
COMPACTNESS AND INCOMPACTNESS PHENOMENA IN SETTHEORYJAMES CUMMINGS
Abstra
t. We prove two results with a 
ommon theme: the tension between
ompa
tness and in
ompa
tness phenomena in 
ombinatorial set theory. The-orem 1 uses PCF theory to prove a sort of \
ompa
tness" for a version ofDzamonja and Shelah's strong non-re
e
tion prin
iple. Theorem 2 investi-gates Jensen's sub
ompa
t 
ardinals and their relationship with stationary setre
e
tion and the failure of the square prin
iple.1. Introdu
tionA persistent theme in 
ombinatorial set theory is the tension between 
ompa
t-ness and in
ompa
tness, or to put it another way between re
e
tion and non-re
e
tion. These are not very pre
ise 
on
epts, so we illustrate with two lists ofexamples; list one 
ontains ideas and results whi
h (in the view of the author) areinstan
es of 
ompa
tness, and list two 
ontains some more or less 
omplementaryinstan
es of in
ompa
tness.� Compa
tness:(1) The 
ompa
tness theorem for �rst-order logi
(2) Large 
ardinals and generi
 embeddings(3) Stationary re
e
tion prin
iples(4) The tree property(5) Silver's theorem that GCH 
an't �rst fail at �!1(6) Shelah's singular 
ompa
tness theorem� In
ompa
tness:(1) The failure of 
ompa
tness for many in�nitary logi
s(2) The Axiom of Constru
tibility V = L and its 
onsequen
es (e.g. squareprin
iples)(3) Non-re
e
ting stationary sets(4) Aronszajn trees(5) Magidor's theorem that GCH 
an fail �rst at �!(6) Constru
tions by Shelah and others for \almost free non-free" obje
ts(e.g. groups)It is our thesis that many interesting problems arise from 
onsidering the extentof some form of 
ompa
tness, or the tension between some 
ompa
tness prin
iple(for example the existen
e of large 
ardinals) and a di�erent in
ompa
tness prin
iple(for example the existen
e of square sequen
es). This way of thinking is one of themain motivations in our joint work with Foreman and Magidor on singular 
ardinal
ombinatori
s [8, 7℄ to whi
h this paper is in some sense a sequel.To des
ribe a favourite problem about the extent of 
ompa
tness, we re
all thata �-Aronszajn tree is a tree of height �, with every level of size less than � and with1



2 JAMES CUMMINGSno 
o�nal bran
hes. The 
ardinal � is said to have the tree property if there are no�-Aronszajn trees.It is provable in ZFC that �0 has the tree property and �1 does not, but bywork of Mit
hell [19℄ \�2 has the tree property" is independent of ZFC and has thestrength of a weakly 
ompa
t 
ardinal. Ea
h of the statements \�n has the treeproperty for all n with 2 � n < !" [6℄ and \�!+1 has the tree property" [18℄ isknown to be 
onsistent and of very high 
onsisten
y strength, but the 
onsisten
yof their 
onjun
tion is open.Of 
ourse there are ideas and results whi
h do not �t ni
ely into this pi
ture.For example the prin
iple }� seems to be a re
e
tion prin
iple, saying as it doesthat any subset of � is anti
ipated by the diamond sequen
e at many points below�; indeed }� follows from the assumption that � is a suÆ
iently large 
ardinal. Onthe other hand }� 
an be used to 
onstru
t non-
ompa
t obje
ts.Theorem 1 is an appli
ation of PCF theory, whi
h shows that a version of a
ombinatorial prin
iple 
alled Strong Non-Re
e
tion (SNR) does not fail �rst at�!+1. As the name suggests SNR is a prin
iple whi
h would not be out of pla
e inour \In
ompa
tness" list, so we have a sort of 
ompa
tness for an in
ompa
tnessproperty.Theorem 2 is about the tension between large 
ardinal axioms and Jensen'ssquare prin
iple. We start by observing that Jensen's quasi
ompa
tness prin
ipleis suÆ
iently strong to derive the failure of �� for � singular. Theorem 2 shows thata similar proof idea from the weaker sub
ompa
tness prin
iple is doomed to failure(whi
h is not to say that another proof may not su

