
INDEXED SQUARESJAMES CUMMINGS AND ERNEST SCHIMMERLINGAbstra
t. We study some 
ombinatorial prin
iples intermedi-ate between square and weak square. We 
onstru
t models whi
hdistinguish various square prin
iples, and show that a strength-ened form of weak square holds in the Prikry model. Jensenproved that a large 
ardinal property slightly stronger than 1-extendibility is in
ompatible with square; we prove this is 
loseto optimal by showing that 1-extendibility is 
ompatible withsquare.
1. Introdu
tionSeveral lines of resear
h motivate the results in this paper. Whatthe lines have in 
ommon is Jensen's 
elebrated 
ombinatorial prin-
iple ��, whi
h is pronoun
ed \square kappa".De�nition 1.1 (Jensen [12℄). Let � be an in�nite 
ardinal. A se-quen
e hC�: � < �+i is 
alled a ��-sequen
e i� whenever � is a limitordinal and � < � < �+,(1) C� is a 
losed unbounded subset of �,(2) C� has order type at most �, and(3) if � is a limit point of C�, then C� = C� \ �.We say that �� holds i� there exists a ��-sequen
e.If � is a limit ordinal between � and �+, then 
learly there existsa 
losed unbounded C � � with ot(C) � �. What gives �� strengthis the last 
lause in the de�nition, whi
h is 
ommonly referred to as
oheren
e. Although �� is a te
hni
al prin
iple, it has turned outFirst author partially supported by NSF grants DMS-9703945 and DMS-0070549.Se
ond author partially supported by NSF Grants DMS-9305990, DMS-9712580, DMS-9996280 and DMS-0088948.1



2 JAMES CUMMINGS AND ERNEST SCHIMMERLINGto be one of the most important links between diverse parts of settheory.A major theme in set theory is the tension between \
ompa
tness"and \in
ompa
tness". Examples of the kind of 
ompa
tness phe-nomena we have in mind in
lude stationary re
e
tion (qv), the treeproperty, Shelah's singular 
ompa
tness theorem, or Silver's theoremthat GCH does not �rst fail at a singular 
ardinal of un
ountable 
o�-nality; some examples of in
ompa
tness are non-re
e
ting stationarysets, Aronszajn trees, or Magidor's theorem that GCH 
an fail �rst at�!. As we see shortly square and related prin
iples are generally onthe in
ompa
tness side, and 
an be used as a measure of the extentof 
ompa
tness in the universe of set theory.The following results are due to Jensen, and indi
ate some of thepower of square prin
iples. Let � be a singular strong limit 
ardinal;then �� implies that(1) there exists a spe
ial �+-Aronszajn tree,(2) under GCH, there exists a �+-Souslin tree, and(3) under GCH, for every stru
ture A of type (�1;�0) there existsa stru
ture B of type (�+; �) su
h that A � B.We re
all that a stationary subset S of a regular 
ardinal � is saidto re
e
t if there is � < � of un
ountable 
o�nality su
h that S \ �is stationary. Solovay showed that if �� holds then every stationarysubset of �+ 
ontains a non-re
e
ting stationary set. He also showedthat if � is �+-strongly 
ompa
t then every stationary subset of theset �+ \ 
of(< �) re
e
ts, so that �� fails. This is a typi
al exampleof the kind of tension between 
ompa
tness and in
ompa
tness whi
hwe dis
ussed above.Another point of departure for the work in this paper was the re-sults of Cummings, Foreman and Magidor [5℄ on the relationship be-tween square prin
iples, stationary re
e
tion and PCF theory. Thatpaper uses ideas from PCF theory (in parti
ular the 
on
ept of a\very good s
ale" as dis
ussed in se
tion 2) to 
larify the relation-ship between squares and re
e
tion. Several of our results are dire
tlymotivated by the results of [5℄.It is natural to ask when �� holds. Jensen showed that in Lthe prin
iple �� holds for all 
ardinals �. On the other hand, the
onsisten
y strength of the failure of�� is stri
tly greater than that of



INDEXED SQUARES 3ZFC. For example, the theory ZFC + ��1 fails is equi
onsistent withZFC + there exists a Mahlo 
ardinal; the lower bound is by Jensenand uses L, while the upper bound is a for
ing argument by Solovaythat uses the Levy algebra. More generally, the failure of �� with� regular is well-understood. There is a serious gap, however, inour understanding the 
ase in whi
h � is singular: roughly, thereare upper bounds of about one super
ompa
t 
ardinal, and lowerbounds of many Woodin 
ardinals. This leads us to the se
ond pointof departure for [5℄ and us too, namely inner model theory.The main te
hnique for proving lower bounds on the failure of ��for � singular involves generalizations of Jensen's theorem that ��holds in L for all in�nite 
ardinals �, and Jensen's Covering Theorem[6℄, whi
h implies that if 0# does not exist then (�+)L = �+ for allV -singular 
ardinals �. An immediate 
onsequen
e of these resultsis that if 0# does not exist and � is a singular 
ardinal, then ��holds. We note that this helps to explain a well-known phenomenonin 
ombinatorial set theory; if � is singular then it is typi
ally hardto build models without \in
ompa
t" obje
ts of size �+, su
h as �+-Aronszajn trees [18℄ or non-re
e
ting stationary sets [16℄.However, this sort of 
overing fails for L if 0# exists, so other mod-els must be used. The kind of transitive proper 
lass models to whi
hJensen's theorems have been generalized are known as 
ore models.In his early attempts in this dire
tion, S
himmerling introdu
ed thefollowing hierar
hy of weakenings of ��.De�nition 1.2 (S
himmerling [20℄). Let � be an in�nite 
ardinaland let � be a 
ardinal su
h that 1 < � < �+. A sequen
e of setshC�: � < �+i is 
alled a �<�� -sequen
e i� whenever � is a limitordinal and � < � < �+, then(1) 1 � jC�j < � and(2) for all C 2 C�,(a) C is a 
losed unbounded subset of �,(b) C has order type at most �, and(
) if � is a limit point of C, then C \ � 2 C�.We say that �<�� holds i� there exists a �<�� -sequen
e.We write ��� for �<�+� . Clearly, �1� is equivalent to ��. Theprin
iple ��� appears in the literature as ��� or \weak square kappa";



4 JAMES CUMMINGS AND ERNEST SCHIMMERLINGJensen isolated ��� roughly at the same time as ��, and showed thatit holds if and only if there is a spe
ial �+-Aronszajn tree. It is worthnoti
ing that if �<� = � then by an easy argument ��� holds, so that��� is of greatest interest when � is singular.As an example of how the ��� hierar
hy has been used, we re-view some results about for
ing axioms and square prin
iples. TheProper For
ing Axiom (PFA) and Martin's Maximum (MM) are strongversions of Martin's Axiom (MA) whi
h are 
onsistent relative to asuper
ompa
t 
ardinal, and whose exa
t 
onsisten
y strength is stillunknown.Todor
evi
 [25℄ proved that under PFA, �� fails for all � � �1.Hen
e, by the results of Jensen mentioned earlier, PFA implies that0# exists. Magidor observed that Todor
evi
's proof a
tually showsthat PFA implies the failure of ��1� for all � � �1. S
himmerlingused Magidor's observation together with the Mit
hell-S
himmerling-Steel Covering Theorem to prove that one Woodin 
ardinal is a lowerbound on the large 
ardinal 
onsisten
y strength of PFA (the absolutesquare prin
iples (qv) from Se
tion 3 played a role in the originalversion of this argument).We 
an use the ��� hierar
hy to measure the 
ombinatorial strengthof a proposition P , by 
omputing the least � su
h that P is 
onsis-tent with �<�� . Magidor showed that PFA + ��2� for all � � �2 is
onsistent relative to a super
ompa
t 
ardinal, while by 
ontrast MMis in
ompatible with ��� for any singular � of 
o�nality !; this is onemeasure of the gap in strength between these two axioms. In a sim-ilar vein, in [5℄ the ��� hierar
hy is used to 
alibrate the strength ofvarious stationary re
e
tion prin
iples (see the dis
ussion in Se
tion2). An interesting open problem is to determine whether GCH + �!�!suÆ
es to 
onstru
t an �!+1-Souslin tree; a straightforward adapta-tion of Jensen's arguments shows that GCH + �<!�! is suÆ
ient.As the authors were writing this paper, the story of �� took an in-teresting turn. S
himmerling and Zeman proved that in all 
ore mod-els1 if � is not a sub
ompa
t 
ardinal, then �� holds. Sub
ompa
tness
1By 
ore model we mean any proper 
lass model of the form L[ ~E℄ where ~Eis a 
oherent sequen
e of extenders, subje
t to 
ertain �ne stru
tural 
onditions.See [22℄ for a full explanation.



