INDEXED SQUARES
JAMES CUMMINGS AND ERNEST SCHIMMERLING

ABSTRACT. We study some combinatorial principles intermedi-
ate between square and weak square. We construct models which
distinguish various square principles, and show that a strength-
ened form of weak square holds in the Prikry model. Jensen
proved that a large cardinal property slightly stronger than 1-
extendibility is incompatible with square; we prove this is close
to optimal by showing that l-extendibility is compatible with
square.

1. INTRODUCTION

Several lines of research motivate the results in this paper. What
the lines have in common is Jensen’s celebrated combinatorial prin-
ciple [, which is pronounced “square kappa”.

Definition 1.1 (Jensen [12]). Let k be an infinite cardinal. A se-
quence (Cy: a < k1) is called a Og-sequence iff whenever (3 is a limit
ordinal and k < 8 < KT,

(1) Cp is a closed unbounded subset of 3,

(2) Cs has order type at most k, and

(3) if a is a limit point of Cg, then Cy = CgNar.
We say that Ul holds iff there exists a U,-sequence.

If 3 is a limit ordinal between x and ™, then clearly there exists
a closed unbounded C' C § with ot(C) < k. What gives [J,; strength
is the last clause in the definition, which is commonly referred to as
coherence. Although [J,, is a technical principle, it has turned out

First author partially supported by NSF grants DMS-9703945 and DMS-
0070549.
Second author partially supported by NSF Grants DMS-9305990, DMS-
9712580, DMS-9996280 and DMS-0088948.
1



2 JAMES CUMMINGS AND ERNEST SCHIMMERLING

to be one of the most important links between diverse parts of set
theory.

A major theme in set theory is the tension between “compactness”
and “incompactness”. Examples of the kind of compactness phe-
nomena we have in mind include stationary reflection (qv), the tree
property, Shelah’s singular compactness theorem, or Silver’s theorem
that GCH does not first fail at a singular cardinal of uncountable cofi-
nality; some examples of incompactness are non-reflecting stationary
sets, Aronszajn trees, or Magidor’s theorem that GCH can fail first at
N,. As we see shortly square and related principles are generally on
the incompactness side, and can be used as a measure of the extent
of compactness in the universe of set theory.

The following results are due to Jensen, and indicate some of the
power of square principles. Let x be a singular strong limit cardinal;
then [, implies that

(1) there exists a special KT-Aronszajn tree,

(2) under GCH, there exists a x'-Souslin tree, and

(3) under GCH, for every structure 2 of type (Ny, Xg) there exists
a structure B of type (k1, k) such that A = B.

We recall that a stationary subset S of a regular cardinal A is said
to reflect if there is a < A\ of uncountable cofinality such that S N«
is stationary. Solovay showed that if [, holds then every stationary
subset of k™ contains a non-reflecting stationary set. He also showed
that if x is k'-strongly compact then every stationary subset of the
set KT N cof(< k) reflects, so that OJ, fails. This is a typical example
of the kind of tension between compactness and incompactness which
we discussed above.

Another point of departure for the work in this paper was the re-
sults of Cummings, Foreman and Magidor [5] on the relationship be-
tween square principles, stationary reflection and PCF theory. That
paper uses ideas from PCF theory (in particular the concept of a
“very good scale” as discussed in section 2) to clarify the relation-
ship between squares and reflection. Several of our results are directly
motivated by the results of [5].

It is natural to ask when O, holds. Jensen showed that in L
the principle U, holds for all cardinals x. On the other hand, the
consistency strength of the failure of [, is strictly greater than that of
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ZFC. For example, the theory ZFC + Uy, fails is equiconsistent with
ZFC + there exists a Mahlo cardinal; the lower bound is by Jensen
and uses L, while the upper bound is a forcing argument by Solovay
that uses the Levy algebra. More generally, the failure of [, with
k regular is well-understood. There is a serious gap, however, in
our understanding the case in which x is singular: roughly, there
are upper bounds of about one supercompact cardinal, and lower
bounds of many Woodin cardinals. This leads us to the second point
of departure for [5] and us too, namely inner model theory.

The main technique for proving lower bounds on the failure of [,
for x singular involves generalizations of Jensen’s theorem that [,
holds in L for all infinite cardinals , and Jensen’s Covering Theorem
[6], which implies that if 0% does not exist then (k™)L = kT for all
V-singular cardinals k. An immediate consequence of these results
is that if 0% does not exist and x is a singular cardinal, then O,
holds. We note that this helps to explain a well-known phenomenon
in combinatorial set theory; if k is singular then it is typically hard
to build models without “incompact” objects of size k™, such as k-
Aronszajn trees [18] or non-reflecting stationary sets [16].

However, this sort of covering fails for L if 0% exists, so other mod-
els must be used. The kind of transitive proper class models to which
Jensen’s theorems have been generalized are known as core models.
In his early attempts in this direction, Schimmerling introduced the
following hierarchy of weakenings of [.

Definition 1.2 (Schimmerling [20]). Let k be an infinite cardinal
and let \ be a cardinal such that 1 < X\ < k. A sequence of sets
(Cor a < K1) is called a OA-sequence iff whenever B is a limit
ordinal and k < 8 < kT, then
(1) 1 < |Cs| < A and
(2) for all C € Cg,
(a) C is a closed unbounded subset of 3,
(b) C has order type at most , and
(c) if v is a limit point of C, then C Na € C,.
We say that I holds iff there exists a (O -sequence.

We write (1} for 05", Clearly, L is equivalent to CJ,. The
principle [J% appears in the literature as [J} or “weak square kappa”;
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Jensen isolated U roughly at the same time as [, and showed that
it holds if and only if there is a special kT-Aronszajn tree. It is worth
noticing that if kK<* = x then by an easy argument [I* holds, so that
0% is of greatest interest when & is singular.

As an example of how the (I} hierarchy has been used, we re-
view some results about forcing axioms and square principles. The
Proper Forcing Axiom (PFA) and Martin's Maximum (MM) are strong
versions of Martin's Axiom (MA) which are consistent relative to a
supercompact cardinal, and whose exact consistency strength is still
unknown.

Todorcevic [25] proved that under PFA, O, fails for all K > N;.
Hence, by the results of Jensen mentioned earlier, PFA implies that
0% exists. Magidor observed that Todorcevic’s proof actually shows
that PFA implies the failure of X' for all kK > ®;. Schimmerling
used Magidor’s observation together with the Mitchell-Schimmerling-
Steel Covering Theorem to prove that one Woodin cardinal is a lower
bound on the large cardinal consistency strength of PFA (the absolute
square principles (qv) from Section 3 played a role in the original
version of this argument).

We can use the (I} hierarchy to measure the combinatorial strength
of a proposition P, by computing the least A such that P is consis-
tent with (JS*. Magidor showed that PFA + %2 for all x > N, is
consistent relative to a supercompact cardinal, while by contrast MM
is incompatible with [} for any singular « of cofinality w; this is one
measure of the gap in strength between these two axioms. In a sim-
ilar vein, in [5] the (J} hierarchy is used to calibrate the strength of
various stationary reflection principles (see the discussion in Section
2). An interesting open problem is to determine whether GCH + [
suffices to construct an N, ;-Souslin tree; a straightforward adapta-
tion of Jensen’s arguments shows that GCH + OR¥ is sufficient.

As the authors were writing this paper, the story of U, took an in-
teresting turn. Schimmerling and Zeman proved that in all core mod-
els! if x is not a subcompact cardinal, then [J,. holds. Subcompactness

By core model we mean any proper class model of the form L[E_"] where E
is a coherent sequence of extenders, subject to certain fine structural conditions.
See [22] for a full explanation.
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is a new large cardinal property that was introduced by Jensen; sub-
compactness follows from supercompactness. Recall the fact due to
Solovay that was mentioned earlier: if x is k*-strongly compact, then
O, fails. Jensen observed that subcompactness suffices in Solovay’s
theorem and hence the converse to the Schimmerling-Zeman theo-
rem holds. Therefore in the relevant core models [, holds iff k is
not subcompact. The results in the last section of our paper were
inspired by these new developments.

We end this introduction with a summary of our results. The sec-
tions can be read independently, though some of them use definitions
from earlier sections.

e In [5] it is shown that certain forms of stationary reflection are
consistent with forms of (1. In Section 2 we show that these
results are optimal in the sense that A cannot be decreased.
This is an example of the sort of calibration of combinatorial
strength discussed above.

e In Section 3, we define and study “indexed square” principles
stronger than [J. The main new idea is that the members of
C, are given indices up to A and we explore various forms of
coherence along the indices. These combinatorial principles
were originally motivated by core model theory. The main
result is Theorem 3.1 which identifies a square principle with
some strong upwards absoluteness properties.

e In Section 4 we show that if P is the Prikry forcing notion
associated to a normal measure over k, then [IX° holds in
V¥, The proof uses ideas from the results about absolute
squares in Section 3 but is self-contained; the main technical
point is that given an inaccessible k we can construct a “good
matrix”, which is (roughly speaking) a form of [J*-sequence
with additional coherence properties. We note that by results
from [5], if k is k*-supercompact then CI<™ fails in VT,

e Jensen showed in unpublished work [11] that Oy, is strictly
stronger than [Jf . In Section 5 we use similar methods to
compare these principles with some of the simplest of their
“indexed” counterparts from Section 3. The upshot is that
the indexed [J)-hierarchy is interleaved with the original one.