eed). An exa
t determinationof the 
onsisten
y strength of the failure of �� for � singular will presumably haveto await progress in the inner model program.2. Strong non-refle
tionThe following \Strong Non-Re
e
tion" prin
iple was introdu
ed by Dzamonjaand Shelah [12℄: here � and � are regular and ! < � < �.De�nition 1. SNR(�; �) holds i� there is a fun
tion f : � ! � su
h that for all� 2 � \ 
of(�) there is C � � 
lub with f � C stri
tly in
reasing.It follows from SNR(�; �) that for every stationary S � � there is a stationaryT � S su
h that T re
e
ts to no point of 
o�nality � (where T re
e
ts at � if T \�is stationary in �). To see this we just apply Fodor's theorem to �nd T on whi
hf is 
onstant and argue that this set 
an not re
e
t.Remark 1. Dzamonja and Shelah observed that for any � and �, SNR(�; �) fol-lows from Jensen's global square prin
iple [16℄. In parti
ular SNR(�; �) holds inL.Dzamonja, Shelah and the author [5, 9, 11℄ studied the SNR prin
iples and usedthem to prove independen
e results about re
e
tion. Dzamonja and Shelah madethe following de�nition, whi
h 
an be seen as a measure of the extent of a 
ertainkind of in
ompa
tness in the universe of set theory.De�nition 2. u(�) is the least regular � > � su
h that SNR(�; �) fails, assumingthat su
h a 
ardinal exists. If no su
h 
ardinal exists then by 
onvention u(�) =1,where � <1 for all 
ardinals �.



COMPACTNESS AND INCOMPACTNESS PHENOMENA IN SET THEORY 3Dzamonja and Shelah showed by a hard for
ing argument that u(�) 
an be thesu

essor of a singular 
ardinal (other kinds of regular 
ardinal are 
onsiderablyeasier to a
hieve). We state and prove a result whi
h sheds some light on thediÆ
ulties. Theorem 1 is 
losely related to a theorem from our joint work withForeman and Magidor [7℄ whi
h gives a similar kind of 
ompa
tness for the squareprin
iple.It is 
onvenient to work with a variation on SNR: here � < � < � and they areall regular 
ardinals.De�nition 3. SNR(�; �; �) holds i� there exists f : � \ 
of(�)! � su
h that forall � 2 � \ 
of(�) there is C � � 
lub with f � C \ 
of(�) stri
tly in
reasing.The prin
iple SNR(�; �; �) implies that every stationary subset of � \ 
of(�)
ontains a stationary set re
e
ting at no points in � \ 
of(�). Prin
iples of thistype 
an be used [9℄ to separate the phenomena of stationary re
e
tion at di�erent
o�nalities.Theorem 1 (CH). If the prin
iple SNR(�n;�2;�1) holds for all �nite n > 2, thenthe prin
iple SNR(�!+1;�2;�1) holds.Before proving Theorem 1 we need a few PCF-theoreti
 preliminaries. We notethat the hypothesis of CH in Theorem 1 may not be ne
essary, and that this isrelated to an important open question in PCF theory whi
h we dis
uss below. Werefer the reader to the survey papers [4, 1℄ and Shelah's book [20℄ for ba
kgroundon PCF theory.For an in�nite set A � !, we let Qn2A �n be the set of fun
tions f su
h thatdom(f) = A and f(n) 2 �n for all n 2 A. There are various relations on Qn2A �nwhi
h will 
on
ern us. Given f; g 2 Qn2A �n we say that f is dominated by g(f < g) if and only if f(n) < g(n) for all n 2 A. We say f is eventually dominatedby g (f <� g) if and only if f(n) < g(n) for all suÆ
iently large n 2 A, and alsode�ne f �� g if and only if f(n) � g(n) for all large n 2 A. Similarly f is eventuallyequal to g (f =� g) if and only if f(n) = g(n) for all suÆ
iently large n 2 A. Finallyf <1 g if and only if f(n) < g(n) for unboundedly many n 2 A.We will use the following theorem by Shelah; apart from our appeal to this basi
result, this se
tion of the paper is essentially self-
ontained.Fa
t 1. There is an in�nite A � ! and a sequen
e hf� : � < �!+1i in
reasing and
o�nal in Qn2A �n with the eventual domination ordering.For the rest of this se
tion we �x A and hf� : � < �!+1i as in Fa
t 1. 1If � is a limit ordinal less than �!+1, then we say that a fun
tion g 2 Qn2A �nis an exa
t upper bound (eub) for hf� : � < �i if and only if(1) For all � < �, f� <� g.(2) For all h 2Qn2A �n, if h <� g then there is � < � su
h that h <� f�.This is equivalent to demanding that hf� : � < �i is in
reasing and 
o�nal modulo�nite in Qn2A g(n). It is not diÆ
ult to see that an exa
t upper bound, if it exists,is unique modulo �nite.1It is interesting to note that there is a 
anoni
al maximal 
hoi
e for A whi
h is well-de�nedmodulo �nite, though we will not use this.