INDEXED SQUARES 5is a new large 
ardinal property that was introdu
ed by Jensen; sub-
ompa
tness follows from super
ompa
tness. Re
all the fa
t due toSolovay that was mentioned earlier: if � is �+-strongly 
ompa
t, then�� fails. Jensen observed that sub
ompa
tness suÆ
es in Solovay'stheorem and hen
e the 
onverse to the S
himmerling-Zeman theo-rem holds. Therefore in the relevant 
ore models �� holds i� � isnot sub
ompa
t. The results in the last se
tion of our paper wereinspired by these new developments.We end this introdu
tion with a summary of our results. The se
-tions 
an be read independently, though some of them use de�nitionsfrom earlier se
tions.
� In [5℄ it is shown that 
ertain forms of stationary re
e
tion are
onsistent with forms of ���. In Se
tion 2 we show that theseresults are optimal in the sense that � 
annot be de
reased.This is an example of the sort of 
alibration of 
ombinatorialstrength dis
ussed above.� In Se
tion 3, we de�ne and study \indexed square" prin
iplesstronger than ���. The main new idea is that the members ofC� are given indi
es up to � and we explore various forms of
oheren
e along the indi
es. These 
ombinatorial prin
ipleswere originally motivated by 
ore model theory. The mainresult is Theorem 3.1 whi
h identi�es a square prin
iple withsome strong upwards absoluteness properties.� In Se
tion 4 we show that if P is the Prikry for
ing notionasso
iated to a normal measure over �, then ��0� holds inV P. The proof uses ideas from the results about absolutesquares in Se
tion 3 but is self-
ontained; the main te
hni
alpoint is that given an ina

essible � we 
an 
onstru
t a \goodmatrix", whi
h is (roughly speaking) a form of ���-sequen
ewith additional 
oheren
e properties. We note that by resultsfrom [5℄, if � is �+-super
ompa
t then �<�0� fails in V P.� Jensen showed in unpublished work [11℄ that ��1 is stri
tlystronger than �2�1 . In Se
tion 5 we use similar methods to
ompare these prin
iples with some of the simplest of their\indexed" 
ounterparts from Se
tion 3. The upshot is thatthe indexed ���-hierar
hy is interleaved with the original one.



6 JAMES CUMMINGS AND ERNEST SCHIMMERLING� The results in Se
tion 6 were obtained by the �rst author af-ter he learned of the S
himmerling-Zeman result mentioned afew paragraphs above. Sub
ompa
tness is a natural strength-ening of 1-extendibility, and so one would expe
t � being1-extendible to be 
onsistent with ��. A
tually we provesomething stronger but more te
hni
al to state: there is atransitive set W and a predi
ate ~C on W su
h that (W;2; ~C)is a model of ZFC~C + there is a 1-extendible 
ardinal + ~C isa global square sequen
e. Here ZFC~C is the version of ZFCwritten in the language of set theory expanded by a predi-
ate symbol for ~C, and \global square" is a 
lass version of� (introdu
ed by Jensen) whi
h implies that �� holds for all�; this result leaves open whether we 
an have a 1-extendible
ardinal and a de�nable global square sequen
e.
2. Stationary refle
tionIn this se
tion we make two observations on the relationship be-tween the ��� prin
iples and stationary re
e
tion. The following re-sult was observed by S
himmerling and independently by Foremanand Magidor.Theorem 2.1. Assume that �<� = � and �<�� holds. Let T � �+ bestationary. Then there exists S � T su
h that S is stationary and Sdoes not re
e
t at any � < �+ with 
f(�) � �.Proof. Let ~C witness �<�� . De�ne F (�) = fot(C): C 2 C�g for all� 2 T , and �nd S � T stationary su
h that F is 
onstant on Swith value A. Assume S re
e
ts to �, and 
hoose C 2 C� . Now thefun
tion whi
h takes � 2 lim(C)\S to ot(C \�) is an inje
tion fromlim(C)\ S to A. Sin
e lim(C)\ S is unbounded (indeed stationary)in �, we have 
f(�) � j lim(C) \ Sj � jAj < �: �In parti
ular �<!� implies that every stationary subset of �+ has anon-re
e
ting stationary subset.



INDEXED SQUARES 7Cummings, Foreman and Magidor [5℄ have made a systemati
study of the 
onne
tion between ��� and other 
ombinatorial prin-
iples. To set our se
ond result in 
ontext we quote some theoremsfrom [5℄.Fa
t 2.2 ([5℄). Let � be singular, and let ��� hold for some � < �.Then for every stationary T � �+ there exists hSi: i < 
f(�)i su
hthat ea
h Si is a stationary subset of T , and there is no � < �+ su
hthat 
f(�) > 
f(�) and all the Si re
e
t at �.The proof of Fa
t 2.2 falls into two parts; in the �rst part a prin
ipleVGS� (\Very Good S
ale at �") is derived from ���, and in the se
ondpart the 
on
lusion of Fa
t 2.2 is derived from VGS�. One theme of[5℄ is that 
ertain 
onstru
tions of in
ompa
t obje
ts from squareprin
iples 
an be done using very good s
ales: Fa
t 2.2 is an exampleof this. The next result shows that ��� is not powerful enough toimply the 
on
lusion of Fa
t 2.2.Fa
t 2.3 ([5℄). If the existen
e of in�nitely many super
ompa
t 
ar-dinals is 
onsistent, then it is 
onsistent that(1) ���! holds.(2) For all m;n with 1 � m � n < !, if hSi: i < �mi is a sequen
eof stationary subsets of f� < �!+1: 
f(�) < �mg then thereexists � < �!+1 su
h that 
f(�) = �n and all the Si re
e
t at�.On the other hand, Fa
t 2.2 
annot in general be strengthened torule out simultaneous re
e
tion of fewer than 
f(�) many sets.Fa
t 2.4 ([5℄). If the existen
e of in�nitely many super
ompa
t 
ar-dinals is 
onsistent, then it is 
onsistent that(1) �!�! holds.(2) For every n < !, if hSi: i < ni is a sequen
e of stationarysubsets of �!+1 then there exists M < ! su
h that for all mwith M � m < ! there exists � < �!+1 su
h that 
f(�) = �mand all the Si re
e
t at �.The se
ond theorem of this se
tion shows that Fa
t 2.4 is 
lose tooptimal, in that �<�!�! is in
ompatible with the 
on
lusion. Beforeproving it we need a te
hni
al lemma (an easy generalisation of awell-known fa
t about ��).