6 JAMES CUMMINGS AND ERNEST SCHIMMERLING

e The results in Section 6 were obtained by the first author af-
ter he learned of the Schimmerling-Zeman result mentioned a
few paragraphs above. Subcompactness is a natural strength-
ening of l-extendibility, and so one would expect x being
l-extendible to be consistent with .. Actually we prove
something stronger but more technical to state: there is a
transitive set W and a predicate C on W such that (W, €, C)
is a model of ZFC5 + there is a 1-extendible cardinal + Cis
a global square sequence. Here ZFCj5 is the version of ZFC
written in the language of set theory expanded by a predi-
cate symbol for c , and “global square” is a class version of
O (introduced by Jensen) which implies that [0y holds for all
A; this result leaves open whether we can have a 1-extendible
cardinal and a definable global square sequence.

2. STATIONARY REFLECTION

In this section we make two observations on the relationship be-
tween the [J? principles and stationary reflection. The following re-
sult was observed by Schimmerling and independently by Foreman
and Magidor.

Theorem 2.1. Assume that k<* = x and O* holds. Let T C k™ be

stationary. Then there exists S C T such that S is stationary and S
does not reflect at any v < k™ with cf(v) > A.

Proof. Let C witness O}, Define F(v) = {ot(C): C € C,} for all
v € T, and find S C T stationary such that F' is constant on S
with value A. Assume S reflects to v, and choose C' € C,. Now the
function which takes p € lim(C') NS to ot(C'Ny) is an injection from
lim(C)N S to A. Since lim(C) N S is unbounded (indeed stationary)
in v, we have

cf(v) < |Lm(C) N S| < |A| < .
0

In particular (0S¢ implies that every stationary subset of k™ has a
non-reflecting stationary subset.
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Cummings, Foreman and Magidor [5] have made a systematic
study of the connection between [1} and other combinatorial prin-
ciples. To set our second result in context we quote some theorems
from [5].

Fact 2.2 ([5]). Let x be singular, and let (I hold for some \ < k.
Then for every stationary T C k* there exists (S;: 1 < cf(k)) such
that each S; is a stationary subset of T, and there is no v < k% such
that cf(v) > cf(k) and all the S; reflect at v.

The proof of Fact 2.2 falls into two parts; in the first part a principle
VGS,, (“Very Good Scale at £”) is derived from (1}, and in the second
part the conclusion of Fact 2.2 is derived from VGS,. One theme of
[5] is that certain constructions of incompact objects from square
principles can be done using very good scales: Fact 2.2 is an example
of this. The next result shows that [} is not powerful enough to
imply the conclusion of Fact 2.2.

Fact 2.3 ([5]). If the existence of infinitely many supercompact car-
dinals is consistent, then it is consistent that

(1) Oy, holds.

(2) Forallm,n withl <m <n <w, if (S;: i <N,,) is a sequence
of stationary subsets of {a < W, 11: cf(a) < W, } then there
exists v < W11 such that cf(v) =X, and all the S; reflect at
v.

On the other hand, Fact 2.2 cannot in general be strengthened to
rule out simultaneous reflection of fewer than cf(x) many sets.

Fact 2.4 ([5]). If the existence of infinitely many supercompact car-
dinals is consistent, then it is consistent that
(1) OF holds.
(2) For every n < w, if (S;ii <n) is a sequence of stationary
subsets of N1 then there exists M < w such that for all m
with M < m < w there ezists v < R, 41 such that cf(v) = N,,
and all the S; reflect at v.

The second theorem of this section shows that Fact 2.4 is close to
optimal, in that D§§“ is incompatible with the conclusion. Before
proving it we need a technical lemma (an easy generalisation of a
well-known fact about O,).
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Lemma 2.5. Let k be singular. If O holds then there exists a
O -sequence (D,: o < k1), with the additional property that all the
clubs in |, Do are of order type less than k.

Proof. Fix D C k such that D is closed and unbounded and ot(D) =
cf(k). Given C a club subset of some o < k' with ot(C) < k we
define C* C C-

o If ot(C) € lim(D) or ot(C) = k then
C*={6eC:ot(CNJ) € D}.
e If ot(C) ¢ lim(D), then
C*={6 € C:ot(CNJ) > max(ot(C)Nlim(D))}.

It is easy to check that C* is club in sup(C), and that if v € lim(C*)
then C* N~y = (CN~)*. Given a (A -sequence (Cy: o < k1), we set
D, ={C*: C € C,}. O

Theorem 2.6. Assume that  is a singular strong limit cardinal, and
let T be a stationary subset of k*. Suppose that 05" holds. Then
there is a sequence (S;: i < cf(k)) of stationary subsets of k and a
cardinal (v < Kk such that
(1) S; CT Ncof(< p).
(2) If v < kT is any point with cf(v) > p, then (S;: i < cf(k))
does not reflect simultaneously to v.

Proof. We fix a [O5" sequence C, and we assume (as we may by
Lemma 2.5) that all the club sets appearing in C have order type
less than x. We also fix an increasing sequence (k;: i < cf(k)) of
regular cardinals cofinal in k, and a stationary T'C xk*. Let 7" be a
stationary subset of 7" on which the functions v — |C,| and v — cf(v)
are constant. Let ¢ < cf(x) be large enough so that both of these
constant values are less than x;. For each v < k™ and j < cf(k), the
set
{ot(C): C € C,} Nk
is an element of V,. Since k is a strong limit cardinal, by Fodor’s
lemma there are sequences (S;: j < cf(k)) and (A;: j < cf(x)) such
that for every j < cf(k), S; is a stationary subset of 7" and for every
NS Sj,
Aj = {Ot(C) Ce C,,} N Rj .
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Suppose that (S;: j < cf(k)) reflects simultaneously to an ordinal
v < kt. Let C be any element of C,; by our assumptions on C we
know that ot(C) < x and so we may choose j < cf(k) large enough
that k; > ot(C). Then lim(C') N S; has fewer than x; many elements.
This is because, if gy < p1 are both elements of lim(C) N S;, then
ot(C' N o) and ot(C N py) are distinct elements of A;, but |4;| < k;.
Therefore cf(v) < k;. O

3. INDEXED SQUARE PRINCIPLES

In this section, we introduce several weak square principles that
were distilled from the core model combinatorics of [20] and [21].
Perhaps the most interesting of these principles is Slick-[1¥. Rather
than give the definition of Slick-L1% here, at the start of this section,
we will lead up to it in steps. However, to give the reader an idea of
the goal, let us go ahead and state a corollary to what we are about
to do.

Theorem 3.1. Let V. C W be transitive models of ZFC and k be a
limit cardinal in W. Suppose that (k7)Y = (k7)) and Slick-CI* holds
in V. Then both Slick-T0% and I} hold in W where X = cf” (k).

Combinatorics similar to the proof of this theorem were used to
obtain lower bounds on the consistency strength of PFA in [20]. The-
orem 3.1 was the inspiration for the result in the next section that
Prikry forcing at a measurable cardinal x adds a [I%° sequence.

Whacky-U% is another principle that we will define later in this
section. On the surface, Whacky-[I? seems like a slight improvement
of (IS*, but there are cases in which it does the work of [IS™0. Again,
we will state a result well in advance of giving the definitions. Com-
binatorics similar to the proof of Theorem 3.2 were used to obtain
consistency strength lower bounds on stationary reflection in [20].

Theorem 3.2. Suppose that k is a strong limit cardinal and that the
principle Whacky-[0* holds. Then every stationary subset of k* has
a non-reflecting stationary subset.

To orient the reader we will fill in the missing definitions to make
sense of the series of implications

OF <« Index-0:" <= Card-index-005" <= Whacky-[J}
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from left to right, after which we will define Slick-[J7.

Our first definition is that of Index-[J<*, which strengthens IS
by assigning ordinal indices from « 4 1 to each club in each C,, and
demanding that initial segments of a club with a given index all get

the same index.

Definition 3.3. The pair (A,C) is said to witness that Index-[1SA
holds iff A and C are functions such that if v is a limit ordinal and
kK <v <k, then

(1) A(v) is a non-empty subset of k + 1 of cardinality < A, and
(2) if « € A(v), then
(a) C(v, ) is a club subset of v,
(b) ot(C(v,0)) < K, and
(c) if p € im(C(v,)), then a € A(u) and C(v,a) N =
Cp, ).

As one would expect, Index-[1} means Index—D,f”L. It might seem
more natural to require A(v) C k in Definition 3.3; the value of al-
lowing x as an index will be remarked on after Definition 3.4. In
Section 5, we will prove that indexing gives something new, namely
that Index-[I3 is strictly between Cy, and (I in its strength. How-
ever, for the rest of this section, most of our results will be about the
case in which « is a limit cardinal.

The point of our next principle, Card-index-[15*, is to link infor-
mation about the order type of a given club to its index. Of course,
several ways of doing this are possible. Considerations tied to the
core model combinatorics of [20] led to our choice of “a™” here, in a
way that we will not make precise.

Definition 3.4. We say that (A, C) witnesses that Card-index-[1=
holds iff (A, C) witnesses that Index-[I<* holds and for each limit
ordinal v between k and k™,

(1) either A(v) C k and |C(v,a)| < a for all a € A(v),

(2) or A(v) = {k}.