4 JAMES CUMMINGSWe will need a resullt by Shelah guaranteeing many points where an eub exists.The result is an easy 
orollary 2 of Shelah's quite te
hni
al \tri
hotomy theorem",but in the interests of making this paper self-
ontained we sket
h a more dire
tproof (we are really just working through the tri
hotomy 
onstru
tion and 
uttingsome 
orners with the help of CH).Fa
t 2. Let CH hold. If 
f(�) = �2 then hf� : � < �i has an eub H su
h that
f(H(n)) = �2 for all but �nitely many n.Proof. We de�ne a sequen
e of fun
tions H� 2 Qn2A �n whi
h are attempts tobuild a least upper bound (lub), that is to say a fun
tion H su
h that(1) f� <� H for all � < �.(2) There is no �H �� H su
h that �H <1 H and f� <� �H for all � < �.Our 
onstru
tion will be su
h that if � < � then H� �� H� and H� <1 H� . The
onstru
tion will pro
eed for at most �2 many steps.H0 = f� . If H� is an lub then we stop the 
onstru
tion, otherwise we 
hooseH�+1 �� H� su
h that H�+1 <1 H� and f� <� H�+1 for all � < �. At limit� < �2 we work as follows: let Xn = fH�(n) : � < �g and for every 
 < � letG
(n) = min(Xn n f
(n)), or zero if Xn � f
(n).It is routine to 
he
k that f� <� G
 for all � < �, that G
 �� H� for all � < �and that 
 < Æ =) G
 �� GÆ. By CH there are only ��01 = �1 possibilities forthe =�-equivalen
e 
lass of G
 , and sin
e 
f(�) = �2 that equivalen
e 
lass muststabilise: we 
hoose H� so that H� =� G
 for all large 
 < �.We 
laim that the 
onstu
tion of the H� must halt before �2 steps. Otherwisewe may de�ne a fun
tion F from [�2℄2 to !, by F (�; �) = n for n minimal withH�(n) < H�(n). The Erdos-Rado theorem then gives a de
reasing �1-sequen
e ofordinals, whi
h is impossible.We have 
onstru
ted an lub H. We 
laim it is an eub. To see this let g <� Hand suppose for a 
ontradi
tion that Y
 = fn : g(n) > f
(n)g is in�nite for all 
.Clearly 
 < Æ implies that YÆ is 
ontained in Y
 mod �nite, and so by CH againthere is a �xed Z su
h that Y
 is equal to Z mod �nite for all large 
 < �. De�ne�H by �H(n) = H(n) for n =2 Z, �H(n) = g(n) for n 2 Z; 
learly �H �� H, �H <1 Hand f� <� �H for all �, 
ontradi
tion!To �nish we show that 
f(H(n)) = �2 for all but �nitely many n. Suppose�rst that 
f(H(n)) < �2 for every n in some in�nite subset B of A, and �x An �H(n) 
o�nal with ot(An) = 
f(H(n)) for every n 2 B. Now by CH Qn2B Anhas 
ardinality �1, so we may �nd f� su
h that for every f 2 Qn2B An we havef <� f� � B. Sin
e f� <� H we may �nd g 2 Qn2B su
h that f� � B <� g, whi
his a 
ontradi
tion.Now suppose that 
f(H(n)) > �2 for every n in some in�nite subset B of A. Leth�i : i < �2i be in
reasing and 
o�nal in � and de�ne f 2 Qn2B H(n), by settingf(n) = supi f�i(n) for all n 2 B. Then sin
e H is an eub and the �i are 
o�nal wemay �nd i su
h that f <� f�i � B, whi
h is a 
ontradi
tion. �Fa
t 2 is our only use of CH. As we dis
uss further at the end of this se
tion, it isun
lear whether the assumption of CH 
an be removed from Fa
t 2 or indeed from2For the experts: we just observe that points of 
o�nality greater than the 
ontinuum 
an notfall into the Bad or Ugly 
ases of the tri
hotomy.