8 JAMES CUMMINGS AND ERNEST SCHIMMERLINGLemma 2.5. Let � be singular. If �<�� holds then there exists a�<�� -sequen
e hD�: � < �+i, with the additional property that all the
lubs in S�D� are of order type less than �.Proof. Fix D � � su
h that D is 
losed and unbounded and ot(D) =
f(�). Given C a 
lub subset of some � < �+ with ot(C) � � wede�ne C� � C:� If ot(C) 2 lim(D) or ot(C) = � thenC� = fÆ 2 C: ot(C \ Æ) 2 Dg:� If ot(C) =2 lim(D), thenC� = fÆ 2 C: ot(C \ Æ) > max(ot(C) \ lim(D))g:It is easy to 
he
k that C� is 
lub in sup(C), and that if 
 2 lim(C�)then C� \ 
 = (C \ 
)�. Given a �<�� -sequen
e hC�: � < �+i, we setD� = fC�: C 2 C�g. �Theorem 2.6. Assume that � is a singular strong limit 
ardinal, andlet T be a stationary subset of �+. Suppose that �<�� holds. Thenthere is a sequen
e hSi: i < 
f(�)i of stationary subsets of � and a
ardinal � < � su
h that(1) Si � T \ 
of(< �).(2) If � < �+ is any point with 
f(�) � �, then hSi: i < 
f(�)idoes not re
e
t simultaneously to �.Proof. We �x a �<�� sequen
e C, and we assume (as we may byLemma 2.5) that all the 
lub sets appearing in C have order typeless than �. We also �x an in
reasing sequen
e h�i: i < 
f(�)i ofregular 
ardinals 
o�nal in �, and a stationary T � �+. Let T 0 be astationary subset of T on whi
h the fun
tions � 7! jC� j and � 7! 
f(�)are 
onstant. Let i < 
f(�) be large enough so that both of these
onstant values are less than �i. For ea
h � < �+ and j < 
f(�), theset fot(C): C 2 C�g \ �jis an element of V�. Sin
e � is a strong limit 
ardinal, by Fodor'slemma there are sequen
es hSj : j < 
f(�)i and hAj : j < 
f(�)i su
hthat for every j < 
f(�), Sj is a stationary subset of T 0 and for every� 2 Sj, Aj = fot(C): C 2 C�g \ �j :



INDEXED SQUARES 9Suppose that hSj : j < 
f(�)i re
e
ts simultaneously to an ordinal� < �+. Let C be any element of C� ; by our assumptions on C weknow that ot(C) < � and so we may 
hoose j < 
f(�) large enoughthat �j > ot(C). Then lim(C)\Sj has fewer than �i many elements.This is be
ause, if �0 < �1 are both elements of lim(C) \ Sj, thenot(C \ �0) and ot(C \ �1) are distin
t elements of Aj , but jAj j < �i.Therefore 
f(�) < �i. �3. Indexed square prin
iplesIn this se
tion, we introdu
e several weak square prin
iples thatwere distilled from the 
ore model 
ombinatori
s of [20℄ and [21℄.Perhaps the most interesting of these prin
iples is Sli
k-���. Ratherthan give the de�nition of Sli
k-��� here, at the start of this se
tion,we will lead up to it in steps. However, to give the reader an idea ofthe goal, let us go ahead and state a 
orollary to what we are aboutto do.Theorem 3.1. Let V � W be transitive models of ZFC and � be alimit 
ardinal in W . Suppose that (�+)V = (�+)W and Sli
k-��� holdsin V . Then both Sli
k-��� and ��� hold in W where � = 
fW (�).Combinatori
s similar to the proof of this theorem were used toobtain lower bounds on the 
onsisten
y strength of PFA in [20℄. The-orem 3.1 was the inspiration for the result in the next se
tion thatPrikry for
ing at a measurable 
ardinal � adds a ��0� sequen
e.Wha
ky-��� is another prin
iple that we will de�ne later in thisse
tion. On the surfa
e, Wha
ky-��� seems like a slight improvementof �<�� , but there are 
ases in whi
h it does the work of �<�0� . Again,we will state a result well in advan
e of giving the de�nitions. Com-binatori
s similar to the proof of Theorem 3.2 were used to obtain
onsisten
y strength lower bounds on stationary re
e
tion in [20℄.Theorem 3.2. Suppose that � is a strong limit 
ardinal and that theprin
iple Wha
ky-��� holds. Then every stationary subset of �+ hasa non-re
e
ting stationary subset.To orient the reader we will �ll in the missing de�nitions to makesense of the series of impli
ations�<�� (= Index-�<�� (= Card-index-�<�� (= Wha
ky-���



10 JAMES CUMMINGS AND ERNEST SCHIMMERLINGfrom left to right, after whi
h we will de�ne Sli
k-���.Our �rst de�nition is that of Index-�<�� , whi
h strengthens �<��by assigning ordinal indi
es from � + 1 to ea
h 
lub in ea
h C� , anddemanding that initial segments of a 
lub with a given index all getthe same index.De�nition 3.3. The pair (A;C) is said to witness that Index-�<��holds i� A and C are fun
tions su
h that if � is a limit ordinal and� < � < �+, then(1) A(�) is a non-empty subset of �+ 1 of 
ardinality < �, and(2) if � 2 A(�), then(a) C(�; �) is a 
lub subset of �,(b) ot(C(�; �)) � �, and(
) if � 2 lim(C(�; �)), then � 2 A(�) and C(�; �) \ � =C(�; �).As one would expe
t, Index-��� means Index-�<�+� . It might seemmore natural to require A(�) � � in De�nition 3.3; the value of al-lowing � as an index will be remarked on after De�nition 3.4. InSe
tion 5, we will prove that indexing gives something new, namelythat Index-�2�1 is stri
tly between ��1 and �2�1 in its strength. How-ever, for the rest of this se
tion, most of our results will be about the
ase in whi
h � is a limit 
ardinal.The point of our next prin
iple, Card-index-�<�� , is to link infor-mation about the order type of a given 
lub to its index. Of 
ourse,several ways of doing this are possible. Considerations tied to the
ore model 
ombinatori
s of [20℄ led to our 
hoi
e of \�+" here, in away that we will not make pre
ise.De�nition 3.4. We say that (A;C) witnesses that Card-index-�<��holds i� (A;C) witnesses that Index-�<�� holds and for ea
h limitordinal � between � and �+,(1) either A(�) � � and jC(�; �)j � �+ for all � 2 A(�),(2) or A(�) = f�g.Here are some remarks on the de�nition.� If � is a su

essor 
ardinal and the prin
iple Index-�<�� holds,then the prin
iple Card-index-�<�+1� holds.



INDEXED SQUARES 11� The only point of allowing � to be an index (rather than re-quiring A(�) � � in all 
ases) is to get a 
onsistent prin
iplewhen � is an ina

essible 
ardinal. Note that if � is an ina
-
essible 
ardinal and (A;C) is a witness that Card-index-���holds, then A(�) = f�g whenever 
f(�) = �. Also note thatif � 2 lim(C(�; �)), then A(�) = f�g.� Let � be a singular 
ardinal and � = 
f(�). Suppose thatthere exists a witness that Card-index-��� holds. Then thereexists a witness (A;C) that Card-index-��� holds su
h thatA(�) � � for all �. The 
onstru
tion is as follows. Firstarrange that ot(C(�; �)) < � whenever A(�) = f�g as in theproof of Lemma 2.5. Then �x a sequen
e h�i: i < �i thatis in
reasing and unbounded in �. If A(�) � �, then letB(�) = A(�) and D(�; �) = C(�; �). If A(�) = f�g, then letB(�) = f�i < �: ot(C(�; �)) � �+i gand D(�; �i) = C(�; �) for �i 2 B(�). Then (B;D) is awitness that Card-index-��� holds and B(�) � � for all �.We will prove Theorem 3.2 after de�ning the prin
iple Wha
ky-���,whi
h strengthens Card-index-�<�� by requiring, roughly, that the setof indi
es for a given ordinal � be bounded in �.De�nition 3.5. We say that (A;C) is a witness that Wha
ky-���holds i� (A;C) is a witness that Card-index-�<�� holds and for everylimit ordinal � between � and �+, if A(�) � �, then sup(A(�)) < �.We remark that if � is a regular 
ardinal, then Wha
ky-��� holdsi� Card-index-�<�� holds.Proof of Theorem 3.2. Say � is a strong limit 
ardinal and (A;C) isa witness that Wha
ky-��� holds. Let S � �+ be a stationary set oflimit ordinals.First suppose that there exists a set S 0 � S that is stationary in �su
h that A(�) = f�g for all � 2 S 0. By Fodor's lemma, there existsan ordinal � � � and a stationary set S 00 � S 0 su
h that ot(C(�; �)) =� for all � 2 S 00. Consider an arbitrary �. Let � 2 A(�). Supposethat � 2 S 00 \ lim(C(�; �)). Then � = �, A(�) = f�g andot(C(�; �) \ �) = ot(C(�; �)) = �:But this 
an hold for at most one �, so S 00 does not re
e
t to �.