Here are some remarks on the definition.

e If x is a successor cardinal and the principle Index-[J5* holds,
then the principle Card-index-[JS*! holds.
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e The only point of allowing x to be an index (rather than re-
quiring A(v) C & in all cases) is to get a consistent principle
when & is an inaccessible cardinal. Note that if £ is an inac-
cessible cardinal and (A, C) is a witness that Card-index-[1}
holds, then A(v) = {x} whenever cf(rv) = k. Also note that
if p € lim(C(v,k)), then A(u) = {k}.

e Let k be a singular cardinal and A = cf(k). Suppose that
there exists a witness that Card-index-[1} holds. Then there
exists a witness (A, C) that Card-index-{J} holds such that
A(v) C k for all v. The construction is as follows. First
arrange that ot(C'(v,k)) < k whenever A(v) = {k} as in the
proof of Lemma 2.5. Then fix a sequence (k;: ¢ < A) that
is increasing and unbounded in k. If A(v) C &k, then let

B(v) = A(v) and D(v,a) = C(v, ). If A(v) = {k}, then let
B(v) = {k; < k: ot(C(v,k)) < K}
and D(v,k;) = C(v,k) for k; € B(v). Then (B,D) is a
witness that Card-index-[1} holds and B(v) C « for all v.
We will prove Theorem 3.2 after defining the principle Whacky-L1%,
which strengthens Card-index-LJ$* by requiring, roughly, that the set
of indices for a given ordinal v be bounded in k.

Definition 3.5. We say that (A,C) is a witness that Whacky-[J*
holds iff (A, C) is a witness that Card-index-LJ5* holds and for every
limit ordinal v between k and k™, if A(v) C k, then sup(A(v)) < k.

We remark that if x is a regular cardinal, then Whacky-[1* holds
iff Card-index-CJ5* holds.

Proof of Theorem 8.2. Say k is a strong limit cardinal and (A, C) is
a witness that Whacky-[J* holds. Let S C k' be a stationary set of
limit ordinals.

First suppose that there exists a set S’ C S that is stationary in s
such that A(v) = {k} for all v € §'. By Fodor’s lemma, there exists
an ordinal 7 < x and a stationary set S” C S’ such that ot(C(v, k)) =
7 for all v € S§”. Consider an arbitrary v. Let a € A(v). Suppose
that p € S”" Nlim(C(v,a)). Then a = k, A(u) = {k} and

ot(C(v,k) Np) =ot(C(u, k) = 7.

But this can hold for at most one u, so S” does not reflect to v.
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Thus, without loss of generality A(v) C k for all v € S. Then
sup(A(v)) < k
and
sup ({ot(C(v,)): a € A(v)}) sup ({|C(v,a)|": a € A(v)})
sup ({a™*:a € A(v)})

K

<
<

A\

for all v € §. Since & is a strong limit cardinal,
(ot(C(v,a)): a € A(v)) € Hy,

for all v € S. By Fodor’s lemma, there is a stationary S’ C S, a set
B € H, and a sequence of ordinals 7 = (7,: @ € B) such that

A(v) =B
and
(ot(C(vya)):a€ A(v)) =T
for all v € S’. Consider an arbitrary v. Let a € A(v). Suppose that
pe S Nlim(C(v,«)). Then a € B = A(u) and
ot(C(v,a) N ) = ot(Cp, ) = Ta.
This can hold for at most one p, therefore S’ does not reflect tov. O

Definition 3.6. We say that (A, C) is a witness that Slick-[7% holds
iff A and C' are functions such that for all limit v with k < v < K™,
(1) either
(a) A(v) is a non-empty closed subset of k, and
(b) if a € A(v), then
(i) C(v,a) is a club subset of v,
(i) ot(C(v,)) < k and |C(v,a)| < o,
(iii) of p € im(C(v,)), then a € A(p) and
C(v,a) N C Cp, ),
and
(iv) if a < B and g € A(v), then C(v,a) C C(v, B),
(2) or else
(a) A(v) = {x},
(b) C(v,k) is a club subset of v,
(c) ot(C(v,k)) <k, and
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(d) if p € im(C(v,k)), then A(u) = {k} and
C(v,k) Np=C(p, k).

A witness to Slick-L1¥ need not be a witness to any of the other
indexed square principles that we have defined, not even U, be-
cause of the weaker coherence condition (“C” instead of “=”) in
clause 1(b)(iii). In fact, the proof of Theorem 3.1 shows that if
Slick-LJ;, holds, then there exists a witness with the stronger form
of coherence. On the other hand, we have added clause 1(b)(iv),
which is a different kind of coherence across indices. Another new
feature is the requirement, clause 1(a), that A(v) be closed; note that
A(v) is not required to be bounded or have small cardinality.

Let us also remark that if  is a singular cardinal, then the second
possibility in Definition 3.6 is not needed in the sense that Slick-[1%
holds iff there is a witness (A,C) that Slick-CJ% holds such that
A(v) C & for all v. The reason is just like that given in the third
remark after Definition 3.4.

Theorem 3.1 follows immediately from the following two lemmas,
the first of which is obvious.

Lemma 3.7. Let V. C W be transitive models of ZFC and k be a
cardinal in W. Suppose that (k7)Y = (k)W and

V = (A, C) is a witness that Slick-J% holds.

Then
W = (A, C) is a witness that Slick-[J7 holds.

Lemma 3.8. Suppose that k is a limit cardinal, A\ = cf(k), and
there exists a witness that Slick-U% holds. Then there exists a witness
(A, C) that Slick-U% holds such that if A(v) C &, then

(1) |A(v)| < A, and

(2) if p € lim(C(v,)), thena € A(p) and C(v,a)Np = C(p, o).
In particular, (A, C) is also a witness that Card-index-[1} holds.

Proof. Let (k;: i < A) be a strictly increasing continuous sequence of
cardinals that is unbounded in k. Let (A, C) witness that Slick-[T%
holds. From this data, we will define a pair (A®™* C™) satisfying
the requirements of the lemma. The intuitive idea is to recursively
“fatten up” each C(v,a) for a < k.
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If A(v) = {k}, then let A®(v) = {k} and C™ (v, k) = C™(v, k).
There is nothing to check in this case.

For the rest of the proof, we turn to the only other case, namely
A(v) C k. Define

AP ) = {ki: AW) N (ks + 1) # 0}

Clearly A®™(v) is a club subset of k of cardinality at most . If
k; € AR (), then define an ordinal

a(v,i) = sup [A(V) N (ki + 1)] :

Since A(v) is closed,

a(v,i) € A(v) N (ki + 1)
whenever r; € A (v).
Claim 3.9. If k; € A®(v) and p € lim(C(v, a(v,1)), then

a(v,i) € A(p) N (k; + 1),

ki € AP (u),
a(v,i) < alp,i)

and
C(v,a(v,1)) N pu C Cu,a(v,) C C(p, alp,1)).

Proof. This is immediate from the definitions given before the state-
ment of Claim 3.9 with clause 1(b)(iii) and clause 1(b)(iv) of Defini-
tion 3.6. O

By recursion on v, define for k; € A®™(v),

C™ (v, ki) = Cv, av,1)) U U {C®(p, k;): p € lim (C(v, (v, 7)) } -

This definition makes sense since if p € lim(C(v, a(v,1))), then p < v
and, by Claim 3.9, x; € A% (p).

The next claim shows that (A% C%t) satisfies clause 1(b)(ii) of
Definition 3.6.

Claim 3.10. If k; € A®(v), then |C™ (v, k;)| < K.

Proof. By induction on v, we see that C®!(v, k;) is the union of at
most (a(v,i))T-many sets, each of cardinality at most x;. Since
a(v,i) < k;, we are done. O
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The following claim is another step towards seeing that (A®t, Cfat)
satisfies clause 2 of Lemma 3.8; the full verification of this will be
given in Claim 3.14.

Claim 3.11. If x; € A®(v) and p € lim (C(v, a(v,1))), then
ki € A ()

and
Cfat(ya "ii) Np= Cfat(lu’a K/i)'

Proof. The part about x; € A®*(u) was already proved in Claim 3.9.
We prove the other part by induction on v. Assume that Claim 3.11
holds for all ' < v and that p € lim (C(v, a(v,1))).
First suppose that p is the largest limit point of C'(v, a(v,7)). Con-
sider an arbitrary u' < p such that
p € im(C(v, a(v,1))).
By Claim 3.9,

Cv,a(v,i)) N p € Cp, ap,1)).
In particular,
'€ im(C(p, a(p, i)
By the induction hypothesis
C™(p, ki) N = CR (W wy).
By the arbitrariness of i/ and the definition of C(v, k;),
C™ (v, ki) = C(v, v, 1)) U C™ (u, ;).

But

C(v,a(v,1)) N C Cp, a(p, i) C C™(u, k)
by Claim 3.9 and the definition of C™*(y, ;). Thus

C™ (v, k) = O™ (u, k) U (C(v, v, 4)) — 1) .

It follows from the last equation that Claim 3.11 holds in the first
case.

Second suppose that C(v, a(v,i)) has no largest limit point. Con-
sider an arbitrary v’ > p such that v/ € lim (C(v,a(v,i))). By
Claim 3.9 applied to ' and v,

C(v,a(v,i))Nv' CCW,a(V,i)).
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In particular,
p € lim (C(V, a(V',1))) .
By the induction hypothesis,
Cfat(yl’ K/i) N ©= Cfat(l% "éi)-

By the arbitrariness of 2/ and the definition of C®(v, &),

(1, 52) 1 j = (Cv, a(1,8)) 1 ) U O (1, ).
But

Cv,a(v,i)) N p C Cp, alp, i) S C™(u, ;)

by Claim 3.9 and the definition of C*(y, ;). Thus Claim 3.11 follows
in the second case too. 0

Claim 3.12. Suppose that k; € A®(v) and

[ = sup (lim(C(V,(X(V,i)))] .
Then
meﬁ):{@ﬂmmﬂMﬂ%M%m—u) ifu<v
T U{C™(V, ki): v € lim (C(v,a(v,0)))} ifp=v

Proof. The characterization follows by induction on v from the defi-
nition of (A%t C*t) and Claim 3.11. O

Claim 3.13. If k; € A®(v), then C™ (v, k;) is club in v.