COMPACTNESS AND INCOMPACTNESS PHENOMENA IN SET THEORY 5Theorem 1. Next we 
hara
terise those points where an eub of uniform un
ountable
o�nality exists. Again this result is due to Shelah.Fa
t 3. The following are equivalent for � of un
ountable 
o�nality.(1) There exists g an eub for hf� : � < �i with 
f(g(n)) = 
f(�) for all but�nitely many n.(2) There exists g an eub for hf� : � < �i and an un
ountable regular � with
f(g(n)) = � for all but �nitely many n.(3) There exists a sequen
e of fun
tions hh� : � < 
f�i in AON whi
h ispointwise in
reasing and is 
o�nally interleaved with hf� : � < �i in theeventual domination ordering (whi
h is to say that ea
h fun
tion in ea
hof the sequen
es is eventually dominated by some fun
tion from the othersequen
e).(4) For every Y � � whi
h is unbounded in � there is Z � Y unbounded in� and n < !, su
h that ot(Z) = 
f(�) and hf�(m) : � 2 Zi is stri
tlyin
reasing for m 2 A with m > n.Proof. It is immediate that 1 implies 2. Given 2, de�ne a pointwise in
reasingsequen
e of fun
tions hh� : � < �i su
h that hh�(n) : � < �i is in
reasing and
o�nal in g(n) for all but �nitely many n. Sin
e h� <� g, h� <� f� for some� < �: 
onversely if � < � then f� <� g, and sin
e � is un
ountable and the h� arepointwise in
reasing we may 
hoose � su
h that f� <� h�. It follows that � = 
f(�)so 2 implies 3.Given 3, let Y � � be unbounded. We may 
learly 
hoose �j < 
f(�) and�j 2 Y su
h that g�j <� f�j <� g�j+1 for j < 
f(�), and then 
hoose nj 2 A su
hthat g�j (m) < f�j (m) < g�j+1(m) for m > nj . Sin
e 
f(�) is un
ountable we may�nd T � 
f(�) unbounded and n su
h that nj = n for all j 2 T , and then letZ = f�j : j 2 Tg. If j1 < j2 are in T and m > n then f�j1 (m) < g�j1+1(m) �g�j2 (m) < f�j2 (m), so 3 implies 4.Given 4 we let Y = �, 
hoose a suitable Z and n and de�ne H by H(m) =sup�2Z f�(m). Clearly 
f(H(m)) = 
f(�) for all but �nitely many m, and f� <� Hfor all H. Now if f <� H, then sin
e 
f(�) is un
ountable and hf�(m) : � 2 Zi isstri
tly in
reasing for m 2 A with m > n we may 
hoose � 2 Z su
h that f <� f�.It follows that H is an eub so 4 implies 1. �Remark 2. In the 
ourse of this proof, we saw that for any 
o�nally interleavedsequen
e hh� : � < 
f�i as in 3, the pointwise supremum of hh� : � < 
f�i is anexa
t upper bound for hf� : � < �i.Let G be the set of all those � < �!+1 of un
ountable 
o�nality su
h that thereis an eub g for hf� : � < �i with 
f(g(n)) = 
f(�) for all but �nitely many n. We
laim that if 
 2 G there is a 
lub subset C of 
 su
h that all points of C withun
ountable 
o�nality are in G. To see this we use \1 implies 3" from Fa
t 3 to
onstru
t hh� : � < 
f(
)i whi
h is 
o�nally interleaved with hf� : � < 
i, andthen let C be the set of Æ < 
 su
h that hf� : � < Æi is 
o�nally interleaved withhh� : � < ��i for some �� < �; C is 
learly 
lub, and by \3 implies 1" from Fa
t 3every element of C with un
ountable 
o�nality is in G.The 
laim of the last paragraph and the fa
t that under CH every point of
o�nality �2 is in G are the keys to the proof of Theorem 1. We will use the set Gas a s
a�olding on whi
h to build a fun
tion witnessing SNR(�!+1;�2;�1).