12 JAMES CUMMINGS AND ERNEST SCHIMMERLINGThus, without loss of generality A(�) � � for all � 2 S. Thensup(A(�)) < �andsup (fot(C(�; �)): � 2 A(�)g) � sup ��jC(�; �)j+: � 2 A(�)	�� sup ���++: � 2 A(�)	�< �for all � 2 S. Sin
e � is a strong limit 
ardinal,hot(C(�; �)): � 2 A(�)i 2 H�for all � 2 S. By Fodor's lemma, there is a stationary S 0 � S, a setB 2 H� and a sequen
e of ordinals � = h��: � 2 Bi su
h thatA(�) = Band hot(C(�; �)): � 2 A(�)i = �for all � 2 S 0. Consider an arbitrary �. Let � 2 A(�). Suppose that� 2 S 0 \ lim(C(�; �)). Then � 2 B = A(�) andot(C(�; �) \ �) = ot(C(�; �)) = ��:This 
an hold for at most one �, therefore S 0 does not re
e
t to �. �De�nition 3.6. We say that (A;C) is a witness that Sli
k-��� holdsi� A and C are fun
tions su
h that for all limit � with � < � < �+,(1) either(a) A(�) is a non-empty 
losed subset of �, and(b) if � 2 A(�), then(i) C(�; �) is a 
lub subset of �,(ii) ot(C(�; �)) � � and jC(�; �)j � �+,(iii) if � 2 lim(C(�; �)), then � 2 A(�) andC(�; �) \ � � C(�; �);and(iv) if � < � and � 2 A(�), then C(�; �) � C(�; �),(2) or else(a) A(�) = f�g,(b) C(�; �) is a 
lub subset of �,(
) ot(C(�; �)) � �, and



INDEXED SQUARES 13(d) if � 2 lim(C(�; �)), then A(�) = f�g andC(�; �) \ � = C(�; �):A witness to Sli
k-��� need not be a witness to any of the otherindexed square prin
iples that we have de�ned, not even ���, be-
ause of the weaker 
oheren
e 
ondition (\�" instead of \=") in
lause 1(b)(iii). In fa
t, the proof of Theorem 3.1 shows that ifSli
k-��� holds, then there exists a witness with the stronger formof 
oheren
e. On the other hand, we have added 
lause 1(b)(iv),whi
h is a di�erent kind of 
oheren
e a
ross indi
es. Another newfeature is the requirement, 
lause 1(a), that A(�) be 
losed; note thatA(�) is not required to be bounded or have small 
ardinality.Let us also remark that if � is a singular 
ardinal, then the se
ondpossibility in De�nition 3.6 is not needed in the sense that Sli
k-���holds i� there is a witness (A;C) that Sli
k-��� holds su
h thatA(�) � � for all �. The reason is just like that given in the thirdremark after De�nition 3.4.Theorem 3.1 follows immediately from the following two lemmas,the �rst of whi
h is obvious.Lemma 3.7. Let V � W be transitive models of ZFC and � be a
ardinal in W . Suppose that (�+)V = (�+)W andV j= (A;C) is a witness that Sli
k-��� holds:Then W j= (A;C) is a witness that Sli
k-��� holds:Lemma 3.8. Suppose that � is a limit 
ardinal, � = 
f(�), andthere exists a witness that Sli
k-��� holds. Then there exists a witness(A;C) that Sli
k-��� holds su
h that if A(�) � �, then(1) jA(�)j � �, and(2) if � 2 lim(C(�; �)), then � 2 A(�) and C(�; �)\� = C(�; �).In parti
ular, (A;C) is also a witness that Card-index-��� holds.Proof. Let h�i: i < �i be a stri
tly in
reasing 
ontinuous sequen
e of
ardinals that is unbounded in �. Let (A;C) witness that Sli
k-���holds. From this data, we will de�ne a pair (Afat; C fat) satisfyingthe requirements of the lemma. The intuitive idea is to re
ursively\fatten up" ea
h C(�; �) for � < �.



14 JAMES CUMMINGS AND ERNEST SCHIMMERLINGIf A(�) = f�g, then let Afat(�) = f�g and C fat(�; �) = C fat(�; �).There is nothing to 
he
k in this 
ase.For the rest of the proof, we turn to the only other 
ase, namelyA(�) � �. De�neAfat(�) = f�i: A(�) \ (�i + 1) 6= ;g :Clearly Afat(�) is a 
lub subset of � of 
ardinality at most �. If�i 2 Afat(�), then de�ne an ordinal�(�; i) = sup8:A(�) \ (�i + 1)9; :Sin
e A(�) is 
losed, �(�; i) 2 A(�) \ (�i + 1)whenever �i 2 Afat(�).Claim 3.9. If �i 2 Afat(�) and � 2 lim(C(�; �(�; i)), then�(�; i) 2 A(�) \ (�i + 1);�i 2 Afat(�);�(�; i) � �(�; i)and C(�; �(�; i)) \ � � C(�; �(�; i)) � C(�; �(�; i)):Proof. This is immediate from the de�nitions given before the state-ment of Claim 3.9 with 
lause 1(b)(iii) and 
lause 1(b)(iv) of De�ni-tion 3.6. �By re
ursion on �, de�ne for �i 2 Afat(�),C fat(�; �i) = C(�; �(�; i)) [[�C fat(�; �i): � 2 lim (C(�; �(�; i)))	 :This de�nition makes sense sin
e if � 2 lim(C(�; �(�; i))), then � < �and, by Claim 3.9, �i 2 Afat(�).The next 
laim shows that (Afat; C fat) satis�es 
lause 1(b)(ii) ofDe�nition 3.6.Claim 3.10. If �i 2 Afat(�), then jC fat(�; �i)j � �+i .Proof. By indu
tion on �, we see that C fat(�; �i) is the union of atmost (�(�; i))+-many sets, ea
h of 
ardinality at most �+i . Sin
e�(�; i) � �i, we are done. �



INDEXED SQUARES 15The following 
laim is another step towards seeing that (Afat; C fat)satis�es 
lause 2 of Lemma 3.8; the full veri�
ation of this will begiven in Claim 3.14.Claim 3.11. If �i 2 Afat(�) and � 2 lim (C(�; �(�; i))), then�i 2 Afat(�)and C fat(�; �i) \ � = C fat(�; �i):Proof. The part about �i 2 Afat(�) was already proved in Claim 3.9.We prove the other part by indu
tion on �. Assume that Claim 3.11holds for all � 0 < � and that � 2 lim (C(�; �(�; i))).First suppose that � is the largest limit point of C(�; �(�; i)). Con-sider an arbitrary �0 < � su
h that�0 2 lim(C(�; �(�; i))):By Claim 3.9, C(�; �(�; i)) \ � � C(�; �(�; i)):In parti
ular, �0 2 lim(C(�; �(�; i))):By the indu
tion hypothesisC fat(�; �i) \ �0 = C fat(�0; �i):By the arbitrariness of �0 and the de�nition of C fat(�; �i),C fat(�; �i) = C(�; �(�; i)) [ C fat(�; �i):But C(�; �(�; i)) \ � � C(�; �(�; i)) � C fat(�; �i)by Claim 3.9 and the de�nition of C fat(�; �i). ThusC fat(�; �i) = C fat(�; �i) [ (C(�; �(�; i))� �) :It follows from the last equation that Claim 3.11 holds in the �rst
ase.Se
ond suppose that C(�; �(�; i)) has no largest limit point. Con-sider an arbitrary � 0 > � su
h that � 0 2 lim (C(�; �(�; i))). ByClaim 3.9 applied to � 0 and �,C(�; �(�; i)) \ � 0 � C(� 0; �(� 0; i)):



