
INDEXED SQUARESJAMES CUMMINGS AND ERNEST SCHIMMERLINGAbstrat. We study some ombinatorial priniples intermedi-ate between square and weak square. We onstrut models whihdistinguish various square priniples, and show that a strength-ened form of weak square holds in the Prikry model. Jensenproved that a large ardinal property slightly stronger than 1-extendibility is inompatible with square; we prove this is loseto optimal by showing that 1-extendibility is ompatible withsquare.
1. IntrodutionSeveral lines of researh motivate the results in this paper. Whatthe lines have in ommon is Jensen's elebrated ombinatorial prin-iple ��, whih is pronouned \square kappa".De�nition 1.1 (Jensen [12℄). Let � be an in�nite ardinal. A se-quene hC�: � < �+i is alled a ��-sequene i� whenever � is a limitordinal and � < � < �+,(1) C� is a losed unbounded subset of �,(2) C� has order type at most �, and(3) if � is a limit point of C�, then C� = C� \ �.We say that �� holds i� there exists a ��-sequene.If � is a limit ordinal between � and �+, then learly there existsa losed unbounded C � � with ot(C) � �. What gives �� strengthis the last lause in the de�nition, whih is ommonly referred to asoherene. Although �� is a tehnial priniple, it has turned outFirst author partially supported by NSF grants DMS-9703945 and DMS-0070549.Seond author partially supported by NSF Grants DMS-9305990, DMS-9712580, DMS-9996280 and DMS-0088948.1



2 JAMES CUMMINGS AND ERNEST SCHIMMERLINGto be one of the most important links between diverse parts of settheory.A major theme in set theory is the tension between \ompatness"and \inompatness". Examples of the kind of ompatness phe-nomena we have in mind inlude stationary reetion (qv), the treeproperty, Shelah's singular ompatness theorem, or Silver's theoremthat GCH does not �rst fail at a singular ardinal of unountable o�-nality; some examples of inompatness are non-reeting stationarysets, Aronszajn trees, or Magidor's theorem that GCH an fail �rst at�!. As we see shortly square and related priniples are generally onthe inompatness side, and an be used as a measure of the extentof ompatness in the universe of set theory.The following results are due to Jensen, and indiate some of thepower of square priniples. Let � be a singular strong limit ardinal;then �� implies that(1) there exists a speial �+-Aronszajn tree,(2) under GCH, there exists a �+-Souslin tree, and(3) under GCH, for every struture A of type (�1;�0) there existsa struture B of type (�+; �) suh that A � B.We reall that a stationary subset S of a regular ardinal � is saidto reet if there is � < � of unountable o�nality suh that S \ �is stationary. Solovay showed that if �� holds then every stationarysubset of �+ ontains a non-reeting stationary set. He also showedthat if � is �+-strongly ompat then every stationary subset of theset �+ \ of(< �) reets, so that �� fails. This is a typial exampleof the kind of tension between ompatness and inompatness whihwe disussed above.Another point of departure for the work in this paper was the re-sults of Cummings, Foreman and Magidor [5℄ on the relationship be-tween square priniples, stationary reetion and PCF theory. Thatpaper uses ideas from PCF theory (in partiular the onept of a\very good sale" as disussed in setion 2) to larify the relation-ship between squares and reetion. Several of our results are diretlymotivated by the results of [5℄.It is natural to ask when �� holds. Jensen showed that in Lthe priniple �� holds for all ardinals �. On the other hand, theonsisteny strength of the failure of�� is stritly greater than that of



INDEXED SQUARES 3ZFC. For example, the theory ZFC + ��1 fails is equionsistent withZFC + there exists a Mahlo ardinal; the lower bound is by Jensenand uses L, while the upper bound is a foring argument by Solovaythat uses the Levy algebra. More generally, the failure of �� with� regular is well-understood. There is a serious gap, however, inour understanding the ase in whih � is singular: roughly, thereare upper bounds of about one superompat ardinal, and lowerbounds of many Woodin ardinals. This leads us to the seond pointof departure for [5℄ and us too, namely inner model theory.The main tehnique for proving lower bounds on the failure of ��for � singular involves generalizations of Jensen's theorem that ��holds in L for all in�nite ardinals �, and Jensen's Covering Theorem[6℄, whih implies that if 0# does not exist then (�+)L = �+ for allV -singular ardinals �. An immediate onsequene of these resultsis that if 0# does not exist and � is a singular ardinal, then ��holds. We note that this helps to explain a well-known phenomenonin ombinatorial set theory; if � is singular then it is typially hardto build models without \inompat" objets of size �+, suh as �+-Aronszajn trees [18℄ or non-reeting stationary sets [16℄.However, this sort of overing fails for L if 0# exists, so other mod-els must be used. The kind of transitive proper lass models to whihJensen's theorems have been generalized are known as ore models.In his early attempts in this diretion, Shimmerling introdued thefollowing hierarhy of weakenings of ��.De�nition 1.2 (Shimmerling [20℄). Let � be an in�nite ardinaland let � be a ardinal suh that 1 < � < �+. A sequene of setshC�: � < �+i is alled a �<�� -sequene i� whenever � is a limitordinal and � < � < �+, then(1) 1 � jC�j < � and(2) for all C 2 C�,(a) C is a losed unbounded subset of �,(b) C has order type at most �, and() if � is a limit point of C, then C \ � 2 C�.We say that �<�� holds i� there exists a �<�� -sequene.We write ��� for �<�+� . Clearly, �1� is equivalent to ��. Thepriniple ��� appears in the literature as ��� or \weak square kappa";



4 JAMES CUMMINGS AND ERNEST SCHIMMERLINGJensen isolated ��� roughly at the same time as ��, and showed thatit holds if and only if there is a speial �+-Aronszajn tree. It is worthnotiing that if �<� = � then by an easy argument ��� holds, so that��� is of greatest interest when � is singular.As an example of how the ��� hierarhy has been used, we re-view some results about foring axioms and square priniples. TheProper Foring Axiom (PFA) and Martin's Maximum (MM) are strongversions of Martin's Axiom (MA) whih are onsistent relative to asuperompat ardinal, and whose exat onsisteny strength is stillunknown.Todorevi [25℄ proved that under PFA, �� fails for all � � �1.Hene, by the results of Jensen mentioned earlier, PFA implies that0# exists. Magidor observed that Todorevi's proof atually showsthat PFA implies the failure of ��1� for all � � �1. Shimmerlingused Magidor's observation together with the Mithell-Shimmerling-Steel Covering Theorem to prove that one Woodin ardinal is a lowerbound on the large ardinal onsisteny strength of PFA (the absolutesquare priniples (qv) from Setion 3 played a role in the originalversion of this argument).We an use the ��� hierarhy to measure the ombinatorial strengthof a proposition P , by omputing the least � suh that P is onsis-tent with �<�� . Magidor showed that PFA + ��2� for all � � �2 isonsistent relative to a superompat ardinal, while by ontrast MMis inompatible with ��� for any singular � of o�nality !; this is onemeasure of the gap in strength between these two axioms. In a sim-ilar vein, in [5℄ the ��� hierarhy is used to alibrate the strength ofvarious stationary reetion priniples (see the disussion in Setion2). An interesting open problem is to determine whether GCH + �!�!suÆes to onstrut an �!+1-Souslin tree; a straightforward adapta-tion of Jensen's arguments shows that GCH + �<!�! is suÆient.As the authors were writing this paper, the story of �� took an in-teresting turn. Shimmerling and Zeman proved that in all ore mod-els1 if � is not a subompat ardinal, then �� holds. Subompatness
1By ore model we mean any proper lass model of the form L[ ~E℄ where ~Eis a oherent sequene of extenders, subjet to ertain �ne strutural onditions.See [22℄ for a full explanation.



INDEXED SQUARES 5is a new large ardinal property that was introdued by Jensen; sub-ompatness follows from superompatness. Reall the fat due toSolovay that was mentioned earlier: if � is �+-strongly ompat, then�� fails. Jensen observed that subompatness suÆes in Solovay'stheorem and hene the onverse to the Shimmerling-Zeman theo-rem holds. Therefore in the relevant ore models �� holds i� � isnot subompat. The results in the last setion of our paper wereinspired by these new developments.We end this introdution with a summary of our results. The se-tions an be read independently, though some of them use de�nitionsfrom earlier setions.
� In [5℄ it is shown that ertain forms of stationary reetion areonsistent with forms of ���. In Setion 2 we show that theseresults are optimal in the sense that � annot be dereased.This is an example of the sort of alibration of ombinatorialstrength disussed above.� In Setion 3, we de�ne and study \indexed square" priniplesstronger than ���. The main new idea is that the members ofC� are given indies up to � and we explore various forms ofoherene along the indies. These ombinatorial prinipleswere originally motivated by ore model theory. The mainresult is Theorem 3.1 whih identi�es a square priniple withsome strong upwards absoluteness properties.� In Setion 4 we show that if P is the Prikry foring notionassoiated to a normal measure over �, then ��0� holds inV P. The proof uses ideas from the results about absolutesquares in Setion 3 but is self-ontained; the main tehnialpoint is that given an inaessible � we an onstrut a \goodmatrix", whih is (roughly speaking) a form of ���-sequenewith additional oherene properties. We note that by resultsfrom [5℄, if � is �+-superompat then �<�0� fails in V P.� Jensen showed in unpublished work [11℄ that ��1 is stritlystronger than �2�1 . In Setion 5 we use similar methods toompare these priniples with some of the simplest of their\indexed" ounterparts from Setion 3. The upshot is thatthe indexed ���-hierarhy is interleaved with the original one.