6 JAMES CUMMINGSBefore starting the proof of Theorem 1, it will be 
onvenient to make some
osmeti
 adjustments to A and the sequen
e hf� : � < �!+1i. It follows easily fromthe dis
ussion above that we may assume that(1) The minimum element of A is at least 3.(2) The sequen
e hf� : � < �!+1i is 
ontinuous, that is to say that wheneveran exa
t upper bound for an initial segment hf� : � < �i exists then f� isan exa
t upper bound.(3) If � 2 G and 
f(�) � �2 then 
f(f�(n)) = 
f(�) for all n 2 A.Proof of Theorem 1: We assume that CH holds. We �x Fn : �n \ 
of(�1) ! �2witnessing SNR(�n;�2;�1) for 2 < n < !. We de�ne F for 
 2 G \ 
of(�1) byF (
) = supn Fn(f
(n)) and verify that F is a witness for SNR(�!+1;�2;�1).We �x a point Æ < �!+1 of 
o�nality �2. Sin
e CH holds Fa
t 2 tells us that Æ 2G, so that by our 
osmeti
 work above fÆ is an exa
t upper bound for hf� : � < Æiand 
f(fÆ(n)) = �2 for all n 2 A. We �x for ea
h n a 
lub Cn in fÆ(n) su
h thatFn is in
reasing on Cn \ 
of(�1), and Cn has order type �2. Then we de�ne h� for� < �2 by setting h�(n) to be the �th point in Cn; by the argument for \2 implies3" in Fa
t 3, hh� : � < �2i is pointwise in
reasing and is 
o�nally interleaved withhf� : � < Æi.We may now �x E 
lub in Æ with order type �2, su
h that for every point
 2 E \ 
of(�1) there is a (ne
essarily unique) �(
) 2 �2 \ 
of(�1) su
h that thesequen
es hf� : � < 
i and hh� : � < �(
)i are 
o�nally interleaved. Thinning outE if ne
essary we may arrange that ot(�(
)\
of(�1)) = �(
) for all 
 2 E\
of(�1).Fixing for the moment some 
 2 E \ 
of(�1), it follows from the dis
ussion abovethat the pointwise supremum of hh� : � < �(
)i is an exa
t upper bound forhf� : � < 
i, so by 
ontinuity and the fa
t that the sets Cn are 
losed we see thatf
 =� h�(
).Sin
e Fn is stri
tly in
reasing on Cn \ 
of(�1), Fn(h�(n)) � ot(� \ 
of(�1)) forall n and �, so in parti
ular Fn(f
(n)) = Fn(h�(
)(n)) � �(
) for all large n. By thede�nition of F it follows that F (
) � �(
) for all 
 2 E \ 
of(�1). Clearly �(
) isstri
tly in
reasing with 
, and so we may thin out E to a 
lub subset E� of Æ withthe property that �(
1) > F (
0) for all 
1 2 E�\
of(�1) and 
0 2 E�\
1\
of(�1).If 
0 and 
1 are points of E� \ 
of(�1) with 
0 < 
1 then F (
0) < �(
1) �F (
1). We have veri�ed that F witnesses SNR(�!+1;�2;�1) and this 
on
ludesthe proof. �The set G (the set of \good points") turns out to be an interesting invariant ofthe universe of set theory; for more about this point of view see the papers [8℄ and[7℄ and To whet the reader's appetite we note that� Modulo the 
lub �lter, G is independent of the 
hoi
e of the s
ale hf� : � <�!+1i.� Jensen's weak square prin
iple ���! implies that almost all points of un-
ountable 
o�nality are good.� Starting from very large 
ardinals it is known [14, 7℄ that we may buildmodels in whi
h there are stationarily many ungood points of 
o�nality�1. In parti
ular this statement follows from Martin's Maximum (whi
himplies the negation of CH) and also from the strong Chang 
onje
ture(�!+1;�!)� (�1;�0) (whi
h is 
onsistent with CH), so is 
onsistent bothwith CH and its negation.