16 JAMES CUMMINGS AND ERNEST SCHIMMERLINGIn parti
ular, � 2 lim (C(� 0; �(� 0; i))) :By the indu
tion hypothesis,C fat(� 0; �i) \ � = C fat(�; �i):By the arbitrariness of � 0 and the de�nition of C fat(�; �i),C fat(�; �i) \ � = (C(�; �(�; i)) \ �) [ C fat(�; �i):But C(�; �(�; i)) \ � � C(�; �(�; i)) � C fat(�; �i)by Claim 3.9 and the de�nition of C fat(�; �i). Thus Claim 3.11 followsin the se
ond 
ase too. �Claim 3.12. Suppose that �i 2 Afat(�) and� = sup8:lim (C(�; �(�; i)))9; :ThenC fat(�; �i) = (C fat(�; �i) [ (C(�; �(�; i))� �) if � < �S�C fat(� 0; �i): � 0 2 lim (C(�; �(�; i)))	 if � = �Proof. The 
hara
terization follows by indu
tion on � from the de�-nition of (Afat; C fat) and Claim 3.11. �Claim 3.13. If �i 2 Afat(�), then C fat(�; �i) is 
lub in �.Proof. By indu
tion on �. Assume that Claim 3.13 holds for all � 0 < �and that � 2 lim �C fat(�; �i)�. We will show that � 2 C fat(�; �i).First suppose that there is no limit point of C(�; �(�; i)) stri
tlygreater than �. By Claim 3.12, � must be the largest limit point ofC(�; �(�; i)). So � 2 C(�; �(�; i)) � C fat(�; �i):On the other hand, if � 0 > � and � 0 2 lim (C(�; �(�; i))), then bythe indu
tion hypothesis and Claim 3.11,� 2 lim �C fat(�; �i) \ � 0� = lim �C fat(� 0; �i)�� C fat(� 0; �i) = C fat(�; �i) \ � 0: �



INDEXED SQUARES 17Claim 3.14. If �i 2 Afat(�) and � 2 lim �C fat(�; �i)�, then�i 2 Afat(�)and C fat(�; �i) \ � = C fat(�; �i):Proof. By indu
tion on �. Assume that Claim 3.14 holds for all� 0 < � and that � 2 lim �C fat(�; �i)�. If � 2 lim (C(�; �(�; i))), thenwe are done by Claim 3.11. So we may assume that there is a � 0 > �su
h that � 0 2 lim (C(�; �(�; i))). ThenC fat(�; �i) \ � 0 = C fat(� 0; �i)by Claim 3.11, so � 2 lim �C fat(� 0; �i)�. By the indu
tion hypothesis,C fat(� 0; �i) \ � = C fat(�; �i). Putting the equations together, we aredone. �The next result implies that (Afat; C fat) satis�es 
lause 1(b)(iv) ofDe�nition 3.6.Claim 3.15. If �i 2 Afat(�) and i < j, then �j 2 Afat(�) andC fat(�; �i) � C fat(�; �j):Proof. Obvious from the 
orresponding assumption on (A;C) andthe de�nition of (Afat; C fat). �From the 
laims above, it is immediate that (Afat; C fat) satis�esthe requirements of Lemma 3.8. �
4. Prikry for
ing, good matri
es and weak squareIt is proved in [17℄ that after for
ing with Prikry for
ing at a mea-surable 
ardinal � the weak square prin
iple ��� holds. In this se
tionwe strengthen this result, showing that if � is measurable in V andW is a Prikry extension of V then �!� holds in W . In general we 
annot hope to improve this; by Theorem 2.1 and the following result,doing Prikry for
ing at a suÆ
iently large 
ardinal � will make �<!�fail in the generi
 extension.



18 JAMES CUMMINGS AND ERNEST SCHIMMERLINGFa
t 4.1 ([5℄). If � is �+-super
ompa
t, P is Prikry for
ing de�nedfrom some normal measure on �, and S = f� < �+: 
f(�) < �g thenV P j= \�nite sets of stationary subsets of S re
e
t simultaneously":A note on history: Originally we had a false proof of Theorem4.2 based on Theorem 3.1 and an in
orre
t version of Lemma 4.4.Matt Foreman pointed out that we 
ould get the 
on
lusion moredire
tly from the �rst version of Lemma 4.4. We then dis
overed and�xed the problem in Lemma 4.4, retaining Foreman's dire
t way ofdrawing the desired 
on
lusion.Theorem 4.2. Let � be measurable in V . Let U be a normal measureon � and let PU be the Prikry for
ing de�ned from U . If W is ageneri
 extension of V by PU then �!� holds in W .Proof. The key idea is to do most of the work in V . We will buildin V an obje
t 
alled a \good matrix", and then working in W wewill read o� the required �!�-sequen
e. It is helpful to think of the
onstru
tion of a good matrix as a re�nement of the (very easy)
onstru
tion of a ���-sequen
e for � ina

essible.The proof will be stru
tured as follows: we will start by de�ninga good matrix, will show how to use one to build a �!� -sequen
e(hopefully motivating the de�nition) and will �nish by 
onstru
tingone.Let � be a regular 
ardinal with � > �1. We will say that a setA � � is a 
lub� subset of � if and only if there is C 
lub in � su
hthat f� 2 C: 
f(�) > !g � A. It is easy to see that the 
olle
tion of
lub� subsets of � is a normal �lter on �, and that any unboundedsubset of � whi
h is 
losed under un
ountable suprema is 
lub�.We 
laim that every 
lub� subset A of � has measure one for thenormal measure U . To see this let C be 
lub in � su
h that f� 2C: 
f(�) > !g � A, and let j: V �! M be the ultrapower mapasso
iated with U . Sin
e j(C)\� = C and j(C) is 
losed we see that� 2 j(C), and sin
e �M �M we see that M j= 
f(�) > !; it followsby the elementarity of j that � 2 j(A), and so by the normality of Uthat A 2 U .It is a well-known fa
t about Prikry for
ing that any PU -generi
!-sequen
e is eventually 
ontained in any set in U . In parti
ular we



INDEXED SQUARES 19see that a PU -generi
 !-sequen
e is eventually 
ontained in any 
lub�subset of � from the ground model.De�nition 4.3. Let � be an ina

essible 
ardinal, and letS = f� < �+: 
f(�) < �g:A good matrix for � is an array of setshC(�; i): � 2 S; i 2 X�isu
h that(1) C(�; i) is 
lub in �.(2) X� is a 
lub� subset of �.(3) ot(C(�; i)) < �.(4) If i 2 X� and � 2 lim(C(�; i)) then i 2 X� and C(�; i)\� =C(�; i).(5) If i; j 2 X� and i < j then C(�; i) � C(�; j).(6) If �; � 2 S with � < � then � 2 lim(C(�; i)) for some i 2 X�(and thus for all larger i 2 X� by the pre
eding 
lause).We now show how to �nish the proof of Theorem 4.2, given theexisten
e of a good matrix for �. Let hC(�; i): � 2 S; i 2 X�i be su
ha matrix. Let h�i: i < !i be a Prikry sequen
e generi
 for the for
ingPU . As we showed above, for every � the 
lub� set X� 
ontains a�nal segment of h�i: i < !i.We de�ne our �!� -sequen
e hD�: � < �+; lim(�)i. Let � < �+ bea limit ordinal. We distinguish two 
ases.Case I. � 2 S. Let D� = fC(�; �j): �j 2 X�g.Case II. � =2 S, so that V j= 
f(�) = � andW j= 
f(�) = 
f(�) = !.Choose C� to be any set whi
h is 
lub in � with ot(C�) = !, andthen set D� = fC�g.We need to verify that we have de�ned a �!�-sequen
e. It is 
learthat jD�j � ! and D� is a family of 
lubs ea
h with order type lessthan �. To �nish, suppose that C 2 D� and � 2 lim(C). Clearly� 2 S, be
ause otherwise C = C� and C� has no limit points. SoC = C(�; �j) for some j with �j 2 X�. By the properties of a goodmatrix �j 2 X� and C(�; �j) = C \ �, so that C \ � 2 D�.This shows that hD�: � < �+i is a �!� -sequen
e, so �!� holds in Wand we are done on
e we have shown the following Lemma.