6 JAMES CUMMINGS AND ERNEST SCHIMMERLING� The results in Setion 6 were obtained by the �rst author af-ter he learned of the Shimmerling-Zeman result mentioned afew paragraphs above. Subompatness is a natural strength-ening of 1-extendibility, and so one would expet � being1-extendible to be onsistent with ��. Atually we provesomething stronger but more tehnial to state: there is atransitive set W and a prediate ~C on W suh that (W;2; ~C)is a model of ZFC~C + there is a 1-extendible ardinal + ~C isa global square sequene. Here ZFC~C is the version of ZFCwritten in the language of set theory expanded by a predi-ate symbol for ~C, and \global square" is a lass version of� (introdued by Jensen) whih implies that �� holds for all�; this result leaves open whether we an have a 1-extendibleardinal and a de�nable global square sequene.
2. Stationary refletionIn this setion we make two observations on the relationship be-tween the ��� priniples and stationary reetion. The following re-sult was observed by Shimmerling and independently by Foremanand Magidor.Theorem 2.1. Assume that �<� = � and �<�� holds. Let T � �+ bestationary. Then there exists S � T suh that S is stationary and Sdoes not reet at any � < �+ with f(�) � �.Proof. Let ~C witness �<�� . De�ne F (�) = fot(C): C 2 C�g for all� 2 T , and �nd S � T stationary suh that F is onstant on Swith value A. Assume S reets to �, and hoose C 2 C� . Now thefuntion whih takes � 2 lim(C)\S to ot(C \�) is an injetion fromlim(C)\ S to A. Sine lim(C)\ S is unbounded (indeed stationary)in �, we have f(�) � j lim(C) \ Sj � jAj < �: �In partiular �<!� implies that every stationary subset of �+ has anon-reeting stationary subset.



INDEXED SQUARES 7Cummings, Foreman and Magidor [5℄ have made a systematistudy of the onnetion between ��� and other ombinatorial prin-iples. To set our seond result in ontext we quote some theoremsfrom [5℄.Fat 2.2 ([5℄). Let � be singular, and let ��� hold for some � < �.Then for every stationary T � �+ there exists hSi: i < f(�)i suhthat eah Si is a stationary subset of T , and there is no � < �+ suhthat f(�) > f(�) and all the Si reet at �.The proof of Fat 2.2 falls into two parts; in the �rst part a prinipleVGS� (\Very Good Sale at �") is derived from ���, and in the seondpart the onlusion of Fat 2.2 is derived from VGS�. One theme of[5℄ is that ertain onstrutions of inompat objets from squarepriniples an be done using very good sales: Fat 2.2 is an exampleof this. The next result shows that ��� is not powerful enough toimply the onlusion of Fat 2.2.Fat 2.3 ([5℄). If the existene of in�nitely many superompat ar-dinals is onsistent, then it is onsistent that(1) ���! holds.(2) For all m;n with 1 � m � n < !, if hSi: i < �mi is a sequeneof stationary subsets of f� < �!+1: f(�) < �mg then thereexists � < �!+1 suh that f(�) = �n and all the Si reet at�.On the other hand, Fat 2.2 annot in general be strengthened torule out simultaneous reetion of fewer than f(�) many sets.Fat 2.4 ([5℄). If the existene of in�nitely many superompat ar-dinals is onsistent, then it is onsistent that(1) �!�! holds.(2) For every n < !, if hSi: i < ni is a sequene of stationarysubsets of �!+1 then there exists M < ! suh that for all mwith M � m < ! there exists � < �!+1 suh that f(�) = �mand all the Si reet at �.The seond theorem of this setion shows that Fat 2.4 is lose tooptimal, in that �<�!�! is inompatible with the onlusion. Beforeproving it we need a tehnial lemma (an easy generalisation of awell-known fat about ��).



8 JAMES CUMMINGS AND ERNEST SCHIMMERLINGLemma 2.5. Let � be singular. If �<�� holds then there exists a�<�� -sequene hD�: � < �+i, with the additional property that all thelubs in S�D� are of order type less than �.Proof. Fix D � � suh that D is losed and unbounded and ot(D) =f(�). Given C a lub subset of some � < �+ with ot(C) � � wede�ne C� � C:� If ot(C) 2 lim(D) or ot(C) = � thenC� = fÆ 2 C: ot(C \ Æ) 2 Dg:� If ot(C) =2 lim(D), thenC� = fÆ 2 C: ot(C \ Æ) > max(ot(C) \ lim(D))g:It is easy to hek that C� is lub in sup(C), and that if  2 lim(C�)then C� \  = (C \ )�. Given a �<�� -sequene hC�: � < �+i, we setD� = fC�: C 2 C�g. �Theorem 2.6. Assume that � is a singular strong limit ardinal, andlet T be a stationary subset of �+. Suppose that �<�� holds. Thenthere is a sequene hSi: i < f(�)i of stationary subsets of � and aardinal � < � suh that(1) Si � T \ of(< �).(2) If � < �+ is any point with f(�) � �, then hSi: i < f(�)idoes not reet simultaneously to �.Proof. We �x a �<�� sequene C, and we assume (as we may byLemma 2.5) that all the lub sets appearing in C have order typeless than �. We also �x an inreasing sequene h�i: i < f(�)i ofregular ardinals o�nal in �, and a stationary T � �+. Let T 0 be astationary subset of T on whih the funtions � 7! jC� j and � 7! f(�)are onstant. Let i < f(�) be large enough so that both of theseonstant values are less than �i. For eah � < �+ and j < f(�), theset fot(C): C 2 C�g \ �jis an element of V�. Sine � is a strong limit ardinal, by Fodor'slemma there are sequenes hSj : j < f(�)i and hAj : j < f(�)i suhthat for every j < f(�), Sj is a stationary subset of T 0 and for every� 2 Sj, Aj = fot(C): C 2 C�g \ �j :



INDEXED SQUARES 9Suppose that hSj : j < f(�)i reets simultaneously to an ordinal� < �+. Let C be any element of C� ; by our assumptions on C weknow that ot(C) < � and so we may hoose j < f(�) large enoughthat �j > ot(C). Then lim(C)\Sj has fewer than �i many elements.This is beause, if �0 < �1 are both elements of lim(C) \ Sj, thenot(C \ �0) and ot(C \ �1) are distint elements of Aj , but jAj j < �i.Therefore f(�) < �i. �3. Indexed square priniplesIn this setion, we introdue several weak square priniples thatwere distilled from the ore model ombinatoris of [20℄ and [21℄.Perhaps the most interesting of these priniples is Slik-���. Ratherthan give the de�nition of Slik-��� here, at the start of this setion,we will lead up to it in steps. However, to give the reader an idea ofthe goal, let us go ahead and state a orollary to what we are aboutto do.Theorem 3.1. Let V � W be transitive models of ZFC and � be alimit ardinal in W . Suppose that (�+)V = (�+)W and Slik-��� holdsin V . Then both Slik-��� and ��� hold in W where � = fW (�).Combinatoris similar to the proof of this theorem were used toobtain lower bounds on the onsisteny strength of PFA in [20℄. The-orem 3.1 was the inspiration for the result in the next setion thatPrikry foring at a measurable ardinal � adds a ��0� sequene.Whaky-��� is another priniple that we will de�ne later in thissetion. On the surfae, Whaky-��� seems like a slight improvementof �<�� , but there are ases in whih it does the work of �<�0� . Again,we will state a result well in advane of giving the de�nitions. Com-binatoris similar to the proof of Theorem 3.2 were used to obtainonsisteny strength lower bounds on stationary reetion in [20℄.Theorem 3.2. Suppose that � is a strong limit ardinal and that thepriniple Whaky-��� holds. Then every stationary subset of �+ hasa non-reeting stationary subset.To orient the reader we will �ll in the missing de�nitions to makesense of the series of impliations�<�� (= Index-�<�� (= Card-index-�<�� (= Whaky-���



10 JAMES CUMMINGS AND ERNEST SCHIMMERLINGfrom left to right, after whih we will de�ne Slik-���.Our �rst de�nition is that of Index-�<�� , whih strengthens �<��by assigning ordinal indies from � + 1 to eah lub in eah C� , anddemanding that initial segments of a lub with a given index all getthe same index.De�nition 3.3. The pair (A;C) is said to witness that Index-�<��holds i� A and C are funtions suh that if � is a limit ordinal and� < � < �+, then(1) A(�) is a non-empty subset of �+ 1 of ardinality < �, and(2) if � 2 A(�), then(a) C(�; �) is a lub subset of �,(b) ot(C(�; �)) � �, and() if � 2 lim(C(�; �)), then � 2 A(�) and C(�; �) \ � =C(�; �).As one would expet, Index-��� means Index-�<�+� . It might seemmore natural to require A(�) � � in De�nition 3.3; the value of al-lowing � as an index will be remarked on after De�nition 3.4. InSetion 5, we will prove that indexing gives something new, namelythat Index-�2�1 is stritly between ��1 and �2�1 in its strength. How-ever, for the rest of this setion, most of our results will be about thease in whih � is a limit ardinal.The point of our next priniple, Card-index-�<�� , is to link infor-mation about the order type of a given lub to its index. Of ourse,several ways of doing this are possible. Considerations tied to theore model ombinatoris of [20℄ led to our hoie of \�+" here, in away that we will not make preise.De�nition 3.4. We say that (A;C) witnesses that Card-index-�<��holds i� (A;C) witnesses that Index-�<�� holds and for eah limitordinal � between � and �+,(1) either A(�) � � and jC(�; �)j � �+ for all � 2 A(�),(2) or A(�) = f�g.Here are some remarks on the de�nition.� If � is a suessor ardinal and the priniple Index-�<�� holds,then the priniple Card-index-�<�+1� holds.