Proof. By induction on v. Assume that Claim 3.13 holds for all v/ < v
and that p € lim (C™ (v, k;)). We will show that u € C™(v, k;).

First suppose that there is no limit point of C(v, a(v,1)) strictly
greater than p. By Claim 3.12, y must be the largest limit point of
C(v,a(v,1)). So

pe Cv,a(v,i)) C C™ (v, k).

On the other hand, if ' > p and V' € lim (C(v, a(v,1))), then by

the induction hypothesis and Claim 3.11,
€ lim (C™ (v, k;) N V') = lim (C™'(V', k;))

C CBY (Y k) = OB v, k) N V.
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Claim 3.14. If x; € A®(v) and p € lim (C™ (v, K;)), then
ki € AR (u)

and
Cfat(yv "ii) Np= Cfat(fuv F‘:i)'

Proof. By induction on v. Assume that Claim 3.14 holds for all
V' < v and that p € lim (C™(v, k;)). If p € lim (C(v, a(v,1))), then
we are done by Claim 3.11. So we may assume that thereis a v/ > pu
such that v' € lim (C(v, a(v,i))). Then

Cfat(V, K/i) N V’ — Cfa‘t(y" ""Ji)

by Claim 3.11, so p € lim (C™(//, ;)). By the induction hypothesis,
CR (V' k;) N = C™(u, k;). Putting the equations together, we are
done. 0

The next result implies that (A%, C™t) satisfies clause 1(b)(iv) of
Definition 3.6.

Claim 3.15. If x; € A®(v) and i < j, then k; € AP (v) and
CR (v, k;) C O™ (v, ;).

Proof. Obvious from the corresponding assumption on (A,C) and
the definition of (Af Cfat). O

From the claims above, it is immediate that (A%t C™!) satisfies
the requirements of Lemma 3.8.

O

4. PRIKRY FORCING, GOOD MATRICES AND WEAK SQUARE

It is proved in [17] that after forcing with Prikry forcing at a mea-
surable cardinal x the weak square principle [} holds. In this section
we strengthen this result, showing that if x is measurable in V' and
W is a Prikry extension of V' then [1% holds in W. In general we can
not hope to improve this; by Theorem 2.1 and the following result,
doing Prikry forcing at a sufficiently large cardinal x will make 5%
fail in the generic extension.
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Fact 4.1 ([5]). If k is k" -supercompact, P is Prikry forcing defined
from some normal measure on K, and S = {a < k*: cf(a) < Kk} then

VE = “finite sets of stationary subsets of S reflect simultaneously”.

A note on history: Originally we had a false proof of Theorem
4.2 based on Theorem 3.1 and an incorrect version of Lemma 4.4.
Matt Foreman pointed out that we could get the conclusion more
directly from the first version of Lemma 4.4. We then discovered and
fixed the problem in Lemma 4.4, retaining Foreman’s direct way of
drawing the desired conclusion.

Theorem 4.2. Let k be measurable in V. Let U be a normal measure
on k and let Py be the Prikry forcing defined from U. If W 1is a
generic extension of V' by Py then 0% holds in W.

Proof. The key idea is to do most of the work in V. We will build
in V an object called a “good matrix”, and then working in W we
will read off the required [1“-sequence. It is helpful to think of the
construction of a good matrix as a refinement of the (very easy)
construction of a [I¥-sequence for x inaccessible.

The proof will be structured as follows: we will start by defining
a good matrix, will show how to use one to build a U¥Y-sequence
(hopefully motivating the definition) and will finish by constructing
one.

Let A be a regular cardinal with A > N;. We will say that a set
A C \is a club® subset of A if and only if there is C' club in A such
that {a € C: cf(a) > w} C A. It is easy to see that the collection of
club*® subsets of A is a normal filter on A, and that any unbounded
subset of A which is closed under uncountable suprema is club*.

We claim that every club* subset A of x has measure one for the
normal measure U. To see this let C' be club in k such that {a €
C: cf(a) > w} C A, and let j: V — M be the ultrapower map
associated with U. Since j(C)Nk = C and j(C) is closed we see that
k € j(C), and since "M C M we see that M |= cf(k) > w; it follows
by the elementarity of j that x € j(A), and so by the normality of U
that A e U.

It is a well-known fact about Prikry forcing that any Py -generic
w-sequence is eventually contained in any set in U. In particular we
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see that a Py -generic w-sequence is eventually contained in any club*
subset of k from the ground model.

Definition 4.3. Let A be an inaccessible cardinal, and let
S ={a< A" cf(a) < A}
A good matrix for A is an array of sets
(Clayi): € Syie X,)
such that
(1) C(a,i) is club in a.
(2) Xq is a club® subset of \.
(3) ot(C(a, 7)) < A.
(4) Ifi € X, and B € lim(C(a, 1)) theni € Xg and C(a,i) N B =
C(8,19).
(5) Ifi,j € X4 and i < j then C(a,i) C C(a, 7).
(6) Ifa, 8 € S with f < a then § € lim(C(«, 1)) for somei € X,
(and thus for all larger i € X, by the preceding clause).

We now show how to finish the proof of Theorem 4.2, given the
existence of a good matrix for k. Let (C(a,7): a € S,i € X,) be such
a matrix. Let (k;: i < w) be a Prikry sequence generic for the forcing
Py. As we showed above, for every a the club* set X, contains a
final segment of (k;: i < w).

We define our [1¥-sequence (D,: o < kT, lim(a)). Let a < k* be
a limit ordinal. We distinguish two cases.

Case I. a € S. Let D, = {C(a, k;): k; € Xa}-

Case Il. a ¢ S, so that V = cf(a) = k and W = cf(a) = cf(k) = w.
Choose C, to be any set which is club in « with ot(C,) = w, and
then set D, = {C,}.

We need to verify that we have defined a [J“-sequence. It is clear
that |D,| < w and D, is a family of clubs each with order type less
than . To finish, suppose that C' € D, and 8 € lim(C). Clearly
a € S, because otherwise C = C, and C, has no limit points. So
C = C(o, k) for some j with x; € X,. By the properties of a good
matrix k; € Xz and C (5, k;) = C N, so that C' N G € Dg.

This shows that (D,: a < k™) is a 0¥-sequence, so 0% holds in W
and we are done once we have shown the following Lemma.
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Lemma 4.4. If )\ is inaccessible there is a good matrix.

Proof. We construct a good matrix by induction on o € S.
Case 1: a =w. We set X, = X and C(w,i) = w for all i.

Case 2: a = ( + w for some limit ordinal § with cf(8) < A (that is
tosay 8 € S). Weset X, = Xg and C(o, i) = C(B,i) U[B, ) for all
i € X,.

Clearly C(a,?) is club in a. By definition X, = Xz, and so X,
is club*. Since a = f + w, ot(C(a,i)) = ot(C(B,7)) + w and so
ot(C(a, 1)) < A

If i € X, and v € lim C(a, 7) then either v € im C(8,7) or v = .
In the former case we have by induction that i € X, and C(v,17) =
C(B,1) N, in the latter that i € X3 = X, and C(v,7) = C(B,7): in
either case C'(a,i) Ny = C(y,1).

Ifi,j7 € X, with ¢ < j then by induction C(3,7) C C(8, j), so that
C(a,i) € C(a,j). Finally if v € SNa then either vy € SNG or v = G:
if v € SN B then by induction v € lim(C(3,¢)) for some ¢ and then
v € lim(C(a, 7)) for the same i, while if ¥ = § then v € lim(C(«, 7))
for every 1 € X,,.

Case 3: cf(a) = w and « is a limit of limit ordinals. We choose
(aym: m < w) an increasing sequence of ordinals in S which is cofinal
in a. We set

Xo={i<hVm<wie X, ANVm<n<wa, €lim(C(a,,1))}.

X, is a club* set because it is a final segment of | i Xa,-

We observe that if i € X, then C(ay,,i) = C(ap,i) N a,, for all
m <n <w. We now set C(a,i) = J,, C(am,i) for all i € X,.

C(a,i) is club in « because every initial segment is an initial
segment of C(ayy,,i) for some m. A similar argument shows that
ot(C(a, 1)) < A. If g € lim(C(a,i)) then 8 € lim(C(ay,, 1)) for some
m, and by induction i € Xz and C(5,7) = C(am,i)NB = C(a,i)Np.

If i,5 € X, with ¢ < j then by induction C(ay,,i) € C(am,J) for
all m < w, so that C(a,i) C C(a,j). Finally if 5 € SN« then
B € SNay, for some m, and so by induction 5 € lim(C(ay,, 1)) for all
large i € X, ; it follows that 8 € lim(C(«, 1)) for any large enough
1€ X,
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Case 4: w < cf(a) < . Let cf(a) = p say. As in Case 3 we fix
(aym: m < p) an increasing and continuous sequence of members of S
which is cofinal in a. We define

Yo={i<XVm<pi€X,, andVm<n<p a, € limC(a,,i)}.

Note that Y, depends on the choice of the sequence (a,,: m < p) used
in its definition. Exactly as in Case 3 Y, is a club* set, and if ¢ € Y,
then C(am,1) = C(ay, 1) Nay, for all m <n < p.

Unfortunately Y, will not quite do as a candidate for X, because
its dependence on the choice of (a,,: m < p) would cause a problem
in Case 5. We choose X, in a more canonical way and make it as
large as possible. To be more precise we let

Xo={i<AX3IEclubinaVyelim(E)(ic X,ANENy=C(v,1))}.

If i € Y, and we let £ =J,, C(ay,, 1) then it is easy to check that £
witnesses ¢ € X, so that Y, C X,.