20 JAMES CUMMINGS AND ERNEST SCHIMMERLINGLemma 4.4. If � is ina

essible there is a good matrix.Proof. We 
onstru
t a good matrix by indu
tion on � 2 S.Case 1: � = !. We set X! = � and C(!; i) = ! for all i.Case 2: � = � + ! for some limit ordinal � with 
f(�) < � (that isto say � 2 S). We set X� = X� and C(�; i) = C(�; i) [ [�; �) for alli 2 X�.Clearly C(�; i) is 
lub in �. By de�nition X� = X�, and so X�is 
lub�. Sin
e � = � + !, ot(C(�; i)) = ot(C(�; i)) + ! and soot(C(�; i)) < �.If i 2 X� and 
 2 limC(�; i) then either 
 2 limC(�; i) or 
 = �.In the former 
ase we have by indu
tion that i 2 X
 and C(
; i) =C(�; i) \ 
, in the latter that i 2 X� = X
 and C(
; i) = C(�; i): ineither 
ase C(�; i) \ 
 = C(
; i).If i; j 2 X� with i < j then by indu
tion C(�; i) � C(�; j), so thatC(�; i) � C(�; j). Finally if 
 2 S\� then either 
 2 S\� or 
 = �:if 
 2 S \ � then by indu
tion 
 2 lim(C(�; i)) for some i and then
 2 lim(C(�; i)) for the same i, while if 
 = � then 
 2 lim(C(�; i))for every i 2 X�.Case 3: 
f(�) = ! and � is a limit of limit ordinals. We 
hooseh�m: m < !i an in
reasing sequen
e of ordinals in S whi
h is 
o�nalin �. We setX� = fi < �: 8m < ! i 2 X�m ^ 8m < n < ! �m 2 lim(C(�n; i))g:X� is a 
lub� set be
ause it is a �nal segment of Tj X�j .We observe that if i 2 X� then C(�m; i) = C(�n; i) \ �m for allm < n < !. We now set C(�; i) = SmC(�m; i) for all i 2 X�.C(�; i) is 
lub in � be
ause every initial segment is an initialsegment of C(�m; i) for some m. A similar argument shows thatot(C(�; i)) < �. If � 2 lim(C(�; i)) then � 2 lim(C(�m; i)) for somem, and by indu
tion i 2 X� and C(�; i) = C(�m; i)\� = C(�; i)\�.If i; j 2 X� with i < j then by indu
tion C(�m; i) � C(�m; j) forall m < !, so that C(�; i) � C(�; j). Finally if � 2 S \ � then� 2 S\�m for some m, and so by indu
tion � 2 lim(C(�m; i)) for alllarge i 2 X�m; it follows that � 2 lim(C(�; i)) for any large enoughi 2 X�.



INDEXED SQUARES 21Case 4: ! < 
f(�) < �. Let 
f(�) = � say. As in Case 3 we �xh�m: m < �i an in
reasing and 
ontinuous sequen
e of members of Swhi
h is 
o�nal in �. We de�neY� = fi < �: 8m < � i 2 X�m and 8m < n < � �m 2 limC(�n; i)g:Note that Y� depends on the 
hoi
e of the sequen
e h�m: m < �i usedin its de�nition. Exa
tly as in Case 3 Y� is a 
lub� set, and if i 2 Y�then C(�m; i) = C(�n; i) \ �m for all m < n < �.Unfortunately Y� will not quite do as a 
andidate for X� be
auseits dependen
e on the 
hoi
e of h�m: m < �i would 
ause a problemin Case 5. We 
hoose X� in a more 
anoni
al way and make it aslarge as possible. To be more pre
ise we letX� = fi < �: 9E 
lub in � 8
 2 lim(E)(i 2 X
 ^ E \ 
 = C(
; i))g:If i 2 Y� and we let E = SmC(�m; i) then it is easy to 
he
k that Ewitnesses i 2 X�, so that Y� � X�.Suppose that i 2 X� and E, E 0 are both 
lubs in � witnessing this.Then E \ E 0 is 
lub in � andE = [
2lim(E\E0)C(
; i) = E 0:
For ea
h i 2 X�, we now de�ne C(�; i) to be the unique E whi
h is
lub in � and is su
h that 8
 2 lim(E) E \ 
 = C(
; i). Noti
e thatif i 2 Y� then automati
ally C(�; i) = SmC(�m; i).Sin
e every initial segment of C(�; i) is an initial segment of C(
; i)for some 
 < �, ot(C(�; i)) < �. If � 2 lim(C(�; i)) then � 2lim(C(
; i)) for some 
 2 lim(C(�; i)), and we have by indu
tionthat i 2 X� and C(�; i) = C(
; i) \ � = C(�; i) \ �.Let i; j 2 X� with i < j. Let C(�; i) = E and C(�; j) = F . ThenE = [
2lim(E\F )C(
; i) � [
2lim(E\F )C(
; j) = F;
that is to say that C(�; i) � C(�; j). Finally we may argue as inCase 3 that S \ � � Si2Y� limC(�; i), whi
h suÆ
es sin
e Y� � X�.Case 5: � = �+! where 
f(�) = �. We �x h�i: i < �i an in
reasingand 
ontinuous sequen
e of members of S whi
h is 
o�nal in �. LetZ = fi < �: 8j < i i 2 X�j and 8j < k < i �j 2 lim(C(�k; i))g:



22 JAMES CUMMINGS AND ERNEST SCHIMMERLINGWe 
laim that Z is 
lub� in �. To see this �rst observe that ifD = fi < �: 8j < i i 2 X�jg then D is a diagonal interse
tion ofsets in the 
lub� �lter, and sin
e that �lter is normal D is a 
lub�set. De�ne f : [�℄2 �! � by setting f(j; k) equal to the least i 2 X�kwith �j 2 limC(�k; i), and let C be the 
lub set of i < � whi
h are
losed under f . If i 2 D \ C then(1) Sin
e i 2 D, i 2 X�j for all j < i.(2) If j; k < i then sin
e i 2 C we have f(j; k) < i, and byde�nition f(j; k) 2 X�k and �j 2 lim(C(�k; f(j; k))). Sin
ei 2 D we also have i 2 X�k , and so by the properties of a goodmatrix C(�k; f(j; k)) � C(�k; i) and so �j 2 lim(C(�k; i)).It follows that D \ C � Z, and so Z is a 
lub� set.We let X� = fi 2 D \ C: 
f(i) > !g. Let i 2 X� and 
onsider the
onstru
tion at level �i; sin
e 
f(i) > ! and the sequen
e h�j : j < �iis 
ontinuous, 
f(�i) = 
f(i) > ! and the relevant 
lause of thede�nition is Case 4.If we let E = Sj<iC(�j; i) then the fa
t that i 2 Z and the
oheren
e properties of the good matrix imply that 8
 2 lim(E) E \
 = C(
; i), so that by the de�nition of X�i and C(�i; i) from Case4 i 2 X�i and C(�i; i) = Sj<iC(�j; i).We de�ne C(�; i) = C(�i; i) [ f�ig [ [�; �):Clearly C(�; i) is 
lub in �, and ot(C(�; i)) = ot(C(�i; i))+! < �.If 
 2 limC(�; i) then either 
 2 limC(�i; i) or 
 = �i, and ineither 
ase it is easy to see that i 2 X
 and C(
; i) = C(�i; i) \ 
 =C(�; i) \ 
.Let i; j 2 X� with i < j. By indu
tionC(�i; i) =[k<iC(�k; i) �[k<iC(�k; j) � [k<jC(�k; j) = C(�j; j):
Sin
e C(�j; j) is 
lub in �j and C(�i; i) is 
o�nal in �i, it follows that�i 2 C(�j; j). Therefore by de�nition C(�; i) � C(�; j).Finally let 
 2 S \ �, and observe that sin
e � =2 S we haveS \ � = S \ �. Find i su
h that 
 < �i, and then j 2 X� su
hthat i < j and 
 2 limC(�i; j). Sin
e C(�j; j) = Sk<j C(�k; j),
 2 limC(�j; j).This 
on
ludes the proof of Lemma 4.4. �
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onstru
tion of a good matrix for � in Lemma 4.4 
on
ludesthe proof of Theorem 4.2. �It is natural to ask what happens when the 
o�nality of � is
hanged to some value other than !, for example by Radin for
ing.Apter and Cummings [1℄ studied this question and used the ideas ofTheorem 4.2 and Fa
t 4.1 to showFa
t 4.5. Let GCH hold and let � be a �+5-super
ompa
t 
ardinal.Then there exists a for
ing poset P su
h that in V P(1) � is �+5-super
ompa
t.(2) For every singular 
ardinal � < �(a) There exists S � �+ stationary su
h that any family ofsize less than 
f(�) of stationary subsets of S re
e
tssimultaneously to a point of 
o�nality � for unboundedlymany � < �.(b) The 
ombinatorial prin
iple �
f(�)� holds.We also note a 
onne
tion with some work of Gitik, Dzamonja andShelah. Strengthening a result of Gitik [10℄, Dzamonja and Shelah[7℄ showed some results on \outside guessing of 
lubs" whi
h havethe following 
orollary:Fa
t 4.6. Let V �W be inner models of ZFC and let GCH hold in V .Suppose that � is a W -
ardinal su
h that �+V = �+W , W j= 
f(�) = !and V j= � is ina