INDEXED SQUARES 11� The only point of allowing � to be an index (rather than re-quiring A(�) � � in all ases) is to get a onsistent priniplewhen � is an inaessible ardinal. Note that if � is an ina-essible ardinal and (A;C) is a witness that Card-index-���holds, then A(�) = f�g whenever f(�) = �. Also note thatif � 2 lim(C(�; �)), then A(�) = f�g.� Let � be a singular ardinal and � = f(�). Suppose thatthere exists a witness that Card-index-��� holds. Then thereexists a witness (A;C) that Card-index-��� holds suh thatA(�) � � for all �. The onstrution is as follows. Firstarrange that ot(C(�; �)) < � whenever A(�) = f�g as in theproof of Lemma 2.5. Then �x a sequene h�i: i < �i thatis inreasing and unbounded in �. If A(�) � �, then letB(�) = A(�) and D(�; �) = C(�; �). If A(�) = f�g, then letB(�) = f�i < �: ot(C(�; �)) � �+i gand D(�; �i) = C(�; �) for �i 2 B(�). Then (B;D) is awitness that Card-index-��� holds and B(�) � � for all �.We will prove Theorem 3.2 after de�ning the priniple Whaky-���,whih strengthens Card-index-�<�� by requiring, roughly, that the setof indies for a given ordinal � be bounded in �.De�nition 3.5. We say that (A;C) is a witness that Whaky-���holds i� (A;C) is a witness that Card-index-�<�� holds and for everylimit ordinal � between � and �+, if A(�) � �, then sup(A(�)) < �.We remark that if � is a regular ardinal, then Whaky-��� holdsi� Card-index-�<�� holds.Proof of Theorem 3.2. Say � is a strong limit ardinal and (A;C) isa witness that Whaky-��� holds. Let S � �+ be a stationary set oflimit ordinals.First suppose that there exists a set S 0 � S that is stationary in �suh that A(�) = f�g for all � 2 S 0. By Fodor's lemma, there existsan ordinal � � � and a stationary set S 00 � S 0 suh that ot(C(�; �)) =� for all � 2 S 00. Consider an arbitrary �. Let � 2 A(�). Supposethat � 2 S 00 \ lim(C(�; �)). Then � = �, A(�) = f�g andot(C(�; �) \ �) = ot(C(�; �)) = �:But this an hold for at most one �, so S 00 does not reet to �.



12 JAMES CUMMINGS AND ERNEST SCHIMMERLINGThus, without loss of generality A(�) � � for all � 2 S. Thensup(A(�)) < �andsup (fot(C(�; �)): � 2 A(�)g) � sup ��jC(�; �)j+: � 2 A(�)	�� sup ���++: � 2 A(�)	�< �for all � 2 S. Sine � is a strong limit ardinal,hot(C(�; �)): � 2 A(�)i 2 H�for all � 2 S. By Fodor's lemma, there is a stationary S 0 � S, a setB 2 H� and a sequene of ordinals � = h��: � 2 Bi suh thatA(�) = Band hot(C(�; �)): � 2 A(�)i = �for all � 2 S 0. Consider an arbitrary �. Let � 2 A(�). Suppose that� 2 S 0 \ lim(C(�; �)). Then � 2 B = A(�) andot(C(�; �) \ �) = ot(C(�; �)) = ��:This an hold for at most one �, therefore S 0 does not reet to �. �De�nition 3.6. We say that (A;C) is a witness that Slik-��� holdsi� A and C are funtions suh that for all limit � with � < � < �+,(1) either(a) A(�) is a non-empty losed subset of �, and(b) if � 2 A(�), then(i) C(�; �) is a lub subset of �,(ii) ot(C(�; �)) � � and jC(�; �)j � �+,(iii) if � 2 lim(C(�; �)), then � 2 A(�) andC(�; �) \ � � C(�; �);and(iv) if � < � and � 2 A(�), then C(�; �) � C(�; �),(2) or else(a) A(�) = f�g,(b) C(�; �) is a lub subset of �,() ot(C(�; �)) � �, and



INDEXED SQUARES 13(d) if � 2 lim(C(�; �)), then A(�) = f�g andC(�; �) \ � = C(�; �):A witness to Slik-��� need not be a witness to any of the otherindexed square priniples that we have de�ned, not even ���, be-ause of the weaker oherene ondition (\�" instead of \=") inlause 1(b)(iii). In fat, the proof of Theorem 3.1 shows that ifSlik-��� holds, then there exists a witness with the stronger formof oherene. On the other hand, we have added lause 1(b)(iv),whih is a di�erent kind of oherene aross indies. Another newfeature is the requirement, lause 1(a), that A(�) be losed; note thatA(�) is not required to be bounded or have small ardinality.Let us also remark that if � is a singular ardinal, then the seondpossibility in De�nition 3.6 is not needed in the sense that Slik-���holds i� there is a witness (A;C) that Slik-��� holds suh thatA(�) � � for all �. The reason is just like that given in the thirdremark after De�nition 3.4.Theorem 3.1 follows immediately from the following two lemmas,the �rst of whih is obvious.Lemma 3.7. Let V � W be transitive models of ZFC and � be aardinal in W . Suppose that (�+)V = (�+)W andV j= (A;C) is a witness that Slik-��� holds:Then W j= (A;C) is a witness that Slik-��� holds:Lemma 3.8. Suppose that � is a limit ardinal, � = f(�), andthere exists a witness that Slik-��� holds. Then there exists a witness(A;C) that Slik-��� holds suh that if A(�) � �, then(1) jA(�)j � �, and(2) if � 2 lim(C(�; �)), then � 2 A(�) and C(�; �)\� = C(�; �).In partiular, (A;C) is also a witness that Card-index-��� holds.Proof. Let h�i: i < �i be a stritly inreasing ontinuous sequene ofardinals that is unbounded in �. Let (A;C) witness that Slik-���holds. From this data, we will de�ne a pair (Afat; C fat) satisfyingthe requirements of the lemma. The intuitive idea is to reursively\fatten up" eah C(�; �) for � < �.



14 JAMES CUMMINGS AND ERNEST SCHIMMERLINGIf A(�) = f�g, then let Afat(�) = f�g and C fat(�; �) = C fat(�; �).There is nothing to hek in this ase.For the rest of the proof, we turn to the only other ase, namelyA(�) � �. De�neAfat(�) = f�i: A(�) \ (�i + 1) 6= ;g :Clearly Afat(�) is a lub subset of � of ardinality at most �. If�i 2 Afat(�), then de�ne an ordinal�(�; i) = sup8:A(�) \ (�i + 1)9; :Sine A(�) is losed, �(�; i) 2 A(�) \ (�i + 1)whenever �i 2 Afat(�).Claim 3.9. If �i 2 Afat(�) and � 2 lim(C(�; �(�; i)), then�(�; i) 2 A(�) \ (�i + 1);�i 2 Afat(�);�(�; i) � �(�; i)and C(�; �(�; i)) \ � � C(�; �(�; i)) � C(�; �(�; i)):Proof. This is immediate from the de�nitions given before the state-ment of Claim 3.9 with lause 1(b)(iii) and lause 1(b)(iv) of De�ni-tion 3.6. �By reursion on �, de�ne for �i 2 Afat(�),C fat(�; �i) = C(�; �(�; i)) [[�C fat(�; �i): � 2 lim (C(�; �(�; i)))	 :This de�nition makes sense sine if � 2 lim(C(�; �(�; i))), then � < �and, by Claim 3.9, �i 2 Afat(�).The next laim shows that (Afat; C fat) satis�es lause 1(b)(ii) ofDe�nition 3.6.Claim 3.10. If �i 2 Afat(�), then jC fat(�; �i)j � �+i .Proof. By indution on �, we see that C fat(�; �i) is the union of atmost (�(�; i))+-many sets, eah of ardinality at most �+i . Sine�(�; i) � �i, we are done. �



INDEXED SQUARES 15The following laim is another step towards seeing that (Afat; C fat)satis�es lause 2 of Lemma 3.8; the full veri�ation of this will begiven in Claim 3.14.Claim 3.11. If �i 2 Afat(�) and � 2 lim (C(�; �(�; i))), then�i 2 Afat(�)and C fat(�; �i) \ � = C fat(�; �i):Proof. The part about �i 2 Afat(�) was already proved in Claim 3.9.We prove the other part by indution on �. Assume that Claim 3.11holds for all � 0 < � and that � 2 lim (C(�; �(�; i))).First suppose that � is the largest limit point of C(�; �(�; i)). Con-sider an arbitrary �0 < � suh that�0 2 lim(C(�; �(�; i))):By Claim 3.9, C(�; �(�; i)) \ � � C(�; �(�; i)):In partiular, �0 2 lim(C(�; �(�; i))):By the indution hypothesisC fat(�; �i) \ �0 = C fat(�0; �i):By the arbitrariness of �0 and the de�nition of C fat(�; �i),C fat(�; �i) = C(�; �(�; i)) [ C fat(�; �i):But C(�; �(�; i)) \ � � C(�; �(�; i)) � C fat(�; �i)by Claim 3.9 and the de�nition of C fat(�; �i). ThusC fat(�; �i) = C fat(�; �i) [ (C(�; �(�; i))� �) :It follows from the last equation that Claim 3.11 holds in the �rstase.Seond suppose that C(�; �(�; i)) has no largest limit point. Con-sider an arbitrary � 0 > � suh that � 0 2 lim (C(�; �(�; i))). ByClaim 3.9 applied to � 0 and �,C(�; �(�; i)) \ � 0 � C(� 0; �(� 0; i)):



16 JAMES CUMMINGS AND ERNEST SCHIMMERLINGIn partiular, � 2 lim (C(� 0; �(� 0; i))) :By the indution hypothesis,C fat(� 0; �i) \ � = C fat(�; �i):By the arbitrariness of � 0 and the de�nition of C fat(�; �i),C fat(�; �i) \ � = (C(�; �(�; i)) \ �) [ C fat(�; �i):But C(�; �(�; i)) \ � � C(�; �(�; i)) � C fat(�; �i)by Claim 3.9 and the de�nition of C fat(�; �i). Thus Claim 3.11 followsin the seond ase too. �Claim 3.12. Suppose that �i 2 Afat(�) and� = sup8:lim (C(�; �(�; i)))9; :ThenC fat(�; �i) = (C fat(�; �i) [ (C(�; �(�; i))� �) if � < �S�C fat(� 0; �i): � 0 2 lim (C(�; �(�; i)))	 if � = �Proof. The haraterization follows by indution on � from the de�-nition of (Afat; C fat) and Claim 3.11. �Claim 3.13. If �i 2 Afat(�), then C fat(�; �i) is lub in �.Proof. By indution on �. Assume that Claim 3.13 holds for all � 0 < �and that � 2 lim �C fat(�; �i)�. We will show that � 2 C fat(�; �i).First suppose that there is no limit point of C(�; �(�; i)) stritlygreater than �. By Claim 3.12, � must be the largest limit point ofC(�; �(�; i)). So � 2 C(�; �(�; i)) � C fat(�; �i):On the other hand, if � 0 > � and � 0 2 lim (C(�; �(�; i))), then bythe indution hypothesis and Claim 3.11,� 2 lim �C fat(�; �i) \ � 0� = lim �C fat(� 0; �i)�� C fat(� 0; �i) = C fat(�; �i) \ � 0: �



INDEXED SQUARES 17Claim 3.14. If �i 2 Afat(�) and � 2 lim �C fat(�; �i)�, then�i 2 Afat(�)and C fat(�; �i) \ � = C fat(�; �i):Proof. By indution on �. Assume that Claim 3.14 holds for all� 0 < � and that � 2 lim �C fat(�; �i)�. If � 2 lim (C(�; �(�; i))), thenwe are done by Claim 3.11. So we may assume that there is a � 0 > �suh that � 0 2 lim (C(�; �(�; i))). ThenC fat(�; �i) \ � 0 = C fat(� 0; �i)by Claim 3.11, so � 2 lim �C fat(� 0; �i)�. By the indution hypothesis,C fat(� 0; �i) \ � = C fat(�; �i). Putting the equations together, we aredone. �The next result implies that (Afat; C fat) satis�es lause 1(b)(iv) ofDe�nition 3.6.Claim 3.15. If �i 2 Afat(�) and i < j, then �j 2 Afat(�) andC fat(�; �i) � C fat(�; �j):Proof. Obvious from the orresponding assumption on (A;C) andthe de�nition of (Afat; C fat). �From the laims above, it is immediate that (Afat; C fat) satis�esthe requirements of Lemma 3.8. �
4. Prikry foring, good matries and weak squareIt is proved in [17℄ that after foring with Prikry foring at a mea-surable ardinal � the weak square priniple ��� holds. In this setionwe strengthen this result, showing that if � is measurable in V andW is a Prikry extension of V then �!� holds in W . In general we annot hope to improve this; by Theorem 2.1 and the following result,doing Prikry foring at a suÆiently large ardinal � will make �<!�fail in the generi extension.



18 JAMES CUMMINGS AND ERNEST SCHIMMERLINGFat 4.1 ([5℄). If � is �+-superompat, P is Prikry foring de�nedfrom some normal measure on �, and S = f� < �+: f(�) < �g thenV P j= \�nite sets of stationary subsets of S reet simultaneously":A note on history: Originally we had a false proof of Theorem4.2 based on Theorem 3.1 and an inorret version of Lemma 4.4.Matt Foreman pointed out that we ould get the onlusion morediretly from the �rst version of Lemma 4.4. We then disovered and�xed the problem in Lemma 4.4, retaining Foreman's diret way ofdrawing the desired onlusion.Theorem 4.2. Let � be measurable in V . Let U be a normal measureon � and let PU be the Prikry foring de�ned from U . If W is ageneri extension of V by PU then �!� holds in W .Proof. The key idea is to do most of the work in V . We will buildin V an objet alled a \good matrix", and then working in W wewill read o� the required �!�-sequene. It is helpful to think of theonstrution of a good matrix as a re�nement of the (very easy)onstrution of a ���-sequene for � inaessible.The proof will be strutured as follows: we will start by de�ninga good matrix, will show how to use one to build a �!� -sequene(hopefully motivating the de�nition) and will �nish by onstrutingone.Let � be a regular ardinal with � > �1. We will say that a setA � � is a lub� subset of � if and only if there is C lub in � suhthat f� 2 C: f(�) > !g � A. It is easy to see that the olletion oflub� subsets of � is a normal �lter on �, and that any unboundedsubset of � whih is losed under unountable suprema is lub�.We laim that every lub� subset A of � has measure one for thenormal measure U . To see this let C be lub in � suh that f� 2C: f(�) > !g � A, and let j: V �! M be the ultrapower mapassoiated with U . Sine j(C)\� = C and j(C) is losed we see that� 2 j(C), and sine �M �M we see that M j= f(�) > !; it followsby the elementarity of j that � 2 j(A), and so by the normality of Uthat A 2 U .It is a well-known fat about Prikry foring that any PU -generi!-sequene is eventually ontained in any set in U . In partiular we



INDEXED SQUARES 19see that a PU -generi !-sequene is eventually ontained in any lub�subset of � from the ground model.De�nition 4.3. Let � be an inaessible ardinal, and letS = f� < �+: f(�) < �g:A good matrix for � is an array of setshC(�; i): � 2 S; i 2 X�isuh that(1) C(�; i) is lub in �.(2) X� is a lub� subset of �.(3) ot(C(�; i)) < �.(4) If i 2 X� and � 2 lim(C(�; i)) then i 2 X� and C(�; i)\� =C(�; i).(5) If i; j 2 X� and i < j then C(�; i) � C(�; j).(6) If �; � 2 S with � < � then � 2 lim(C(�; i)) for some i 2 X�(and thus for all larger i 2 X� by the preeding lause).We now show how to �nish the proof of Theorem 4.2, given theexistene of a good matrix for �. Let hC(�; i): � 2 S; i 2 X�i be suha matrix. Let h�i: i < !i be a Prikry sequene generi for the foringPU . As we showed above, for every � the lub� set X� ontains a�nal segment of h�i: i < !i.We de�ne our �!� -sequene hD�: � < �+; lim(�)i. Let � < �+ bea limit ordinal. We distinguish two ases.Case I. � 2 S. Let D� = fC(�; �j): �j 2 X�g.Case II. � =2 S, so that V j= f(�) = � andW j= f(�) = f(�) = !.Choose C� to be any set whih is lub in � with ot(C�) = !, andthen set D� = fC�g.We need to verify that we have de�ned a �!�-sequene. It is learthat jD�j � ! and D� is a family of lubs eah with order type lessthan �. To �nish, suppose that C 2 D� and � 2 lim(C). Clearly� 2 S, beause otherwise C = C� and C� has no limit points. SoC = C(�; �j) for some j with �j 2 X�. By the properties of a goodmatrix �j 2 X� and C(�; �j) = C \ �, so that C \ � 2 D�.This shows that hD�: � < �+i is a �!� -sequene, so �!� holds in Wand we are done one we have shown the following Lemma.



20 JAMES CUMMINGS AND ERNEST SCHIMMERLINGLemma 4.4. If � is inaessible there is a good matrix.Proof. We onstrut a good matrix by indution on � 2 S.Case 1: � = !. We set X! = � and C(!; i) = ! for all i.Case 2: � = � + ! for some limit ordinal � with f(�) < � (that isto say � 2 S). We set X� = X� and C(�; i) = C(�; i) [ [�; �) for alli 2 X�.Clearly C(�; i) is lub in �. By de�nition X� = X�, and so X�is lub�. Sine � = � + !, ot(C(�; i)) = ot(C(�; i)) + ! and soot(C(�; i)) < �.If i 2 X� and  2 limC(�; i) then either  2 limC(�; i) or  = �.In the former ase we have by indution that i 2 X and C(; i) =C(�; i) \ , in the latter that i 2 X� = X and C(; i) = C(�; i): ineither ase C(�; i) \  = C(; i).If i; j 2 X� with i < j then by indution C(�; i) � C(�; j), so thatC(�; i) � C(�; j). Finally if  2 S\� then either  2 S\� or  = �:if  2 S \ � then by indution  2 lim(C(�; i)) for some i and then 2 lim(C(�; i)) for the same i, while if  = � then  2 lim(C(�; i))for every i 2 X�.Case 3: f(�) = ! and � is a limit of limit ordinals. We hooseh�m: m < !i an inreasing sequene of ordinals in S whih is o�nalin �. We setX� = fi < �: 8m < ! i 2 X�m ^ 8m < n < ! �m 2 lim(C(�n; i))g:X� is a lub� set beause it is a �nal segment of Tj X�j .We observe that if i 2 X� then C(�m; i) = C(�n; i) \ �m for allm < n < !. We now set C(�; i) = SmC(�m; i) for all i 2 X�.C(�; i) is lub in � beause every initial segment is an initialsegment of C(�m; i) for some m. A similar argument shows thatot(C(�; i)) < �. If � 2 lim(C(�; i)) then � 2 lim(C(�m; i)) for somem, and by indution i 2 X� and C(�; i) = C(�m; i)\� = C(�; i)\�.If i; j 2 X� with i < j then by indution C(�m; i) � C(�m; j) forall m < !, so that C(�; i) � C(�; j). Finally if � 2 S \ � then� 2 S\�m for some m, and so by indution � 2 lim(C(�m; i)) for alllarge i 2 X�m; it follows that � 2 lim(C(�; i)) for any large enoughi 2 X�.



INDEXED SQUARES 21Case 4: ! < f(�) < �. Let f(�) = � say. As in Case 3 we �xh�m: m < �i an inreasing and ontinuous sequene of members of Swhih is o�nal in �. We de�neY� = fi < �: 8m < � i 2 X�m and 8m < n < � �m 2 limC(�n; i)g:Note that Y� depends on the hoie of the sequene h�m: m < �i usedin its de�nition. Exatly as in Case 3 Y� is a lub� set, and if i 2 Y�then C(�m; i) = C(�n; i) \ �m for all m < n < �.Unfortunately Y� will not quite do as a andidate for X� beauseits dependene on the hoie of h�m: m < �i would ause a problemin Case 5. We hoose X� in a more anonial way and make it aslarge as possible. To be more preise we letX� = fi < �: 9E lub in � 8 2 lim(E)(i 2 X ^ E \  = C(; i))g:If i 2 Y� and we let E = SmC(�m; i) then it is easy to hek that Ewitnesses i 2 X�, so that Y� � X�.Suppose that i 2 X� and E, E 0 are both lubs in � witnessing this.Then E \ E 0 is lub in � andE = [2lim(E\E0)C(; i) = E 0:
For eah i 2 X�, we now de�ne C(�; i) to be the unique E whih islub in � and is suh that 8 2 lim(E) E \  = C(; i). Notie thatif i 2 Y� then automatially C(�; i) = SmC(�m; i).Sine every initial segment of C(�; i) is an initial segment of C(; i)for some  < �, ot(C(�; i)) < �. If � 2 lim(C(�; i)) then � 2lim(C(; i)) for some  2 lim(C(�; i)), and we have by indutionthat i 2 X� and C(�; i) = C(; i) \ � = C(�; i) \ �.Let i; j 2 X� with i < j. Let C(�; i) = E and C(�; j) = F . ThenE = [2lim(E\F )C(; i) � [2lim(E\F )C(; j) = F;
that is to say that C(�; i) � C(�; j). Finally we may argue as inCase 3 that S \ � � Si2Y� limC(�; i), whih suÆes sine Y� � X�.Case 5: � = �+! where f(�) = �. We �x h�i: i < �i an inreasingand ontinuous sequene of members of S whih is o�nal in �. LetZ = fi < �: 8j < i i 2 X�j and 8j < k < i �j 2 lim(C(�k; i))g:



22 JAMES CUMMINGS AND ERNEST SCHIMMERLINGWe laim that Z is lub� in �. To see this �rst observe that ifD = fi < �: 8j < i i 2 X�jg then D is a diagonal intersetion ofsets in the lub� �lter, and sine that �lter is normal D is a lub�set. De�ne f : [�℄2 �! � by setting f(j; k) equal to the least i 2 X�kwith �j 2 limC(�k; i), and let C be the lub set of i < � whih arelosed under f . If i 2 D \ C then(1) Sine i 2 D, i 2 X�j for all j < i.(2) If j; k < i then sine i 2 C we have f(j; k) < i, and byde�nition f(j; k) 2 X�k and �j 2 lim(C(�k; f(j; k))). Sinei 2 D we also have i 2 X�k , and so by the properties of a goodmatrix C(�k; f(j; k)) � C(�k; i) and so �j 2 lim(C(�k; i)).It follows that D \ C � Z, and so Z is a lub� set.We let X� = fi 2 D \ C: f(i) > !g. Let i 2 X� and onsider theonstrution at level �i; sine f(i) > ! and the sequene h�j : j < �iis ontinuous, f(�i) = f(i) > ! and the relevant lause of thede�nition is Case 4.If we let E = Sj<iC(�j; i) then the fat that i 2 Z and theoherene properties of the good matrix imply that 8 2 lim(E) E \ = C(; i), so that by the de�nition of X�i and C(�i; i) from Case4 i 2 X�i and C(�i; i) = Sj<iC(�j; i).We de�ne C(�; i) = C(�i; i) [ f�ig [ [�; �):Clearly C(�; i) is lub in �, and ot(C(�; i)) = ot(C(�i; i))+! < �.If  2 limC(�; i) then either  2 limC(�i; i) or  = �i, and ineither ase it is easy to see that i 2 X and C(; i) = C(�i; i) \  =C(�; i) \ .Let i; j 2 X� with i < j. By indutionC(�i; i) =[k<iC(�k; i) �[k<iC(�k; j) � [k<jC(�k; j) = C(�j; j):
Sine C(�j; j) is lub in �j and C(�i; i) is o�nal in �i, it follows that�i 2 C(�j; j). Therefore by de�nition C(�; i) � C(�; j).Finally let  2 S \ �, and observe that sine � =2 S we haveS \ � = S \ �. Find i suh that  < �i, and then j 2 X� suhthat i < j and  2 limC(�i; j). Sine C(�j; j) = Sk<j C(�k; j), 2 limC(�j; j).This onludes the proof of Lemma 4.4. �



INDEXED SQUARES 23The onstrution of a good matrix for � in Lemma 4.4 onludesthe proof of Theorem 4.2. �It is natural to ask what happens when the o�nality of � ishanged to some value other than !, for example by Radin foring.Apter and Cummings [1℄ studied this question and used the ideas ofTheorem 4.2 and Fat 4.1 to showFat 4.5. Let GCH hold and let � be a �+5-superompat ardinal.Then there exists a foring poset P suh that in V P(1) � is �+5-superompat.(2) For every singular ardinal � < �(a) There exists S � �+ stationary suh that any family ofsize less than f(�) of stationary subsets of S reetssimultaneously to a point of o�nality � for unboundedlymany � < �.(b) The ombinatorial priniple �f(�)� holds.We also note a onnetion with some work of Gitik, Dzamonja andShelah. Strengthening a result of Gitik [10℄, Dzamonja and Shelah[7℄ showed some results on \outside guessing of lubs" whih havethe following orollary:Fat 4.6. Let V �W be inner models of ZFC and let GCH hold in V .Suppose that � is a W -ardinal suh that �+V = �+W , W j= f(�) = !and V j= � is inaessible. Then there is in W an !-sequene whihis o�nal in � and is eventually ontained in every lub� subset of �from V .It follows that Theorem 4.2 an be generalised to a wider lass ofextensions. 5. Distinguishing squaresJensen showed in unpublished work [11℄ that��1 is stritly strongerthan �2�1 . His methods an be used to distinguish the priniples ���for a �xed regular �, and similar results an be proved [5℄ for � sin-gular. In this setion we use methods similar to those of [11℄ to showwhere the simplest indexed versions of weak square priniples �t in.Theorem 5.1. Let � be Mahlo. Then



24 JAMES CUMMINGS AND ERNEST SCHIMMERLING(1) There is a foring extension in whih � = �2, �2�1 holds andIndex-�2�1 fails.(2) There is a foring extension in whih � = �2, Index-�2�1 holdsand ��1 fails.Proof. We will prove the �rst laim of the theorem in some detail,and then indiate how to modify the proof to give the seond laim.Let Æ be inaessible. We begin by desribing a ountably losedforing PÆ whih will ollapse Æ to be �2 and at the same time will adda �2�1-sequene. The sequene we add will have the speial propertythat at points of unountable o�nality it only gives a single lub set.p 2 PÆ i� p is a funtion suh that(1) dom(p) is a ountable set of limit ordinals less than Æ.(2) If f(�) = ! and � 2 dom(p) then 1 � jp(�)j � 2 and eahset in p(�) is a lub subset of � with ountable order type.(3) If f(�) > ! then p(�) = fCg where C is a losed boundedsubset of � with ountable order type, and the largest pointof C is greater than sup(dom(p) \ �).(4) If � 2 dom(p), C 2 p(�) and � 2 lim(C), then � 2 dom(p)and C \ � 2 p(�).If p; q 2 PÆ then p � q i�(1) dom(q) � dom(p).(2) For all � 2 dom(q)(a) If f(�) = ! then p(�) = q(�).(b) If f(�) > !, p(�) = fCg and q(�) = fDg then D =C \ (max(D) + 1).Lemma 5.2. Let Æ be inaessible. Then� PÆ is Æ-.. and ountably losed.� PÆ ollapses Æ to �2 and adds a �2�1-sequene.Proof. This is routine. The only slightly deliate point omes inheking that PÆ is ountably losed. Let hpn: n < !i be a dereasingsequene of onditions, and let � 2 Sn dom(pn) be an ordinal suhthat f(�) > ! and the value of pn(�) does not eventually stabilisefor large n. The third lause in the de�nition of a ondition impliesthat max pn(�) > sup(dom(pn) \ �), so that if � = supnmax pn(�)then � =2 Sn dom(pn) and we are at liberty to de�ne a lower boundp! for hpn: n < !i with p!(�) = fSn pn(�)g. �



INDEXED SQUARES 25Now we suppose that ; Æ are inaessible with  < Æ. We will showthat PÆ an be viewed as a three step iteration P � T � Q , where Tadds a suitable lub at  and Q adds suitable lubs in the interval(; Æ). Conditions in T and Q are ountable sets of ordinals, and sosine PÆ is ountably losed we will have T � V and Q � V (thoughof ourse these posets will not be members of V ).De�nition 5.3. Let ; Æ be inaessible with  < Æ.(1) If ~C = hC�: � < i is the sequene added by P , then T is theposet in V [~C℄ de�ned as follows.(a) t 2 T i� t is a ountable, losed and bounded subset of suh that 8� 2 lim(t) t \ � 2 C�.(b) If t; t0 2 T then t � t0 i� t = t0 \ (max(t) + 1).(2) If ~C = hC�: � < i is the sequene added by P then Q is theposet in V [~C℄ de�ned as follows:(a) q 2 Q i� q is a funtion suh that(i) dom(q) is a ountable set of limit ordinals in theinterval (; Æ).(ii) If f(�) = ! and � 2 dom(q) then 1 � jq(�)j �2 and eah set in q(�) is a lub subset of � withountable order type.(iii) If f(�) > ! then q(�) = fCg where C is a losedbounded subset of �, C has ountable order type,and max(C) > sup(dom(q) \ �).(iv) If � 2 dom(q), C 2 q(�) and � 2 lim(C) then(A) If � > , then � 2 dom(q) and C \ � 2 q(�).(B) If � < , then C \ � 2 C�.(b) If q; q0 2 Q then q0 � q i�(i) dom(q) � dom(q0).(ii) For all � 2 dom(q)(A) If f(�) = ! then q0(�) = q(�).(B) If f(�) > !, q(�) = fCg and q0(�) = fDgthen D = C \ (max(D) + 1).Remark: We an de�ne Q in V P beause  an not be a limitpoint of any lub in C� for  < � < Æ.