Suppose that ¢ € X, and F, E’ are both clubs in a witnessing this.
Then E N E' is club in o and

E= |J C(i)=F.
~velim(ENE")
For each i € X,, we now define C(a, %) to be the unique E which is
club in « and is such that ¥y € lim(F) E N~y = C(v,1). Notice that
if i € Y, then automatically C(«, i) = ,, C(tm, 7).

Since every initial segment of C'(«, 7) is an initial segment of C'(y, )
for some v < a, ot(C(a,i)) < A If p € lim(C(a,7)) then B €
lim(C(y,1)) for some v € lim(C(a,i)), and we have by induction
that i € Xg and C(5,i) = C(v,7) N B = C(a, i) N S.

Let 7,5 € X, with i < j. Let C(a,i) = E and C(a, j) = F. Then

E= |J ¢hic U Chi=F
~velim(ENF) ~velim(ENF)
that is to say that C(a,i) C C(a,j). Finally we may argue as in
Case 3 that SNa C |J;.y, lim C(a, i), which suffices since Y, C X,.

Case 5: a = f+w where cf(8) = A. We fix (§;: i < ) an increasing
and continuous sequence of members of S which is cofinal in 5. Let

Z = {Z <\NVi<iie Xﬁj and Vj < k <1 Bj € hm(C’(ﬁk,z))}
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We claim that Z is club® in A. To see this first observe that if
D ={i < XVj<i ie Xg} then D is a diagonal intersection of
sets in the club* filter, and since that filter is normal D is a club*
set. Define f: [\]2 — X by setting f(j, k) equal to the least i € Xp,
with ; € lim C(f, ), and let C' be the club set of i < A which are
closed under f. If : € DN C then

(1) Since i € D, i € X, for all j <.
(2) If j,k < i then since i € C we have f(j,k) < i, and by
definition f(j, k) € X, and 5; € Lim(C(Bk, f(4,k))). Since
i € D we also have i € Xg,, and so by the properties of a good
matrix C'(Bk, f(4,k)) C C(B, 1) and so B; € im(C(bi,1)).
It follows that DN C C Z, and so Z is a club* set.

We let X, ={i € DNC: cf(i) > w}. Let i € X, and consider the
construction at level f3;; since cf(i) > w and the sequence (5;: j < A)
is continuous, cf(5;) = cf(i) > w and the relevant clause of the
definition is Case 4.

If we let E = (J,;.;C(B),i) then the fact that i € Z and the
coherence properties of the good matrix imply that Vy € lim(E) EN
v = C(v,1), so that by the definition of Xg, and C(8;,4) from Case
1€ Xy, and C(B,1) = U,; C(6;,1).

We define

C(0,i) = C(Biyi) U {6} U [8, ).

Clearly C(q, 1) is club in «, and ot(C(a, 1)) = ot(C(5;,7)) +w < A.
If v € limC(a,t) then either v € limC(f;,i) or v = f;, and in
either case it is easy to see that i € X, and C(v,1) = C(8;,i) Ny =
C(a,i) Nr.

Let 7,7 € X, with ¢ < j. By induction

C(B:,1) = JC (B i) €| CBr4) € | CBrr ) = C (B, 5).
k<i k<i k<j
Since C(f;, j) is club in ; and C(f;, ) is cofinal in §;, it follows that
Bi € C(B;,7). Therefore by definition C(«, 1) C C(a, j).

Finally let v € S N «, and observe that since 8 ¢ S we have
SNa=85NpA. Find ¢ such that v < f;, and then j € X, such
that ¢ < j and v € imC(8;, 7). Since C(B,75) = Up; C(Br, ),
v € lim C(8;,7).

This concludes the proof of Lemma 4.4. O
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The construction of a good matrix for x in Lemma 4.4 concludes
the proof of Theorem 4.2. O

It is natural to ask what happens when the cofinality of x is
changed to some value other than w, for example by Radin forcing.
Apter and Cummings [1] studied this question and used the ideas of
Theorem 4.2 and Fact 4.1 to show

Fact 4.5. Let GCH hold and let k be a k'°-supercompact cardinal.
Then there exists a forcing poset P such that in V*
(1) K is kT -supercompact.
(2) For every singular cardinal A < Kk
(a) There exists S C AT stationary such that any family of
size less than cf(\) of stationary subsets of S reflects
simultaneously to a point of cofinality v for unboundedly
many 1 < .
(b) The combinatorial principle Dif()‘) holds.

We also note a connection with some work of Gitik, Dzamonja and
Shelah. Strengthening a result of Gitik [10], Dzamonja and Shelah
[7] showed some results on “outside guessing of clubs” which have
the following corollary:

Fact 4.6. Let V C W be inner models of ZFC and let GCH hold in V.
Suppose that k is a W-cardinal such that ki = ki, W = cf(k) = w
and V' |= k is inaccessible. Then there is in W an w-sequence which
1s cofinal in k and is eventually contained in every club* subset of Kk

from V.

It follows that Theorem 4.2 can be generalised to a wider class of
extensions.

5. DISTINGUISHING SQUARES

Jensen showed in unpublished work [11] that [y, is strictly stronger
than Dil. His methods can be used to distinguish the principles (1}
for a fixed regular x, and similar results can be proved [5] for k sin-
gular. In this section we use methods similar to those of [11] to show
where the simplest indexed versions of weak square principles fit in.

Theorem 5.1. Let s be Mahlo. Then
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(1) There is a forcing extension in which k = Ry, 0F  holds and
Index-03% | fails.

(2) There is a forcing extension in which kK = Vs, Indem-D§1 holds
and Uy, fails.

Proof. We will prove the first claim of the theorem in some detail,

and then indicate how to modify the proof to give the second claim.
Let 0 be inaccessible. We begin by describing a countably closed

forcing Ps which will collapse ¢ to be Ny and at the same time will add

a Dil—sequence. The sequence we add will have the special property

that at points of uncountable cofinality it only gives a single club set.
p € Py iff p is a function such that

(1) dom(p) is a countable set of limit ordinals less than 4.

(2) If cf(a) = w and a € dom(p) then 1 < |p(a)| < 2 and each
set in p(«) is a club subset of o with countable order type.

(3) If cf(a) > w then p(a) = {C} where C is a closed bounded
subset of o with countable order type, and the largest point
of C is greater than sup(dom(p) N «).

(4) If @ € dom(p), C € p(a) and 8 € lim(C), then § € dom(p)
and C' NG € p(B).

If p,q € Ps then p < q iff

(1) dom(g) € dom(p).

(2) For all a € dom(q)
(a) If cf(a) = w then p(a) = q(a).
(b) If cf(a) > w, p(a) = {C} and ¢(ar) = {D} then D =

C N (max(D) +1).

Lemma 5.2. Let § be inaccessible. Then

e Ps is 6-c.c. and countably closed.
e Ps collapses 0 to Ny and adds a Dil-sequence.

Proof. This is routine. The only slightly delicate point comes in
checking that P is countably closed. Let (p,: n < w) be a decreasing
sequence of conditions, and let o € |J,, dom(p,) be an ordinal such
that cf(a) > w and the value of p,(a) does not eventually stabilise
for large n. The third clause in the definition of a condition implies
that max p,(«) > sup(dom(p,) N «), so that if § = sup,, maxp,(«)
then § ¢ |J, dom(p,) and we are at liberty to define a lower bound

Pw for (p,: n < w) with p,(8) = {U, pn(a)}. O
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Now we suppose that 7, d are inaccessible with v < §. We will show
that P5 can be viewed as a three step iteration P, * T * Q, where T
adds a suitable club at v and Q adds suitable clubs in the interval
(7,6). Conditions in T and @Q are countable sets of ordinals, and so
since Ps is countably closed we will have T C V and Q C V' (though
of course these posets will not be members of V).

Definition 5.3. Let v,d be inaccessible with v < §.
(1) If C = (Ca: o < ) is the sequence added by P, then T is the

poset in V[ﬂ defined as follows.
(a) t € T iff t is a countable, closed and bounded subset of v
such that Va € lim(t) t N« € C,.
(b) Ift,#' € T thent < t' iff t = t' N (max(t) + 1).
(2) If C = (Co: e < 7) is the sequence added by P, then Q is the
poset in V[Cj defined as follows:
(a) ¢ € Q iff q is a function such that
(i) dom(q) is a countable set of limit ordinals in the
interval (7y,9).

(ii) If cf(a) = w and a € dom(q) then 1 < |¢(a)] <
2 and each set in q(a) is a club subset of a with
countable order type.

(iii) If cf(a) > w then q(a) = {C} where C is a closed
bounded subset of a, C' has countable order type,
and max(C') > sup(dom(q) N «).

(iv) If a € dom(q), C € ¢(a) and B € im(C) then
(A) If B >, then 8 € dom(q) and C' N3 € q(B).
(B) If B <y, then C NS € Cg.

(b) If q,q¢' € Q then ¢’ < q iff
(i) dom(g) € dom(q').
(ii) For all o € dom(q)
(A) If cf(a) = w then ¢'(a) = q(a).
(B) If cf(a) > w, qla) = {C} and ¢(a) = {D}
then D = C'N (max(D) + 1).

Remark: We can define Q in V' because 7 can not be a limit
point of any club in C, for v < a < 6.
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Lemma 5.4. Let v, 0 be inaccessible cardinals with v < d. Then
there is an isomorphism between a dense subset of Ps and a dense
subset of B, + T x Q.

Moreover, Q is countably closed in VFr*T.

Proof. Let Dy = {p € Ps: v € dom(p)} and D; = {¢q: Ip € Dy q =
(T vp()p ! (7,0)}

It is easy to see that Dy is dense in P5, D; C P, * T x QQ, and the
map ¢: p+— (p | v,p(7),p | (7,0)) is an isomorphism between D
and D;. In fact we wrote the definitions of T and @@ to make this
true.