essible. Then there is in W an !-sequen
e whi
his 
o�nal in � and is eventually 
ontained in every 
lub� subset of �from V .It follows that Theorem 4.2 
an be generalised to a wider 
lass ofextensions. 5. Distinguishing squaresJensen showed in unpublished work [11℄ that��1 is stri
tly strongerthan �2�1 . His methods 
an be used to distinguish the prin
iples ���for a �xed regular �, and similar results 
an be proved [5℄ for � sin-gular. In this se
tion we use methods similar to those of [11℄ to showwhere the simplest indexed versions of weak square prin
iples �t in.Theorem 5.1. Let � be Mahlo. Then



24 JAMES CUMMINGS AND ERNEST SCHIMMERLING(1) There is a for
ing extension in whi
h � = �2, �2�1 holds andIndex-�2�1 fails.(2) There is a for
ing extension in whi
h � = �2, Index-�2�1 holdsand ��1 fails.Proof. We will prove the �rst 
laim of the theorem in some detail,and then indi
ate how to modify the proof to give the se
ond 
laim.Let Æ be ina

essible. We begin by des
ribing a 
ountably 
losedfor
ing PÆ whi
h will 
ollapse Æ to be �2 and at the same time will adda �2�1-sequen
e. The sequen
e we add will have the spe
ial propertythat at points of un
ountable 
o�nality it only gives a single 
lub set.p 2 PÆ i� p is a fun
tion su
h that(1) dom(p) is a 
ountable set of limit ordinals less than Æ.(2) If 
f(�) = ! and � 2 dom(p) then 1 � jp(�)j � 2 and ea
hset in p(�) is a 
lub subset of � with 
ountable order type.(3) If 
f(�) > ! then p(�) = fCg where C is a 
losed boundedsubset of � with 
ountable order type, and the largest pointof C is greater than sup(dom(p) \ �).(4) If � 2 dom(p), C 2 p(�) and � 2 lim(C), then � 2 dom(p)and C \ � 2 p(�).If p; q 2 PÆ then p � q i�(1) dom(q) � dom(p).(2) For all � 2 dom(q)(a) If 
f(�) = ! then p(�) = q(�).(b) If 
f(�) > !, p(�) = fCg and q(�) = fDg then D =C \ (max(D) + 1).Lemma 5.2. Let Æ be ina

essible. Then� PÆ is Æ-
.
. and 
ountably 
losed.� PÆ 
ollapses Æ to �2 and adds a �2�1-sequen
e.Proof. This is routine. The only slightly deli
ate point 
omes in
he
king that PÆ is 
ountably 
losed. Let hpn: n < !i be a de
reasingsequen
e of 
onditions, and let � 2 Sn dom(pn) be an ordinal su
hthat 
f(�) > ! and the value of pn(�) does not eventually stabilisefor large n. The third 
lause in the de�nition of a 
ondition impliesthat max pn(�) > sup(dom(pn) \ �), so that if � = supnmax pn(�)then � =2 Sn dom(pn) and we are at liberty to de�ne a lower boundp! for hpn: n < !i with p!(�) = fSn pn(�)g. �



INDEXED SQUARES 25Now we suppose that 
; Æ are ina

essible with 
 < Æ. We will showthat PÆ 
an be viewed as a three step iteration P
 � T � Q , where Tadds a suitable 
lub at 
 and Q adds suitable 
lubs in the interval(
; Æ). Conditions in T and Q are 
ountable sets of ordinals, and sosin
e PÆ is 
ountably 
losed we will have T � V and Q � V (thoughof 
ourse these posets will not be members of V ).De�nition 5.3. Let 
; Æ be ina

essible with 
 < Æ.(1) If ~C = hC�: � < 
i is the sequen
e added by P
 , then T is theposet in V [~C℄ de�ned as follows.(a) t 2 T i� t is a 
ountable, 
losed and bounded subset of 
su
h that 8� 2 lim(t) t \ � 2 C�.(b) If t; t0 2 T then t � t0 i� t = t0 \ (max(t) + 1).(2) If ~C = hC�: � < 
i is the sequen
e added by P
 then Q is theposet in V [~C℄ de�ned as follows:(a) q 2 Q i� q is a fun
tion su
h that(i) dom(q) is a 
ountable set of limit ordinals in theinterval (
; Æ).(ii) If 
f(�) = ! and � 2 dom(q) then 1 � jq(�)j �2 and ea
h set in q(�) is a 
lub subset of � with
ountable order type.(iii) If 
f(�) > ! then q(�) = fCg where C is a 
losedbounded subset of �, C has 
ountable order type,and max(C) > sup(dom(q) \ �).(iv) If � 2 dom(q), C 2 q(�) and � 2 lim(C) then(A) If � > 
, then � 2 dom(q) and C \ � 2 q(�).(B) If � < 
, then C \ � 2 C�.(b) If q; q0 2 Q then q0 � q i�(i) dom(q) � dom(q0).(ii) For all � 2 dom(q)(A) If 
f(�) = ! then q0(�) = q(�).(B) If 
f(�) > !, q(�) = fCg and q0(�) = fDgthen D = C \ (max(D) + 1).Remark: We 
an de�ne Q in V P
 be
ause 
 
an not be a limitpoint of any 
lub in C� for 
 < � < Æ.



26 JAMES CUMMINGS AND ERNEST SCHIMMERLINGLemma 5.4. Let 
, Æ be ina

essible 
ardinals with 
 < Æ. Thenthere is an isomorphism between a dense subset of PÆ and a densesubset of P
 � T � Q .Moreover, Q is 
ountably 
losed in V P
�T.Proof. Let D0 = fp 2 PÆ : 
 2 dom(p)g and D1 = fq: 9p 2 D0 q =(p � 
; p(
); p � (
; Æ))g.It is easy to see that D0 is dense in PÆ , D1 � P
 � T � Q , and themap �: p 7�! (p � 
; p(
); p � (
; Æ)) is an isomorphism between D0and D1. In fa
t we wrote the de�nitions of T and Q to make thistrue.It remains to be seen that D1 is dense in P
 �T �Q . To see this let(p; _t; _q) be an arbitrary 
ondition in P
 � T � Q . Sin
e Q � V we may�nd (p1; _t1) � (p; _t) and q su
h that (p1; _t1) 
 _q = �q and then p2 � p1and t1 su
h that p2 
 _t1 = �t1. By 
onstru
tion (p2; t1; q) 2 P
 � T � Qand (p2; t1; q) � (p; _t; _q).Now p2 
 �t1 2 T and (p2; t1) 
 �q 2 Q . It is routine to 
he
k that ifwe de�ne p� = p2 [ f(
; t1)g [ q then p� 2 PÆ and �(p�) = (p2; t1; q).The proof that Q is 
ountably 
losed in V P
�T is just like the proofthat PÆ is 
ountably 
losed in V . �We will be done on
e we have proved the following result.Claim 5.5. If � is Mahlo then Index-�2�1 fails in V P� .Proof. Suppose not. For simpli
ity we assume that the empty 
ondi-tion for
es that the prin
iple holds, say
P� \( _A; _C) witnesses Index-�2�1 ."By the �-
.
. for P� and the Mahloness of � we may �nd Æ < � su
hthat Æ is ina