26 JAMES CUMMINGS AND ERNEST SCHIMMERLINGLemma 5.4. Let , Æ be inaessible ardinals with  < Æ. Thenthere is an isomorphism between a dense subset of PÆ and a densesubset of P � T � Q .Moreover, Q is ountably losed in V P�T.Proof. Let D0 = fp 2 PÆ :  2 dom(p)g and D1 = fq: 9p 2 D0 q =(p � ; p(); p � (; Æ))g.It is easy to see that D0 is dense in PÆ , D1 � P � T � Q , and themap �: p 7�! (p � ; p(); p � (; Æ)) is an isomorphism between D0and D1. In fat we wrote the de�nitions of T and Q to make thistrue.It remains to be seen that D1 is dense in P �T �Q . To see this let(p; _t; _q) be an arbitrary ondition in P � T � Q . Sine Q � V we may�nd (p1; _t1) � (p; _t) and q suh that (p1; _t1)  _q = �q and then p2 � p1and t1 suh that p2  _t1 = �t1. By onstrution (p2; t1; q) 2 P � T � Qand (p2; t1; q) � (p; _t; _q).Now p2  �t1 2 T and (p2; t1)  �q 2 Q . It is routine to hek that ifwe de�ne p� = p2 [ f(; t1)g [ q then p� 2 PÆ and �(p�) = (p2; t1; q).The proof that Q is ountably losed in V P�T is just like the proofthat PÆ is ountably losed in V . �We will be done one we have proved the following result.Claim 5.5. If � is Mahlo then Index-�2�1 fails in V P� .Proof. Suppose not. For simpliity we assume that the empty ondi-tion fores that the priniple holds, sayP� \( _A; _C) witnesses Index-�2�1 ."By the �-.. for P� and the Mahloness of � we may �nd Æ < � suhthat Æ is inaessible and ( _A � Æ; _C � Æ � �1) is a name in V PÆ . Thisimplies thatPÆ \( _A � Æ; _C � Æ � �1) witnesses Index-�2�1 ."We now identify P� with PÆ � T � Q where T , Q are de�ned as inLemma 5.4. Fix a ondition (p; t; q) whih fores that � 2 A(Æ) forsome � < �1. If _D = _C(Æ; �) then (p; t; q) fores that _D is lub in Æ,ot( _D) = �1 and 8 2 lim( _D) _D \  = _C(; �).



INDEXED SQUARES 27The objet _D annot exist in the generi extension by PÆ , so welaim that we may �nd onditions (p0; t0; q0) and (p0; t1; q1) both ex-tending (p; t; q) and an ordinal � < Æ suh that(p0; t0; q0)  �� 2 _D(p0; t1; q1)  �� =2 _D
If this were not so then we would have8p0 � p 8�; t0; q0; t1; q1 (p0; t0; q0)  �� 2 _D () (p0; t1; q1)  �� 2 _D;whih would imply that below (p; t; q) the name _D was equivalent toa PÆ -name.We build sequenes hpn: 1 � n < !i, ht2n+10 : n < !i, ht2n+21 : n < !i,hq2n+10 : n < !i, hq2n+21 : n < !i, and h�n: 1 � n < !i suh that(1) pn 2 PÆ , p1 � p0 and hpn: 1 � n < !i is dereasing.(2) (p1; t10; q10) � (p0; t0; q0) and h(p2n+1; t2n+10 ; q2n+10 ): n < !i is de-reasing.(3) (p2; t21; q21) � (p0; t1; q1) and h(p2n+2; t2n+21 ; q2n+21 ): n < !i is de-reasing.(4) h�n: 1 � n < !i is an inreasing sequene of ordinals suh that(a) �1 > maxfmax(t0);max(t1); �g.(b) �2n+1 < maxfmax(t2n+10 ); sup dom(p2n+1)g < �2n+2.() �2n+2 < maxfmax(t2n+21 ); sup dom(p2n+2)g < �2n+3.(d) (p2n+1; t2n+10 ; q2n+10 )  ��2n+1 2 _D.(e) (p2n+2; t2n+21 ; q2n+21 )  ��2n+2 2 _D.Let p! 2 PÆ be a lower bound for the sequene hpn: 1 � n < !i.Sine Q is ountably losed in V PÆ we may �nd q�0 and q�1 suh that(p!; q�0) is a lower bound for h(p2n+1; q2n+10 ): n < !i and (p!; q�1) is alower bound for h(p2n+2; q2n+21 ): n < !i. Now de�ne�� = supn �n;t�0 = [n t2n+10 [ f��g;t�1 = [n t2n+21 [ f��g;p� = p! [ f(��; ft�0; t�1g)g:



28 JAMES CUMMINGS AND ERNEST SCHIMMERLINGIt is routine to hek that (p�; t�0; q�0) and (p�; t�1; q�1) are both ondi-tions in PÆ � T � Q .The onditions (p�; t�0; q�0) and (p�; t�1; q�1) both fore �� to be a limitpoint of _D, so (p�; t�0; q�0)  �� 2 _C(��; �)(p�; t�1; q�1)  �� =2 _C(��; �)
This is absurd beause _C(��; �) is a name in V PÆ , so that thepreeding equations imply p�  �� 2 _C(��; �) and p�  �� =2 _C(��; �).�This onludes the proof of the �rst laim of Theorem 5.1.For the seond laim, we start by de�ning a poset P�Æ whih is de-signed to add an Index-�2�1-sequene while ollapsing an inaessibleÆ to beome �2. This sequene will have the speial properties thatit only gives one lub set at limit ordinals of o�nality greater than!, and that the only indies whih are used are 0 and 1.p 2 P�Æ i� p is a pair (a; ) where(1) a is a funtion with dom(a) a ountable set of limit ordinalsless than Æ.(2) For every � 2 dom(a), a(�) is a nonempty subset of f0; 1g. Iff(�) > ! then ja(�)j = 1.(3)  is a funtion with domain f(�; �): � 2 dom(a); � 2 a(�)g.(4) If f(�) = ! and (�; �) 2 dom() then (�; �) is a lub subsetof � with ountable order type.(5) If f(�) > ! and (�; �) 2 dom() then (�; �) is a losedbounded subset of � with ountable order type, with the ad-ditionla property that max((�; �)) > sup(dom(a) \ �).(6) If (�; �) 2 dom() and � 2 lim((�; �)) then (�; �) 2 dom()and (�; �) = � \ (�; �).Conditions in P�Æ are ordered as follows: (a1; 1) � (a0; 0) i�(1) dom(a0) � dom(a1).(2) For all � 2 dom(a0)(a) a0(�) = a1(�).(b) For all � 2 a0(�), 0(�; �) = 1(�; �).As before it is easy to see that



INDEXED SQUARES 29(1) P�Æ is ountably losed and Æ-..(2) P�Æ ollapses Æ to �2 and adds (A;C) witnessing Index-�2�1 .P�Æ is suseptible to a fator analysis very similar to that whih wegave for PÆ above. The main di�erene is that we need two versionsof T and Q , reeting the fat that at  we must deide whether toput a lub set with index 0 or a lub set with index 1.Lemma 5.6. Let ; Æ be inaessible with  < Æ. There exist posetsT0 ; T1 ; Q 0 ; Q 1 2 V P suh that(1) If p = (a; ) 2 P�Æ and (; 0) 2 dom() then P�Æ=p is isomorphito a dense subset ofP�=(a � ;  �  � 2)� T0=(; 0)� Q 0=(a � (; Æ);  � (; Æ)� 2):(2) If p = (a; ) 2 P�Æ and (; 1) 2 dom() then P�Æ=p is isomorphito a dense subset ofP�=(a � ;  �  � 2)� T1=(; 1)� Q 1=(a � (; Æ);  � (; Æ)� 2):(3) Q j is ountably losed in V P��Tj .Proof. The de�nitions and proofs are like those of De�nition 5.3 andLemma 5.4. �Claim 5.7. If � is Mahlo then ��1 fails in V P�� .Proof. Suppose thatP�� \h _D�: � < �i is a ��1-sequene"By the �-.. for P�� and the Mahloness of � we may �nd Æ < � suhthat Æ is inaessible and h _D�: � < Æi is a name in V P�Æ . This impliesthat P�Æ \h _D�: � < Æi is a ��1-sequene"We now onsider the P��-name _D = _DÆ. We laim that we may�nd onditions (p; t0; q0) 2 P�Æ � T0 � Q 0 and (p; t1; q1) 2 P�Æ � T1 � Q 1together with an ordinal � < Æ suh that either(p; t0; q0)  �� 2 _D(p; t1; q1)  �� =2 _D
or (p; t0; q0)  �� =2 _D



30 JAMES CUMMINGS AND ERNEST SCHIMMERLING(p; t1; q1)  �� 2 _D
To see this we �rst �nd onditions (p0; u00; r00) and (p0; u01; r01) fromPÆ � T0 � Q 0 and an ordinal � suh that(p0; u00; r00)  �� 2 _D;(p0; u01; r01)  �� =2 _D:

This is possible beause _D names a set whih is not in V PÆ . We now�nd (p; u1; r1) in PÆ � T1 � Q 1 suh that p � p0 and (p; u1; r1) deidesthe statement \� 2 _D", and then hoose ti and qi aordingly.We build sequenes hpn: 1 � n < !i, ht2n+10 : n < !i, ht2n+21 : n < !i,hq2n+10 : n < !i, hq2n+21 : n < !i, and h�n: 1 � n < !i suh that(1) pn 2 PÆ , p1 � p0 and hpn: 1 � n < !i is dereasing.(2) (p2n+1; t2n+10 ; q2n+10 ) 2 PÆ �T0 �Q 0 , (p1; t10; q10) � (p; t0; q0), andh(p2n+1; t2n+10 ; q2n+10 ): n < !i is dereasing.(3) (p2n+2; t2n+21 ; q2n+21 ) 2 PÆ �T1 �Q 1 , (p2; t21; q21) � (p; t1; q1), andh(p2n+2; t2n+11 ; q2n+21 ): n < !i is dereasing.(4) h�n: 1 � n < !i is an inreasing sequene of ordinals suh that(a) �1 > maxfmax(t0);max(t1); �g.(b) �2n+1 < maxfmax(t2n+10 ); sup dom(p2n+1)g < �2n+2.() �2n+2 < maxfmax(t2n+21 ); sup dom(p2n+2)g < �2n+3.(d) (p2n+1; t2n+10 ; q2n+10 )  ��2n+1 2 _D.(e) (p2n+2; t2n+21 ; q2n+21 )  ��2n+2 2 _D.Let �� = Sn �n, and let p! be a lower bound for hpn: 1 � n < !i.De�ne u0 = [n t02n+1 [ f��g;u1 = [n t12n+2 [ f��g;p� = p! [ f((��; 0); u0); ((��; 1); u1):gUsing the ountable losure of the Q j , we �nd r0 and r1 suh that(p�; u0; r0) is a lower bound for h(p2n+1; t2n+10 ; q2n+10 ): n < !i, and(p�; u1; r1) is a lower bound for h(p2n+2; t2n+21 ; q2n+21 ): n < !i.