It remains to be seen that D, is dense in P, * T+ Q. To see this let
(p,1,4) be an arbitrary condition in P, * T+ Q. Since Q C V we may
find (p1,%,) < (p,t) and ¢ such that (p;,#;) IF ¢ = ¢ and then py < p;
and t; such that py IF £; = £;. By construction (ps,t1,¢q) € P, xTxQ

and (pa, t1,q) < (p,£,49).

Now ps IF t; € T and (ps, 1) IF ¢ € Q. It is routine to check that if

we define p* = po U {(7,%1)} U g then p* € Ps and ¢(p*) = (po, t1, q).
The proof that Q is countably closed in VF*T is just like the proof
that Py is countably closed in V. 0l

We will be done once we have proved the following result.
Claim 5.5. If k is Mahlo then Index—Dil fails in V.

Proof. Suppose not. For simplicity we assume that the empty condi-
tion forces that the principle holds, say

ke, “(A, C) witnesses Index-[03 .

By the k-c.c. for P, and the Mahloness of £ we may find § < s such
that § is inaccessible and (A | §,C | § x ¥;) is a name in V¥, This
implies that

ke, “(A16,C 16 x Ny) witnesses Index-J3 .

We now identify P,, with Ps « T x Q where T, Q are defined as in
Lemma 5.4. Fix a condition (p,t,q) which forces that a € A(6) for
some o < Ny. If D =C(6, ) then (p, t,'q) forces that D is club in 0,

ot(D) =8y and Vv € lim(D) DNy = C(v, ).
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The object D cannot exist in the generic extension by Ps, so we
claim that we may find conditions (p’, ¢, qo) and (p',t1,¢1) both ex-
tending (p,t,q) and an ordinal ¢ < § such that

(p,,tO,QO) I+ C: S D
(', t,q) F C¢D

If this were not so then we would have
vpl S p vCat07QO7t17QI (plat07QO) I+ CV— € D <~ (plvtlv(h) I+ CV S Da

which would imply that below (p, t,q) the name D was equivalent to
a Ps-name.
We build sequences (p,: 1 < n < w), (2" n < w), 7" n < w),

(@"":n <w), (@™ n <w), and (G 1 < n < w) such that

(1) pp € Ps, p1 < p' and (p,: 1 <n < w) is decreasing.

(2) (pb t(l)a Qé) S (p,a tO) QO) and <(p2n+1a t(2)n+1a q8n+1): n < (.U> is de-
creasing.

(3) (p2> t%a q%) S (p,a tla Ch) and <(p2n+27 t%n+2a Q%n+2): n < UJ> is de-
creasing.
(4) (¢u: 1 < n < w) is an increasing sequence of ordinals such that
(a) ¢; > max{max(ty), max(t),(}.
(b) Cony1 < max{max(t3"), sup dom(pans1)} < Conio-
(©) Consa < mas{max(t+2) sup dom(pns2)} < Canrs.
(d) (p2n+1a tgn+1a qgn+1) I+ €2n+1 € D
(e) (p2n+2at%n+2aq%n+2) I+ <2n+2 eD.

Let p, € Ps be a lower bound for the sequence (p,: 1 <n < w).
Since Q is countably closed in V¥ we may find ¢ and ¢} such that
(pw, qt) is a lower bound for {(pani1, 5" ): n < w) and (py,q}) is a
lower bound for ((pa,i2,q;""?): n < w). Now define

C* = sup Gy,
ty = LJt?)n+1 u{c},
6= Usmrue),

P o= peU{(C {5 D)
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It is routine to check that (p*, ¢}, q}) and (p*,t], q}) are both condi-
tions in Ps x T * Q.

The conditions (p*, ¢, ¢5) and (p*, ¢}, ¢}) both force * to be a limit
point of D, so

(p"t5,q5) = (€C(Ca)
(p",t1,qi) F ¢

This is absurd because C(C*,q) is a name in V¥ so that the
preceding equations imply p* IF ¢ € C(¢*, a) and p* IF ( ¢ C((*, ).
0

This concludes the proof of the first claim of Theorem 5.1.

For the second claim, we start by defining a poset IP; which is de-
signed to add an Index-[13 ,-sequence while collapsing an inaccessible
0 to become N,. This sequence will have the special properties that
it only gives one club set at limit ordinals of cofinality greater than
w, and that the only indices which are used are 0 and 1.

p € P} iff p is a pair (a, c) where

(1) a is a function with dom(a) a countable set of limit ordinals
less than §.

(2) For every v € dom(a), a(v) is a nonempty subset of {0,1}. If
cf(v) > w then |a(v)| = 1.

(3) ¢ is a function with domain {(v,a): v € dom(a),a € a(v)}.

(4) If cf(v) = w and (v, ) € dom(c) then ¢(v, ) is a club subset
of v with countable order type.

(5) If cf(v) > w and (v,a) € dom(c) then c¢(v, ) is a closed
bounded subset of v with countable order type, with the ad-
ditionla property that max(c(v,«)) > sup(dom(a) N v).

(6) If (v,a) € dom(c) and f € lim(c(v, @) then (v, 5) € dom(c)
and c(v,B) = fNc(v,a).

Conditions in P} are ordered as follows: (a1, ¢1) < (ao,co) iff

(1) dom(ap) C dom(ay).

(2) For all v € dom(ay)

(a) ap(v) = a1(v).

(b) For all a € ap(v), co(v, @) = c1(v, ).

As before it is easy to see that
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(1) 5 is countably closed and d-c.c.
(2) P; collapses § to Ry and adds (A, C) witnessing Index-CTg .
IP§ is susceptible to a factor analysis very similar to that which we
gave for Ps above. The main difference is that we need two versions
of T and Q, reflecting the fact that at v we must decide whether to
put a club set with index 0 or a club set with index 1.

Lemma 5.6. Let v, be inaccessible with v < 6. There exist posets
T°, T, Q°, Q' € V¥ such that
(1) Ifp = (a,c) € IP; and (,0) € dom(c) then P; /p is isomorphic
to a dense subset of
Pr/(a ] y,e 1y x2) x T/e(y,0) x Q°/(a | (v,8),¢ (v,6) x 2).
(2) Ifp = (a,c) € P; and (v, 1) € dom(c) then P; /p is isomorphic
to a dense subset of
Pr/(a]vy,e 1y x2) x T e(y,1) x Q' /(a | (7,6),¢ 1 (7,6) x 2).
(3) Q is countably closed in VF¥*™ .

Proof. The definitions and proofs are like those of Definition 5.3 and
Lemma 5.4. O

Claim 5.7. If x is Mahlo then Oy, fails in V=,
Proof. Suppose that
Fpe “(Da: o < k) is a Oy, -sequence”

By the k-c.c. for ¥ and the Mahloness of x we may find § < x such
that 4 is inaccessible and (D,: o < ) is a name in V. This implies
that '

Ipx “(Dy: a < §) is a Oy, -sequence”

We now consider the P*-name D = Ds. We claim that we may
find conditions (p,°,¢°) € Py « T° * Q° and (p,t',¢*) € P} * T' x Q!
together with an ordinal { < ¢ such that either

(p,1%¢°) I+ (€D
(p,t'q') I C¢D

or

(»,t°¢") I+ (¢ D
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(n,t'¢") I+ (€D

To see this we first find conditions (p°, ), ) and (p°, u?,r?) from
Ps + T° x Q° and an ordinal ¢ such that

®°ul,ry) I+ (e D,
) .

This is possible because D names a set which is not in V. We now
find (p,u',r') in Ps * T" * Q' such that p < p° and (p,u', r") decides
the statement “¢C € D”, and then choose ¢ and ¢* accordingly.

We build sequences (p,: 1 < n < w), (" n < w), #7"2:n < w),

(@™ n <w), (@™ n <w), and (¢, 1 <n < w) such that

(1) p, € Ps ,2p1 1§ 12)’ alnd (pn: 1 < n < w) is decreasing.
(2) (p2n+17 t0n+ ?QOnJr ) S ]PJ *TO *Qov (p1, ttl)a Qé) S (pv tO) qo)a and
{(P2ns1, 5", @) n < w) is decreasing.
(3) (p2n+2a t%n+2a Q%n+2) € ]PJ + T *@1, (p2’ t% q%) < (p’ tla q1)> and
{(Pansa2, 11", qi""?): n < w) is decreasing.
(

(
(n: 1 < n < w) is an increasing sequence of ordinals such that

i)
Conta < maX{maX(ﬁ”?% sup dom(pan+2)} < Conts-
d (p2n+17tgn+lvqgn+1) IF Cony1 € D

(e) (p2n+27 t%n+27 q%n—i-Z) I+ §2n+2 e D.

Let ¢* =, (v, and let p, be a lower bound for (p,: 1 <n < w).
Define

)

b) (ont1 < max{max( ,supdom(pani1)} < Conya-
)
)

U’O = U tgn—i—l U {C*}a
ul = U t%n+2 U {C*}a
pt = pwU{((C*,O),uo),((C*,l),ul).}
Using the countable closure of the @7, we find r° and r! such that

p*,u, %) is a lower bound for ((poni1,t2"*, ¢2"™):n < w), and
0 0
(p*,ut, ) is a lower bound for ((pani2, 172, ;" ?): n < w).
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The conditions (p*,u° r°) and (p*,u',r') both force ¢* to be a
limit point of D, so

(p*,uo,ro) [+ (VEDC*
(' ul,r') b ¢ ¢ Des

But D¢ is a V™-name so p* IF ¢ € D¢- and p* I- { ¢ D,.. This is a
contradiction. U

This concludes the proof of Theorem 5.1. 0

6. GLOBAL SQUARE AND 1-EXTENDIBLE CARDINALS

In this section we investigate the question of how strong a large
cardinal axiom has to be before it becomes incompatible with the
existence of square sequences. We start by recalling the definition of
a l-extendible cardinal.