COMPACTNESS AND INCOMPACTNESS PHENOMENA IN SET THEORY 7� It is open whether or not there may be stationarily many ungood points of
o�nality �2. It is known that any point of 
o�nality greater than 2�0 isgood. 3. Quasi
ompa
t and sub
ompa
t 
ardinalsJensen showed [16℄ that �� holds in L for all �, and also [10℄ that if 0℄ does notexist then L 
omputes 
orre
tly the su

essors of V -singular 
ardinals; it followsthat if 0℄ does not exist then �� holds for all singular �, and so 
ombinatorial state-ments whi
h are in
ompatible with �� (e.g. the non-existen
e of a �+-Aronszajntree) must have a substantial 
onsisten
y strength.Workers in the inner model program have 
onstru
ted L-like models (the so-
alled \L[ ~E℄-models") whi
h 
an 
ontain substantial large 
ardinals. We refer thereader to the survey paper [21℄ for more details. The L[ ~E℄-models are only knownto exist up to a 
ertain point in the large 
ardinal hierar
hy (roughly a measurablelimit of Woodin 
ardinals). It is anti
ipated they will be shown to exist at higherlevels of the large 
ardinal hierar
hy, going past the sub
ompa
t and quasi
ompa
t
ardinals de�ned below; modulo the assumption of existen
e it is already possibleto analyse the �ne stru
ture of these hypotheti
al models.A natural problem is to prove that �� holds in L[ ~E℄-models, but there arelimits on what 
an be done in this dire
tion. Jensen has identi�ed a large 
ardinalproperty 
alled sub
ompa
tness (qv) and has shown that if � is sub
ompa
t then�� fails. S
himmerling and Zeman have 
losed the 
ase in L[ ~E℄-models, by showingthat in su
h models �� holds exa
tly when � is not sub
ompa
t.We re
all that H� is the set of those X su
h that the transitive 
losure of fXghas 
ardinality less than �. Informally it is often helpful to think of H� as the setof those X whi
h 
an be 
oded by bounded subsets of �.De�nition 4 (Jensen). Let � be a 
ardinal.(1) � is quasi
ompa
t i� for all A � H�+ there are � > �, � : H�+ ! H�+and B � H�+ su
h that � is an elementary embedding from (H�+ ;2; A) to(H�+ ;2; B), �(�) = � and the 
riti
al point of � is �.(2) � is sub
ompa
t i� for all A � H�+ there are � < �, � : H�+ ! H�+and b � H�+ su
h that � is an elementary embedding from (H�+ ;2; b) to(H�+ ;2; A), �(�) = � and the 
riti
al point of � is �.Remark 3. The quasi
ompa
tness of � is witnessed by the existen
e of a family ofsuperstrong extenders with 
riti
al point �, and similarly the sub
ompa
tness of �is witnessed by the existen
e of a family of superstrong extenders with target �.If � is quasi
ompa
t then � is measurable and sub
ompa
t, and the least sub
om-pa
t 
ardinal is not measurable.Theorem 2 is motivated by the problem of 
alibrating the large 
ardinal strengthneeded to make �� fail for � singular. Before stating and proving Theorem 2 wenote that a quasi
ompa
t 
ardinal will suÆ
e for this.Fa
t 4 (Foreman and Magidor [8℄). Let � be measurable and let S = �+\
of(< �).Assume that every stationary subset of S re
e
ts at a point of 
o�nality less then �;then the same re
e
tion property holds in any generi
 extension by Prikry for
ing.Fa
t 5 (Jensen [15℄). If � is quasi
ompa
t then stationary subsets of �+\ 
of(< �)re
e
t at some point of 
o�nality less than �.
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h of the proof of Fa
t 5: Suppose for a 
ontradi
tion that T � �+ \ 
of(< �)is stationary and non-re
e
ting, and let � : (H�+ ;2; T ) ! (H�+ ;2; U) be as inthe de�nition of quasi
ompa
tness. U may not be stationary (stationarity is not�rst-order) but every initial segment is non-stationary, and so we 
an 
hoose Cdisjoint from �\T . Pulling ba
k C we get D 
lub in �+ with �\D \ 
of(< �) � C,so D \ T = ;. Contradi
tion! �Sin
e �� implies that every stationary subset of �+ has a non-re
e
ting station-ary subset, it follows that doing Prikry for
ing at a quasi
ompa
t 
ardinal � givesa model where � is singular and �� fails. The following result shows that the sames
enario 
an not be made to work starting with a measurable sub
ompa
t 
ardinal.We will use the idea of strategi
 