INDEXED SQUARES 31The onditions (p�; u0; r0) and (p�; u1; r1) both fore �� to be alimit point of _D, so (p�; u0; r0)  �� 2 _D��(p�; u1; r1)  �� =2 _D��
But _D�� is a V PÆ -name so p�  �� 2 _D�� and p�  �� =2 _D�� . This is aontradition. �This onludes the proof of Theorem 5.1. �6. Global square and 1-extendible ardinalsIn this setion we investigate the question of how strong a largeardinal axiom has to be before it beomes inompatible with theexistene of square sequenes. We start by realling the de�nition ofa 1-extendible ardinal.De�nition 6.1. � is 1-extendible i� there exist a ardinal � > �and �: H�+ �! H�+ an elementary embedding with rit(�) = � and�(�) = �.For more information about extendible ardinals see Kanamori'sbook[14℄. We note that if  is a ardinal then  is de�nable in H+ asthe largest ardinal, so that the demand that �(�) = � in the de�ni-tion of 1-extendibility is superuous; it follows from the elementarityof the map �.Jensen [13℄ introdued a strengthening of 1-extendibility alledquasiompatness. For expository purposes we will also de�ne anintermediate notion 1-extendible in A.De�nition 6.2. Let � be a ardinal.(1) For A � H�+, � is 1-extendible in A i� there exist a ardinal� > �, a set B � H�+ and an elementary embedding � from(H�+ ;2; A) to (H�+ ;2; B), suh that �(�) = � and the ritialpoint of � is �.(2) � is quasiompat i� � is 1-extendible in A for all A � H�+.Jensen showed that if ~C = hC�: � < �+i is suh that C� � � forall �, and � is 1-extendible in ~C then ~C is not a ��-sequene. In



32 JAMES CUMMINGS AND ERNEST SCHIMMERLINGpartiular if � is quasiompat then �� fails. Reeting on this proofJensen introdued the notion of subompatness.De�nition 6.3. Let � be a ardinal. � is subompat i� for allA � H�+ there exist a ardinal � < �, a set a � H�+ and anelementary embedding � from (H�+;2; a) to (H�+ ;2; A), suh thatrit(�) = � and �(�) = �.Jensen's argument shows that if � is subompat then �� fails. Wenote that a subompat ardinal need not be measurable. In fat if� is measurable and subompat and U is any normal measure on �then it is routine to hek that � is subompat in Ult(V; U), so thatthere are many subompat ardinals below �.At this point a few words about the inner model program are inorder. The goals of the program are to onstrut anonial \L-like"inner models for large ardinal axioms, and to analyse the internalstruture of these models and their relation to V . This analysis anbe used to obtain lower bounds on onsisteny strength for ombina-torial statements. We refer the reader to the survey papers [23℄ and[15℄ and the books [19℄ and [24℄ for more information.The inner models whih are studied in the inner model programhave the form L[ ~E℄, where ~E is a sequene of extenders whih issubjet to ertain �ne-strutural onditions; we will refer to modelsof this standard type as \L[ ~E℄ models". It is antiipated that alllarge ardinal axioms below the level of superompatness an holdin L[ ~E℄-models, but urrently this has only been proved up to slightlybeyond the level of a measurable limit of Woodin ardinals.Shimmerling and Zeman have shown that in any L[ ~E℄-model, ifthere are no subompat ardinals then �� holds for all �. Fromthe disussion in the previous paragraph, this shows that �� holdsfor every � is onsistent with large ardinals up to slightly beyond ameasurable limit of Woodin ardinals. It should eventually be possi-ble to show that �� holds for every � is onsistent with the existeneof a 1-extendible ardinal by onstruting a suitable L[ ~E℄-model; inthis setion we will use foring to prove this onsisteny result. Atu-ally we prove something slightly stronger but more tehnial to state,whih needs a preliminary de�nition.De�nition 6.4. hC�: � 2 ON; f(�) < �i is a global �-sequene i�



INDEXED SQUARES 33(1) For every singular ordinal �, C� is lub in � with ot(C�) < �.(2) If f(�) < � and � 2 lim(C�), then f(�) < � and C� =C� \ �.Jensen proved that if V = L there is a global square sequene, andthat if a global square sequene exists then �� holds for all �. Wean now state the result of this setion preisely.Theorem 6.5. Let GCH hold, let � be 1-extendible as witnessed by�: H�+ �! H�+, and let Æ be inaessible with Æ > �. Then in somegeneri extension there is a transitive set W and a prediate ~C on Wsuh that (W;2; ~C) is a model of ZFC~C + � is 1-extendible + ~C is aglobal square sequene.The rest of this setion will be devoted to a proof of this theorem.Before starting the proof a few remarks are in order:(1) Doug Burke [3℄ showed that the existene of a superstrongardinal is onsistent with �� holds for every �.(2) At �rst sight the most natural proedure for showing that a1-extendible ardinal is onsistent with global square wouldbe to start with a model with some large ardinal �, use lassforing to add a global square sequene and then argue thatthe resulting struture is a model of set theory in whih �is 1-extendible. We were unable to make this senario workwithout assuming some additional reetion properties for thelass of ordinals, whih amounted to assuming that the uni-verse has the form VÆ for Æ inaessible; we therefore deidedto eliminate the ompliations of lass foring and build atransitive set model of our desired hypothesis by set foring.(3) It is easy to see that if � is 1-extendible then � is 1-extendiblein A for every de�nable A, so that there an be no ��-sequene whih is de�nable in H�+. While we are on thesubjet of de�nability we note that in Theorem 6.5 the se-quene ~C is not de�nable in W , so our theorem leaves openwhether a de�nable global square sequene is onsistent withthe existene of a 1-extendible ardinal.(4) Jensen showed that if �� holds for all � and a weak form ofglobal square holds on singular ardinals, then global squareholds. Zeman showed that the weak form of global square



34 JAMES CUMMINGS AND ERNEST SCHIMMERLINGholds in all L[ ~E℄ models. Combining these results with theShimmerling-Zeman result, we see that global square holdsin L[ ~E℄ if L[ ~E℄ has no subompat ardinals. See [22℄.The following de�nition is not standard usage but is onvenienthere.De�nition 6.6. Let � be an ordinal. A GS(�)-sequene is a sequenehC�: � < �; f(�) < �i where(1) For every singular ordinal � < �, C� is a lub subset of �with ot(C�) < �.(2) If f(�) < � and � 2 lim(C�), then f(�) < � and C� =C� \ �.Intuitively a GS(�)-sequene is a potential initial segment of aglobal square sequene.We now state our large ardinal hypothesis, whih will be in e�etfor the rest of this setion:Hypothesis: GCH holds and there are regular ardinals � < � < Æsuh that(1) There exists j: H�+ �! H�+ suh that rit(j) = �, j(�) = �and j is elementary (that is to say j witnesses that � is 1-extendible).(2) Æ is inaessible.Our plan for proving Theorem 6.5 is as follows: we will build atwo-step generi extension V [G℄[g℄ suh that(1) Æ is inaessible in V [G℄[g℄.(2) V V [G℄Æ = V V [G℄[g℄Æ (we denote this model by VÆ[G℄ below).(3) VÆ[G℄ j= \� is 1-extendible".(4) In V [G℄[g℄ there is a sequene ~C = hC�: � < Æ; f(�) < �isuh that(a) ot(C�) < �, and 8� 2 lim(C�) C� = C� \ �.(b) (VÆ[G℄;2; ~C) is a model of ZFC~C .Before giving the details of the onstrution we disuss a ouple ofdistintive features. We note that very similar issues arise (and aredisussed in more detail) in a paper by Cummings, Dzamonja andShelah [4℄.



INDEXED SQUARES 35The onstrution is a \Reverse Easton" iteration of the same gen-eral type as those disussed in Baumgartner's survey [2℄. It is om-mon in Reverse Easton iterations for the foring being done at stage to be -losed, but in our situation we will only assume that it is< -strategially losed. We reall the de�nition of strategi losure.De�nition 6.7 (Foreman [9℄). Let  be a ardinal. A poset P is< -strategially losed if and only if for every ordinal � <  playerII wins the following two-player game of perfet information. PlayersI and II ollaborate to build a dereasing hain hp�: 0 < �i in P withplayer I playing at odd � and player II at even � (inluding all limitstages). Player II wins if play proeeds for � many moves, that is tosay p� is de�ned for all � < �.Replaing losure by strategi losure neessitates a few hanges inthe standard Reverse Easton arguments. We outline these hangesat the relevant points below.In our iteration, at eah regular  we will fore with a poset Q whih adds a GS()-sequene by approximation via initial segments.A potential problem with this strategy is that a priori there may notbe enough onditions in Q  , in fat what we need (see Claim 6.11for the details) is that GS(�)-sequenes already exist for all ordinals� < ; we will arrange this using the fat that we already foredwith Q � for all regular � <  and the following sequene of tehniallemmas.Lemma 6.8. Let � be an in�nite ardinal. If there exists a GS(�)-sequene, then there exists a GS(�)-sequene for every � < �+.Proof. Let hC�: � < �; f(�) < �i be a GS(�)-sequene. We provethe existene of a GS(� + 1)-sequene by indution on limit � in theinterval [�; �+).Case 1: � = �. If � is regular there is nothing to do, so we assumethat � is singular. Choose h�i: i < f(�)i inreasing, ontinuous ando�nal in � with �0 = 0 and f(�) < �1. De�ne for singular ordinals� � �
D� = 8><>:f�i: i < jg � = �j, j limitf�i: i < f(�)g � = �C� n (�i + 1) �i < � � �i+1



36 JAMES CUMMINGS AND ERNEST SCHIMMERLINGCase 2: � = +!,  limit. Let hD�: � � ; f(�) < �i be a GS(+1)-sequene. We may extend this to be a GS(� + 1)-sequene byde�ning D� = f + n: n < !g.Case 3: � < � < �+, � a limit of limit ordinals. Let f(�) = �,where neessarily � � �. Choose h�i: i < �i inreasing, ontinuousand o�nal in �, in suh a way that(1) �0 = 0.(2) �i+1 is a singular limit ordinal for all i.(3) �1 > �.Fix hCi+1� : � � �i+1; f(�) < �i a GS(�i+1+1)-sequene for eah i <�.De�ne for singular ordinals � � �
D� = 8><>:f�i: i < jg � = �j, j limitf�i: i < �g � = �Ci+1� n (�i + 1) �i < � � �i+1 �Lemma 6.9. If � is a singular ardinal and there is a GS(�)-sequenefor every regular � < �, then there is a GS(�)-sequene.Proof. Like Case 3 in Lemma 6.8. �Lemma 6.10. Let  be a ardinal and suppose that for every regularardinal � <  there is a GS(�)-sequene. Then for every ordinal� <  there is a GS(�)-sequene.Proof. If  is a limit ardinal then there are unboundedly many reg-ular ardinals less than , and the result is lear. So suppose  = �+for some ardinal �. If � is regular then there is a GS(�)-sequeneby assumption, if � is singular then there is a GS(�)-sequene byLemma 6.9. In either ase, by Lemma 6.8 there is a GS(�)-sequenefor every � < �+ = . �We an now desribe our iterated foring onstrution. Given aregular ardinal  we de�ne a poset Q  . p 2 Q  if and only ifp = hC�: f(�) < �;� � �i where(1) � is a singular limit ordinal less than .(2) p is a GS(� + 1)-sequene.