Definition 6.1. k is l-extendible iff there exist a cardinal A > K

and m: He+ — Hy+ an elementary embedding with crit(m) = k and
(k) = A\

For more information about extendible cardinals see Kanamori’s
book[14]. We note that if v is a cardinal then + is definable in H.+ as
the largest cardinal, so that the demand that 7(x) = A in the defini-
tion of 1-extendibility is superfluous; it follows from the elementarity
of the map .

Jensen [13] introduced a strengthening of 1l-extendibility called
quastcompactness. For expository purposes we will also define an
intermediate notion 1-extendible in A.

Definition 6.2. Let k be a cardinal.

(1) For A C H,+, k is l-extendible in A iff there exist a cardinal
A > K, a set B C Hy+ and an elementary embedding 7 from
(Hye+, €, A) to (Hy+, €, B), such that (k) = X\ and the critical
point of T is K.

(2) k is quasicompact iff k is 1-extendible in A for all A C H,+.

Jensen showed that if C = (C,: a < k7) is such that C, C « for
all @, and k is l-extendible in C' then C' is not a [-sequence. In
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particular if k is quasicompact then [, fails. Reflecting on this proof
Jensen introduced the notion of subcompactness.

Definition 6.3. Let k be a cardinal. k s subcompact iff for all
A C H,+ there exist a cardinal a« < K, a set a C H,+ and an
elementary embedding  from (Hy+,€,a) to (He+, €, A), such that
crit(m) = o and 7(a) = k.

Jensen’s argument shows that if s is subcompact then [, fails. We
note that a subcompact cardinal need not be measurable. In fact if
k is measurable and subcompact and U is any normal measure on x
then it is routine to check that  is subcompact in Ult(V,U), so that
there are many subcompact cardinals below k.

At this point a few words about the inner model program are in
order. The goals of the program are to construct canonical “L-like”
inner models for large cardinal axioms, and to analyse the internal
structure of these models and their relation to V. This analysis can
be used to obtain lower bounds on consistency strength for combina-
torial statements. We refer the reader to the survey papers [23] and
[15] and the books [19] and [24] for more information.

The inner models which are studied in the inner model program
have the form L[E], where E is a sequence of extenders which is
subject to certain fine-structural conditions; we will refer to models
of this standard type as “L[E] models”. It is anticipated that all
large cardinal axioms below the level of supercompactness can hold
in L[E]—models, but currently this has only been proved up to slightly
beyond the level of a measurable limit of Woodin cardinals.

Schimmerling and Zeman have shown that in any L[E]—model, if
there are no subcompact cardinals then [y holds for all A\. From
the discussion in the previous paragraph, this shows that [l holds
for every \ is consistent with large cardinals up to slightly beyond a
measurable limit of Woodin cardinals. It should eventually be possi-
ble to show that [\ holds for every X is consistent with the existence
of a l-extendible cardinal by constructing a suitable L[E]—model; in
this section we will use forcing to prove this consistency result. Actu-
ally we prove something slightly stronger but more technical to state,
which needs a preliminary definition.

Definition 6.4. (C,: a € ON,cf(a) < «) is a global O-sequence iff



(1)
(2)
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For every singular ordinal o, Cy, is club in a with ot(C,) < a.
If cf(a) < a and B € lim(C,), then cf(5) < B and Cs =
CoNB.

Jensen proved that if V' = L there is a global square sequence, and
that if a global square sequence exists then [, holds for all k. We
can now state the result of this section precisely.

Theorem 6.5. Let GCH hold, let k be 1-extendible as witnessed by
m: He+ — Hy+, and let § be inaccessible with § > X. Then in some
generic extension there is a transitive set W and a predicate ConW
such that (W, €,C) is a model of ZFC¢ + & is 1-extendible + C is a
global square sequence.

The rest of this section will be devoted to a proof of this theorem.
Before starting the proof a few remarks are in order:

(1)
(2)

Doug Burke [3] showed that the existence of a superstrong
cardinal is consistent with L1y holds for every .

At first sight the most natural procedure for showing that a
l-extendible cardinal is consistent with global square would
be to start with a model with some large cardinal x, use class
forcing to add a global square sequence and then argue that
the resulting structure is a model of set theory in which &
is 1-extendible. We were unable to make this scenario work
without assuming some additional reflection properties for the
class of ordinals, which amounted to assuming that the uni-
verse has the form Vj for § inaccessible; we therefore decided
to eliminate the complications of class forcing and build a
transitive set model of our desired hypothesis by set forcing.
It is easy to see that if k is 1-extendible then & is 1-extendible
in A for every definable A, so that there can be no [l.-
sequence which is definable in H,.+. While we are on the
subject of definability we note that in Theorem 6.5 the se-
quence C is not definable in W, so our theorem leaves open
whether a definable global square sequence is consistent with
the existence of a 1-extendible cardinal.

Jensen showed that if [J,, holds for all k and a weak form of
global square holds on singular cardinals, then global square
holds. Zeman showed that the weak form of global square
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holds in all L[E] models. Combining these results with the
Schimmerling-Zeman result, we see that global square holds
in L[E] if L[E] has no subcompact cardinals. See [22].

The following definition is not standard usage but is convenient
here.

Definition 6.6. Let n be an ordinal. A GS(n)-sequence is a sequence
(Cor a < m,cf(a) < a) where
(1) For every singular ordinal o < n, C, is a club subset of «
with ot(Cy) < a.
(2) If cf(a) < a and B € lim(C,), then cf(B) < B and Cz =
CoNB.

Intuitively a GS(n)-sequence is a potential initial segment of a
global square sequence.

We now state our large cardinal hypothesis, which will be in effect
for the rest of this section:

Hypothesis: GCH holds and there are regular cardinals kK < A < §
such that
(1) There exists j: He+ — Hy+ such that crit(j) = &, j(k) = A
and j is elementary (that is to say j witnesses that x is 1-
extendible).
(2) ¢ is inaccessible.

Our plan for proving Theorem 6.5 is as follows: we will build a
two-step generic extension V[G]|[g] such that
(1) ¢ is inaccessible in V[G][g].
2) V, JV[GM"] (we denote this model by V3[G] below).
(3) V};[G] }z “k is l-extendible”.
(4) In V[G][g] there is a sequence C' = (Cya: o < 6, cf() < o)
such that
(a) ot(Cy) < o, and V5 € im(C,) Cp = Cy N B.
(b) (V5[G), €, C) is a model of ZFCp.

Before giving the details of the construction we discuss a couple of
distinctive features. We note that very similar issues arise (and are
discussed in more detail) in a paper by Cummings, Dzamonja and

Shelah [4].
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The construction is a “Reverse Easton” iteration of the same gen-
eral type as those discussed in Baumgartner’s survey [2]. It is com-
mon in Reverse Easton iterations for the forcing being done at stage
v to be 7y-closed, but in our situation we will only assume that it is
< ~y-strategically closed. We recall the definition of strategic closure.

Definition 6.7 (Foreman [9]). Let v be a cardinal. A poset P is
< y-strategically closed if and only if for every ordinal { < v player
IT wins the following two-player game of perfect information. Players
I and II collaborate to build a decreasing chain (py: 0 < a) in P with
player I playing at odd « and player II at even a (including all limit
stages). Player II wins if play proceeds for ( many moves, that is to
say pa s defined for all o < (.

Replacing closure by strategic closure necessitates a few changes in
the standard Reverse Easton arguments. We outline these changes
at the relevant points below.

In our iteration, at each regular v we will force with a poset Q,
which adds a GS(7)-sequence by approximation via initial segments.
A potential problem with this strategy is that a prior: there may not
be enough conditions in Q,, in fact what we need (see Claim 6.11
for the details) is that G.S(«)-sequences already exist for all ordinals
a < 7; we will arrange this using the fact that we already forced
with Q, for all regular ;1 <  and the following sequence of technical
lemmas.

Lemma 6.8. Let v be an infinite cardinal. If there ezists a GS(v)-
sequence, then there exists a GS(n)-sequence for everyn < v™.

Proof. Let (Cy: a < v,cf(a) < a) be a GS(v)-sequence. We prove
the existence of a GS(n + 1)-sequence by induction on limit 7 in the
interval [v,vT).
Case 1: n = v. If v is regular there is nothing to do, so we assume
that v is singular. Choose (v;: i < cf(v)) increasing, continuous and
cofinal in v with vy = 0 and cf(v) < v4. Define for singular ordinals
a<v

{viri < j} a = vj, j limit

Dy=<{vii<ct(v)} a=v
Ca\(Vi+1) l/i<a§Vi+1
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Case 2: n = y+w, 7 limit. Let (D,: a < 7, cf(a) < a) be a GS(y+
1)-sequence. We may extend this to be a GS(n + 1)-sequence by
defining D, = {y +n: n < w}.
Case 3: v < n < v', n a limit of limit ordinals. Let cf(n) = u,
where necessarily p < v. Choose (n;: i < p) increasing, continuous
and cofinal in 7, in such a way that

(1) mo = 0.

(2) miy1 is a singular limit ordinal for all s.

(3) m > V.
Fix (Cit': o < mijq, cf(a) < @) a GS(ni11 + 1)-sequence for each i <
78
Define for singular ordinals oo < n

{nizi<j} a =nj, j limit
Do = q {miii < p} a=n
Ce'\(mi+1) m<a<nn
O

Lemma 6.9. Ifv is a singular cardinal and there is a GS(u)-sequence
for every reqular u < v, then there is a GS(v)-sequence.