losure [13℄ for a poset P. Consider a game inwhi
h two players I and II 
ollaborate to build a de
reasing sequen
e of 
onditionspi in P, with player I playing pi for i odd and player II playing pi for i even; playerII loses a run of the game when a position is rea
hed in whi
h she 
an not move.If � is an un
ountable regular 
ardinal and for every Æ < � II has a strategy whi
henables her to play for Æ moves, then P adds no sequen
es of length less than �.Theorem 2. It is 
onsistent (modulo the existen
e of a super
ompa
t 
ardinal) thatthere exists � whi
h is measurable and sub
ompa
t, and every stationary subset of�+ 
ontains a non-re
e
ting stationary subset.Sket
h of the proof of Theorem 2: We use arguments similar to those of Apter andShelah's papers [2, 3℄. Let � be a Laver indestru
tible [17℄ super
ompa
t 
ardinal,that is to say � remains super
ompa
t in any extension by �-dire
ted 
losed for
ing.Let GCH hold at and above �.We de�ne a poset P0 for adding a non-re
e
ting stationary set in �+. Conditionsare fun
tions f su
h that dom(f) < �+, rge(f) � f0; 1g and for every Æ � dom(f)of un
ountable 
o�nality there is a 
lub subset C of Æ su
h that f � C is 
onstantwith value zero. The ordering is extension.It is easy to see that in the strategi
 
losure game player II 
an keep going for�+ moves by extending I's play by a single zero at every su

essor step, and takingunions at limit steps. In the next paragraph we will 
he
k this in some detail. Inparti
ular P0 adds no �-sequen
es.We 
laim that P0 adds the 
hara
teristi
 fun
tion of a set whi
h is stationaryin every 
o�nality up to �. To see this let Æ � � be regular and let _C be a P0 -name for a 
lub subset of �+. Consider a run of the strategi
 
losure game oflength Æ + 1 where fi is played at stage i. Player I plays so that for every eveni < Æ, fi+1 for
es that _C \ (dom(fi); dom(fi+1)) 6= ;. For odd i < Æ player IIlets fi+1 = fi [ f(dom(fi); 0)g. For limit i she lets 
i = supj<i dom(fj) and thensets fi = Sj<i fj [ f(
i; 0)g if i < Æ, fi = Sj<i fj [ f(
i; 1)g if i = Æ. The keypoint is that for every limit i player II has arranged that fi is zero on a 
lub set in
i, thereby guaranteeing that fi is a 
ondition. It is routine to 
he
k that fÆ is a
ondition and that fÆ for
es that 
Æ is in _C.In fa
t the stationary subset added by P0 has stationary interse
tion with everystationary subset of �+ from the ground model. To see this �x T 2 V a stationarysubset of �+ and _C a name for a 
lub. Build a run of length �+ of the strategi

losure game, where I plays as in the last paragraph and II adjoins a single zero tothe play so far at ea
h of her turns. With the same notation as in the last paragraph



