py * Qp has a dense xT-closed subset,
consisting of those (f,¢) such that max(c) + 1 = dom(f) and f [ ¢ is constant
with value zero. With more work it can be shown that Py x Qp is equivalent to the
standard poset for adding a Cohen subset of x™.

Let P be the product of k*+ copies of Py with supports of size , and let S; be the
stationary set added by the i*" copy. Let Q be the product of Qg (S;) for i < xtt,
again with supports of size k. As in the case of Py and Qp, it can be checked that
all the sets S; are stationary in V' and that P * Q has a dense x*-closed subset
(and is in fact equivalent to the poset for adding ™ Cohen subsets of xT). The
usual A-system argument shows that P is k™ -c.c.

Let V4 = VI[G] for some P-generic G, and let Vo = V;[H] for some Q-generic H.
V1 is the model we want, V5 is used in the proof that x is subcompact in V;. The
following claims are immediate.

e The power set of k is the same in each of V, V; and V5. It follows that all
these models compute H,+ in the same way, and also that x is measurable
in Vj.

e By the assumption of indestructibility, x is supercompact in V5.

We claim that in V; every stationary subset of ™ contains a non-reflecting
stationary subset. Let S € V; be such a stationary set. The forcing P is xT -
c.c. and so S is determined by the first 3 coordinates in P for some 3 < k¥1; an
argument like that given above for Py now shows that if T" is the stationary set
added by copy 3 of T then SN T is stationary in V.

We need to check that k is subcompact in V;. Let A be a predicate on H,.+ with
A€ Vy. Let j: Vo — M be an embedding in V» witnessing s is T -supercompact.
Then in V; the map j | H,.+ is elementary from (H,+,€,A) to (H2 ,,€,j(A)).

J(r)t>
What is more the map j [ H,+ lies in Ms, and H,.+ = Hévf.

By reflection there are in V> an ordinal 8 < &, a predicate b on Hg+ and an
elementary 7 from (Hg+,€,b) to (H,+,€,A). This map 7 lies in V1, since it is a
subset of H, .+ with cardinality less than x, and similarly H/Xi =H g/}r and b € V7.
It follows that x is quasicompact in V;. O

We conclude with a list of problems:

(1) Can the methods of Theorem 1 be used to “step up” some other combi-
natorial principles, for example the existence of a non-reflecting stationary
set?

(2) What is the largest L[E] model such that non-reflecting stationary sets
exist (or are dense) in every successor cardinal?

(3) Does a subcompact cardinal (or a measurable subcompact cardinal) suffice
to force failure of [y for A singular?

(4) Do quasicompact cardinals suffice for any more of the notable applications
of supercompactness?

(5) In particular, is a quasicompact cardinal sufficient to produce a model where
I3 fails for A singular?
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I would like to thank Mirna Dzamonja, Matt Foreman, Ronald Jensen, Men-
achem Magidor and Ernest Schimmerling for several helpful conversations. I would
also like to thank the anonymous referee for their careful reading of the first version
of this paper.

Remark 4. Matt Foreman has pointed out that if player II has a strategy which
allows her to play for k¥ moves in the strategic closure game on a poset P, and
2% = kT, then P preserves the subcompactness of k. So the conclusion of Theorem

2 can be obtained more cheaply by applying the same forcing construction to a

measurable subcompact k with 2% = kT,

Remark 5. Martin Zeman has some preliminary results indicating that, for exam-
ple, in the L|E]-models there is a non-reflecting stationary set in &+ for k the least
subcompact cardinal.
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