Proof. Like Case 3 in Lemma 6.8. U

Lemma 6.10. Let vy be a cardinal and suppose that for every reqular
cardinal p < 7 there is a GS(u)-sequence. Then for every ordinal
a < 7 there is a GS(a)-sequence.

Proof. If v is a limit cardinal then there are unboundedly many reg-
ular cardinals less than +, and the result is clear. So suppose v = u*
for some cardinal p. If p is regular then there is a GS(u)-sequence
by assumption, if p is singular then there is a GS(u)-sequence by
Lemma 6.9. In either case, by Lemma 6.8 there is a G.S(a)-sequence
for every a < put = 1. O

We can now describe our iterated forcing construction. Given a
regular cardinal v we define a poset Q,. p € Q, if and only if
p=(Cy: cf(a) < a,a < ) where

(1) B is a singular limit ordinal less than .
(2) pis a GS(B + 1)-sequence.
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If p = (Ch cf(a) <a,a <p) and ¢ = (D,: cf(a) < o, < §*) are
in Q, then p < g iff 8 > B* and C, = D,, for all o < 3*. We note
that by GCH Q, is a poset of size at most 7, and so trivially has the
~*-chain condition.

Claim 6.11. If there is a GS(«)-sequence for every a < -~y then
forcing with Q, adds a GS()-sequence.

Proof. We need to check that for every ¢ < 7 the set of GS({ + 1)-
sequences is dense. Let p = (Cy: cf(a) < a,a < ) be a GS(6 + 1)
sequence for some singular ordinal 5, and let { be a singular ordinal
with 8 < ( < 7. Let ¢ = (D,: cf(a) < a,a <) be a GS(( + 1)-
sequence.

We define E, for singular a with a < ¢ by letting E, = C, for
a<pfand E, =D, \ (6+1) for f < ¢ < (. It is routine to check
that if r = (E,: cf(a) < a,a < () then r is a GS(¢ + 1)-sequence
extending p. O

We define Ps; to be the Reverse Easton iteration of Q, for regular
v < 6. To be alittle more explicit we define sequences (Py: o < 6 4 1)
and (Q,: a < 6) inductively by
(1) Q, is a P,-name for the version of Q, computed by VP _ if o
is regular in V¥ (which will turn out to be the case for every
regular «a, see claim 6.12). Otherwise Q. names the trivial
forcing. .
(2) Pa—i—l = Pa * Qa.
(3) For A < § a limit ordinal, Py is the direct limit of (P,: o < A)
for A inaccessible, and the inverse limit otherwise.

Claim 6.12. Let v be regular. Then in V'

1. For every condition p € Q, and every ¢ < vy there is a condi-
tion ¢ € Qy with ¢ < p and max(dom(q)) > (.

2,. Q, is < vy-strategically closed.

3. Cardinals and cofinalities are preserved.

Proof. We proceed by induction. Assume that we have 15, 25 and
35 for regular 6 < . We start by outlining the argument that P,
preserves all cardinals and cofinalities.

Given a cardinal p < v, we factor P, in the standard way as
P, * Q, * R and note that p* is the first point at which the iteration
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R does non-trivial forcing. The arguments of [2], suitably adapted
for strategically closed forcing, gives us that R is < p*-strategically
closed in V¥#+1. The usual counting arguments give us that P, is
always p*-c.c. A suitable adaptation of Easton’s arguments from [§]
shows that all y-sequences from V* must lie in V¥#+1, and arguments
exactly like those of [8] then show that all cardinals and cofinalities
are preserved in V',

It follows by the induction hypothesis and Claim 6.11 that in V™
we will have a GS(d)-sequence for every regular § with § < . By
Lemma 6.10 there is a GS(a)-sequence for every ordinal a < 7. By
Lemma 6.11 again 1, holds in V¥v,

Recall the strategic closure game from Definition 6.7. We de-
scribe a winning strategy for player Even in the game of length
a + 1 played on Q,, where o < v is a limit ordinal. Let pg =
(E¢: cf(¢) < ¢,¢ < p) be the condition which is played at stage 5,
where player Even’s strategy will guarantee that (vys: 5 < «) is con-
tinuous.

Case 1: § = 2: Even plays a condition ps < p; with 7, > «a. Notice
that for all limit § < a we will have cf(y5) = cf(5) < a < 72 < 5.

Case 2: 3 = [y + 2, Bp > 0 even: Even sets 75 = 73,41 +w and
Ey, = {vgp41 +n:n < w}.

Case 3: lim(B): Even sets v3 = supz_g75 and E,, = {y5: 8 < B}.
This is a legal move because

(1) If ¢ € lim(E,,) then ¢ = 5 for 3 limit, and so
E.={vw:n<B}=E,NC
(2) ob(Eyy) = f < @ < 7 < 5.

It is routine to check that this is a winning strategy, concluding
the proof of Claim 6.12. O

We will choose GG to be some Ps-generic filter subject to a certain
technical condition; if C* and C* are the sequences added at stages
k and A, then we choose G so that C* | kK = C*. This is possible
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because k is regular in V[G,], so that C* can be extended 2 to a
condition M in Q) and we may force below M to get C* as desired.

The reason for doing this is explained in detail in Claim 6.15 below;
in the jargon of large cardinal theorists M is a “master condition” in
Q», which is to say that forcing below M at stage A\ will guarantee
that we can lift our original embedding j to an elementary embedding
J: He+ |Gy % go] — Hy+[G) * g)]. For more about master conditions
see the section on Reverse Faston forcing in Baumgartner’s survey
paper [2].

By Lemma 6.12, V[G][g] has the same cardinals and cofinalities as
V and ¢ is inaccessible in V[G][g]. This implies that every set of rank

less than § is coded by a bounded subset of §, so VEV[G] = Vév[G”g]; to
save the reader from a plague of superscripts we denote this set by
V5G| in what follows.

Let C be the generic G.S(8)-sequence added by g. The structure
(V5]G], €, C) is a model of ZFCx because V[G|[g] is a model of ZFC,

§ is inaccessible in V[G][g] and C € V[G][g).

To finish, we show that in V5[G| there is an elementary embedding
from H'2 to HY?1! 1t will then follow that & is 1-extendible in
V5|G]. The elements of H, .+ are coded by subsets of x and no subsets

of k are added past stage x of the iteration so H:i[G] =H V+[G”“] =

HXi[G”“} Similarly we see that H;/i[G} = H;[G*“] = H;/i[G”ﬂ.

The intuition behind the rest of the proof is that we want to treat
H:j‘r[G““} as a generic extension of H,+ by P,,1, and then apply the
techniques of Reverse Easton forcing to lift the embedding 7. The
argument requires a little care because H,+ is not a model of ZFC.

Since |Py41| = K, every element of H:i[G”“] has the form 7¢=+! for
some P, ;-name 7 € H,.+. What is more P,,; € H.+. A tedious but
routine argument now shows that for any formula ¢ there exists a
formula ¢* such that for any P, ;-name 7 and condition p € P,

13 V Gn e ” * -
pIFY “HAO = g(761) = Hyer = 6" (p,Prs, 7).

2Define M to agree with c* up to K, to have kK + w as the largest point in its
domain and to associate {x + n: n < w} to k + w.



40 JAMES CUMMINGS AND ERNEST SCHIMMERLING

Abusing notation slightly we write p |kﬁ . ¢(7) for this relation,
where the key point is that the relation is definable in H,+. An

@] and we write p H—]P{If o(7)

as an abbreviation for the indigestible p I-y “H:j‘r[G”] = o(7g. )"
In line with our intuitive remarks above we further abuse notation
and write H, +[G] for H:i[G“], H,+[G41] for H:i[G”“], H,+[G,] for
H;/i[GA], and Hy+[Gyy4] for H;/fr[G*“}.

As usual, the problem is to lift the embedding j. We break up
Gyi1 as G, x g, * H * gy, where g, is the generic object added at x, H
the generic object added between x and A, and g, the generic object
added at A. Here G = G, * g, * H will be the generic object for P,.

Claim 6.13. j“G,. C G,.

exactly similar analysis works for H:i

Proof. Let p € Gy, then since we did a Reverse Easton iteration we
know that the support of p is some ordinal a with @ < k. Now
crit(j) = k, so the support of j(p) is also a and p [ a = j(p) | @. So
clearly we have j(p) € G, * g, x H = G, as desired. O

We now attempt to extend the embedding j to the larger domain
H,.+[G,] by defining j(7%) = j(7)%* for all + € H,+.

Claim 6.14. This definition gives a well-defined elementary em-
bedding j: H+|G.x] — Hx+|G\] which extends our original map
Ji Hevr — Hy+.
Proof. Suppose that 7% = ¢%. By the truth lemma there is p € G,.
such that p ||—]11,i'“+ 7 = ¢. This is a first-order statement in H,+ and
so since j is elementary j(p) “_]Iil;\-&- j(7) = j(6). j(p) € Gy and so
J(F) P = j().

The proofs that the map we have defined is elementary and extends
the original map are very similar. U

Claim 6.15. j“g, C gi.

Proof. Let p € g.. Then pis in an initial segment of C*, and j(p) =p.
Since we chose C* to extend C*, j(p) € gx. O

By the same method as in Claim 6.14 we may further extend j to
get an elementary embedding j: H.+ |Gy *g.] — Hx+|G*gy]. Since
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H.+[Goxgs) = H:i[G] and Hy+[Grxg)\] = H)‘\/i[G}, we have shown that

k is l-extendible in Vi[G]. This concludes the proof of Theorem 6.5.
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