COMPACTNESS AND INCOMPACTNESS PHENOMENA IN SET THEORY 9the 
i form a 
lub subset of �+, and so we may �nd i limit with 
i 2 T . Then thefun
tion fi [ f(
i; 1)g is a 
ondition for
ing that 
i is in _C.We now de�ne in V P0 a poset Q 0(S) to destroy the stationarity of the set Sadded by P0 . Conditions are 
losed bounded subsets disjoint from S, ordered byend-extension. It is easy to 
he
k that P0 � Q 0 has a dense �+-
losed subset,
onsisting of those (f; �
) su
h that max(
) + 1 = dom(f) and f � 
 is 
onstantwith value zero. With more work it 
an be shown that P0 � Q 0 is equivalent to thestandard poset for adding a Cohen subset of �+.Let P be the produ
t of �++ 
opies of P0 with supports of size �, and let Si be thestationary set added by the ith 
opy. Let Q be the produ
t of Q 0(Si) for i < �++,again with supports of size �. As in the 
ase of P0 and Q 0 , it 
an be 
he
ked thatall the sets Si are stationary in V P and that P � Q has a dense �+-
losed subset(and is in fa
t equivalent to the poset for adding �++ Cohen subsets of �+). Theusual �-system argument shows that P is �++-
.
.Let V1 = V [G℄ for some P-generi
 G, and let V2 = V1[H℄ for some Q -generi
 H.V1 is the model we want, V2 is used in the proof that � is sub
ompa
t in V1. Thefollowing 
laims are immediate.� The power set of � is the same in ea
h of V , V1 and V2. It follows that allthese models 
ompute H�+ in the same way, and also that � is measurablein V1.� By the assumption of indestru
tibility, � is super
ompa
t in V2.We 
laim that in V1 every stationary subset of �+ 
ontains a non-re
e
tingstationary subset. Let S 2 V1 be su
h a stationary set. The for
ing P is �++-
.
. and so S is determined by the �rst � 
oordinates in P for some � < �++; anargument like that given above for P0 now shows that if T is the stationary setadded by 
opy � of T then S \ T is stationary in V P.We need to 
he
k that � is sub
ompa
t in V1. Let A be a predi
ate on H�+ withA 2 V1. Let j : V2 !M2 be an embedding in V2 witnessing � is �+-super
ompa
t.Then in V2 the map j � H�+ is elementary from (H�+ ;2; A) to (HM2j(�)+ ;2; j(A)).What is more the map j � H�+ lies in M2, and H�+ = HM2�+ .By re
e
tion there are in V2 an ordinal � < �, a predi
ate b on H�+ and anelementary � from (H�+ ;2; b) to (H�+ ;2; A). This map � lies in V1, sin
e it is asubset of H�+ with 
ardinality less than �, and similarly HV2�+ = HV1�+ and b 2 V1.It follows that � is quasi
ompa
t in V1. �We 
on
lude with a list of problems:(1) Can the methods of Theorem 1 be used to \step up" some other 
ombi-natorial prin
iples, for example the existen
e of a non-re
e
ting stationaryset?(2) What is the largest L[ ~E℄ model su
h that non-re
e
ting stationary setsexist (or are dense) in every su

essor 
ardinal?(3) Does a sub
ompa
t 
ardinal (or a measurable sub
ompa
t 
ardinal) suÆ
eto for
e failure of �� for � singular?(4) Do quasi
ompa
t 
ardinals suÆ
e for any more of the notable appli
ationsof super
ompa
tness?(5) In parti
ular, is a quasi
ompa
t 
ardinal suÆ
ient to produ
e a model where��� fails for � singular?
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