INDEXED SQUARES 37If p = hC�: f(�) < �;� � �i and q = hD�: f(�) < �;� � ��i arein Q  then p � q i� � � �� and C� = D� for all � � ��. We notethat by GCH Q  is a poset of size at most , and so trivially has the+-hain ondition.Claim 6.11. If there is a GS(�)-sequene for every � <  thenforing with Q  adds a GS()-sequene.Proof. We need to hek that for every � <  the set of GS(� + 1)-sequenes is dense. Let p = hC�: f(�) < �;� � �i be a GS(� + 1)sequene for some singular ordinal �, and let � be a singular ordinalwith � < � < . Let q = hD�: f(�) < �;� � �i be a GS(� + 1)-sequene.We de�ne E� for singular � with � � � by letting E� = C� for� � � and E� = D� n (� + 1) for � < � � �. It is routine to hekthat if r = hE�: f(�) < �;� � �i then r is a GS(� + 1)-sequeneextending p. �We de�ne PÆ+1 to be the Reverse Easton iteration of Q  for regular � Æ. To be a little more expliit we de�ne sequenes hP� : � � Æ + 1iand h _Q � : � � Æi indutively by(1) _Q � is a P�-name for the version of Q � omputed by V P� , if �is regular in V P� (whih will turn out to be the ase for everyregular �, see laim 6.12). Otherwise _Q � names the trivialforing.(2) P�+1 = P� � _Q � .(3) For � � Æ a limit ordinal, P� is the diret limit of hP� : � < �ifor � inaessible, and the inverse limit otherwise.Claim 6.12. Let  be regular. Then in V P1. For every ondition p 2 Q  and every � <  there is a ondi-tion q 2 Q  with q � p and max(dom(q)) � �.2. Q  is < -strategially losed.3. Cardinals and o�nalities are preserved.Proof. We proeed by indution. Assume that we have 1Æ, 2Æ and3Æ for regular Æ < . We start by outlining the argument that Ppreserves all ardinals and o�nalities.Given a ardinal � < , we fator P in the standard way asP� � Q � � R and note that �+ is the �rst point at whih the iteration



38 JAMES CUMMINGS AND ERNEST SCHIMMERLINGR does non-trivial foring. The arguments of [2℄, suitably adaptedfor strategially losed foring, gives us that R is < �+-strategiallylosed in V P�+1 . The usual ounting arguments give us that P�+1 isalways �+-.. A suitable adaptation of Easton's arguments from [8℄shows that all �-sequenes from V P must lie in V P�+1 , and argumentsexatly like those of [8℄ then show that all ardinals and o�nalitiesare preserved in V P .It follows by the indution hypothesis and Claim 6.11 that in V Pwe will have a GS(Æ)-sequene for every regular Æ with Æ < . ByLemma 6.10 there is a GS(�)-sequene for every ordinal � < . ByLemma 6.11 again 1 holds in V P .Reall the strategi losure game from De�nition 6.7. We de-sribe a winning strategy for player Even in the game of length� + 1 played on Q  , where � <  is a limit ordinal. Let p� =hE� : f(�) < �; � � �i be the ondition whih is played at stage �,where player Even's strategy will guarantee that h�: � � �i is on-tinuous.Case 1: � = 2: Even plays a ondition p2 � p1 with 2 > �. Notiethat for all limit � � � we will have f(�) = f(�) � � < 2 < �.Case 2: � = �0 + 2, �0 > 0 even: Even sets � = �0+1 + ! andE� = f�0+1 + n: n < !g.Case 3: lim(�): Even sets � = sup��<� �� and E� = f��: �� < �g.This is a legal move beause(1) If � 2 lim(E�) then � = �� for �� limit, and soE� = f�: � < ��g = E� \ �:(2) ot(E�) = � � � < 2 < �.It is routine to hek that this is a winning strategy, onludingthe proof of Claim 6.12. �
We will hoose G to be some PÆ -generi �lter subjet to a ertaintehnial ondition; if ~C� and ~C� are the sequenes added at stages� and �, then we hoose G so that ~C� � � = ~C�. This is possible



INDEXED SQUARES 39beause � is regular in V [G�℄, so that ~C� an be extended 2 to aondition M in Q � and we may fore below M to get ~C� as desired.The reason for doing this is explained in detail in Claim 6.15 below;in the jargon of large ardinal theorists M is a \master ondition" inQ � , whih is to say that foring below M at stage � will guaranteethat we an lift our original embedding j to an elementary embeddingj: H�+[G� � g�℄ �! H�+ [G� � g�℄. For more about master onditionssee the setion on Reverse Easton foring in Baumgartner's surveypaper [2℄.By Lemma 6.12, V [G℄[g℄ has the same ardinals and o�nalities asV and Æ is inaessible in V [G℄[g℄. This implies that every set of rankless than Æ is oded by a bounded subset of Æ, so V V [G℄Æ = V V [G℄[g℄Æ ; tosave the reader from a plague of supersripts we denote this set byVÆ[G℄ in what follows.Let ~C be the generi GS(Æ)-sequene added by g. The struture(VÆ[G℄;2; ~C) is a model of ZFC~C beause V [G℄[g℄ is a model of ZFC,Æ is inaessible in V [G℄[g℄ and ~C 2 V [G℄[g℄.To �nish, we show that in VÆ[G℄ there is an elementary embeddingfrom HVÆ [G℄�+ to HVÆ [G℄�+ . It will then follow that � is 1-extendible inVÆ[G℄. The elements of H�+ are oded by subsets of � and no subsetsof � are added past stage � of the iteration so HVÆ [G℄�+ = HV [G�+1℄�+ =HVÆ [G�+1℄�+ Similarly we see that HVÆ [G℄�+ = HV [G�+1℄�+ = HVÆ [G�+1℄�+ .The intuition behind the rest of the proof is that we want to treatHVÆ [G�+1℄�+ as a generi extension of H�+ by P�+1 , and then apply thetehniques of Reverse Easton foring to lift the embedding j. Theargument requires a little are beause H�+ is not a model of ZFC.Sine jP�+1j = �, every element of HVÆ [G�+1℄�+ has the form _�G�+1 forsome P�+1-name _� 2 H�+ . What is more P�+1 2 H�+. A tedious butroutine argument now shows that for any formula � there exists aformula �� suh that for any P�+1-name _� and ondition p 2 P�+1p VP�+1 \HVÆ [ _G�+1℄�+ j= �( _� _G�+1)" () H�+ j= ��(p; P�+1; _� ):
2De�ne M to agree with ~C� up to �, to have �+ ! as the largest point in itsdomain and to assoiate f�+ n: n < !g to �+ !.



40 JAMES CUMMINGS AND ERNEST SCHIMMERLINGAbusing notation slightly we write p H+�P�+1 �( _�) for this relation,where the key point is that the relation is de�nable in H�+. Anexatly similar analysis works for HVÆ [G�℄�+ and we write p H+�P� �( _�)as an abbreviation for the indigestible p VP� \HVÆ [ _G�℄�+ j= �( _� _G�)".In line with our intuitive remarks above we further abuse notationand write H�+ [G�℄ for HVÆ [G�℄�+ , H�+[G�+1℄ for HVÆ [G�+1℄�+ , H�+ [G�℄ forHVÆ [G�℄�+ , and H�+[G�+1℄ for HVÆ [G�+1℄�+ .As usual, the problem is to lift the embedding j. We break upG�+1 as G� �g� �H �g�, where g� is the generi objet added at �, Hthe generi objet added between � and �, and g� the generi objetadded at �. Here G� = G� � g� �H will be the generi objet for P� .Claim 6.13. j\G� � G�.Proof. Let p 2 G�, then sine we did a Reverse Easton iteration weknow that the support of p is some ordinal � with � < �. Nowrit(j) = �, so the support of j(p) is also � and p � � = j(p) � �. Solearly we have j(p) 2 G� � g� �H = G�, as desired. �We now attempt to extend the embedding j to the larger domainH�+ [G�℄ by de�ning j( _�G�) = j( _�)G� for all _� 2 H�+ .Claim 6.14. This de�nition gives a well-de�ned elementary em-bedding j: H�+[G�℄ �! H�+ [G�℄ whih extends our original mapj: H�+ �! H�+.Proof. Suppose that _�G� = _�G� . By the truth lemma there is p 2 G�suh that p H�+P� _� = _�. This is a �rst-order statement in H�+ andso sine j is elementary j(p) H�+P� j( _�) = j( _�). j(p) 2 G� and soj( _�)G� = j( _�)G� .The proofs that the map we have de�ned is elementary and extendsthe original map are very similar. �Claim 6.15. j\g� � g�.Proof. Let p 2 g�. Then p is in an initial segment of ~C�, and j(p) = p.Sine we hose ~C� to extend ~C�, j(p) 2 g�. �By the same method as in Claim 6.14 we may further extend j toget an elementary embedding j: H�+ [G��g�℄ �! H�+ [G��g�℄. Sine
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