essible and ( _A � Æ; _C � Æ � �1) is a name in V PÆ . Thisimplies that
PÆ \( _A � Æ; _C � Æ � �1) witnesses Index-�2�1 ."We now identify P� with PÆ � T � Q where T , Q are de�ned as inLemma 5.4. Fix a 
ondition (p; t; q) whi
h for
es that � 2 A(Æ) forsome � < �1. If _D = _C(Æ; �) then (p; t; q) for
es that _D is 
lub in Æ,ot( _D) = �1 and 8
 2 lim( _D) _D \ 
 = _C(
; �).
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t _D 
annot exist in the generi
 extension by PÆ , so we
laim that we may �nd 
onditions (p0; t0; q0) and (p0; t1; q1) both ex-tending (p; t; q) and an ordinal � < Æ su
h that(p0; t0; q0) 
 �� 2 _D(p0; t1; q1) 
 �� =2 _D
If this were not so then we would have8p0 � p 8�; t0; q0; t1; q1 (p0; t0; q0) 
 �� 2 _D () (p0; t1; q1) 
 �� 2 _D;whi
h would imply that below (p; t; q) the name _D was equivalent toa PÆ -name.We build sequen
es hpn: 1 � n < !i, ht2n+10 : n < !i, ht2n+21 : n < !i,hq2n+10 : n < !i, hq2n+21 : n < !i, and h�n: 1 � n < !i su
h that(1) pn 2 PÆ , p1 � p0 and hpn: 1 � n < !i is de
reasing.(2) (p1; t10; q10) � (p0; t0; q0) and h(p2n+1; t2n+10 ; q2n+10 ): n < !i is de-
reasing.(3) (p2; t21; q21) � (p0; t1; q1) and h(p2n+2; t2n+21 ; q2n+21 ): n < !i is de-
reasing.(4) h�n: 1 � n < !i is an in
reasing sequen
e of ordinals su
h that(a) �1 > maxfmax(t0);max(t1); �g.(b) �2n+1 < maxfmax(t2n+10 ); sup dom(p2n+1)g < �2n+2.(
) �2n+2 < maxfmax(t2n+21 ); sup dom(p2n+2)g < �2n+3.(d) (p2n+1; t2n+10 ; q2n+10 ) 
 ��2n+1 2 _D.(e) (p2n+2; t2n+21 ; q2n+21 ) 
 ��2n+2 2 _D.Let p! 2 PÆ be a lower bound for the sequen
e hpn: 1 � n < !i.Sin
e Q is 
ountably 
losed in V PÆ we may �nd q�0 and q�1 su
h that(p!; q�0) is a lower bound for h(p2n+1; q2n+10 ): n < !i and (p!; q�1) is alower bound for h(p2n+2; q2n+21 ): n < !i. Now de�ne�� = supn �n;t�0 = [n t2n+10 [ f��g;t�1 = [n t2n+21 [ f��g;p� = p! [ f(��; ft�0; t�1g)g:



28 JAMES CUMMINGS AND ERNEST SCHIMMERLINGIt is routine to 
he
k that (p�; t�0; q�0) and (p�; t�1; q�1) are both 
ondi-tions in PÆ � T � Q .The 
onditions (p�; t�0; q�0) and (p�; t�1; q�1) both for
e �� to be a limitpoint of _D, so (p�; t�0; q�0) 
 �� 2 _C(��; �)(p�; t�1; q�1) 
 �� =2 _C(��; �)
This is absurd be
ause _C(��; �) is a name in V PÆ , so that thepre
eding equations imply p� 
 �� 2 _C(��; �) and p� 
 �� =2 _C(��; �).�This 
on
ludes the proof of the �rst 
laim of Theorem 5.1.For the se
ond 
laim, we start by de�ning a poset P�Æ whi
h is de-signed to add an Index-�2�1-sequen
e while 
ollapsing an ina

essibleÆ to be
ome �2. This sequen
e will have the spe
ial properties thatit only gives one 
lub set at limit ordinals of 
o�nality greater than!, and that the only indi
es whi
h are used are 0 and 1.p 2 P�Æ i� p is a pair (a; 
) where(1) a is a fun
tion with dom(a) a 
ountable set of limit ordinalsless than Æ.(2) For every � 2 dom(a), a(�) is a nonempty subset of f0; 1g. If
f(�) > ! then ja(�)j = 1.(3) 
 is a fun
tion with domain f(�; �): � 2 dom(a); � 2 a(�)g.(4) If 
f(�) = ! and (�; �) 2 dom(
) then 
(�; �) is a 
lub subsetof � with 
ountable order type.(5) If 
f(�) > ! and (�; �) 2 dom(
) then 
(�; �) is a 
losedbounded subset of � with 
ountable order type, with the ad-ditionla property that max(
(�; �)) > sup(dom(a) \ �).(6) If (�; �) 2 dom(
) and � 2 lim(
(�; �)) then (�; �) 2 dom(
)and 
(�; �) = � \ 
(�; �).Conditions in P�Æ are ordered as follows: (a1; 
1) � (a0; 
0) i�(1) dom(a0) � dom(a1).(2) For all � 2 dom(a0)(a) a0(�) = a1(�).(b) For all � 2 a0(�), 
0(�; �) = 
1(�; �).As before it is easy to see that



INDEXED SQUARES 29(1) P�Æ is 
ountably 
losed and Æ-
.
.(2) P�Æ 
ollapses Æ to �2 and adds (A;C) witnessing Index-�2�1 .P�Æ is sus
eptible to a fa
tor analysis very similar to that whi
h wegave for PÆ above. The main di�eren
e is that we need two versionsof T and Q , re
e
ting the fa
t that at 
 we must de
ide whether toput a 
lub set with index 0 or a 
lub set with index 1.Lemma 5.6. Let 
; Æ be ina

essible with 
 < Æ. There exist posetsT0 ; T1 ; Q 0 ; Q 1 2 V P
 su
h that(1) If p = (a; 
) 2 P�Æ and (
; 0) 2 dom(
) then P�Æ=p is isomorphi
to a dense subset ofP�
=(a � 
; 
 � 
 � 2)� T0=
(
; 0)� Q 0=(a � (
; Æ); 
 � (
; Æ)� 2):(2) If p = (a; 
) 2 P�Æ and (
; 1) 2 dom(
) then P�Æ=p is isomorphi
to a dense subset ofP�
=(a � 
; 
 � 
 � 2)� T1=
(
; 1)� Q 1=(a � (
; Æ); 
 � (
; Æ)� 2):(3) Q j is 
ountably 
losed in V P�
�Tj .Proof. The de�nitions and proofs are like those of De�nition 5.3 andLemma 5.4. �Claim 5.7. If � is Mahlo then ��1 fails in V P�� .Proof. Suppose that
P�� \h _D�: � < �i is a ��1-sequen
e"By the �-
.
. for P�� and the Mahloness of � we may �nd Æ < � su
hthat Æ is ina

essible and h _D�: � < Æi is a name in V P�Æ . This impliesthat 
P�Æ \h _D�: � < Æi is a ��1-sequen
e"We now 
onsider the P��-name _D = _DÆ. We 
laim that we may�nd 
onditions (p; t0; q0) 2 P�Æ � T0 � Q 0 and (p; t1; q1) 2 P�Æ � T1 � Q 1together with an ordinal � < Æ su
h that either(p; t0; q0) 
 �� 2 _D(p; t1; q1) 
 �� =2 _D
or (p; t0; q0) 
 �� =2 _D
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 �� 2 _D
To see this we �rst �nd 
onditions (p0; u00; r00) and (p0; u01; r01) fromPÆ � T0 � Q 0 and an ordinal � su
h that(p0; u00; r00) 
 �� 2 _D;(p0; u01; r01) 
 �� =2 _D:

This is possible be
ause _D names a set whi
h is not in V PÆ . We now�nd (p; u1; r1) in PÆ � T1 � Q 1 su
h that p � p0 and (p; u1; r1) de
idesthe statement \� 2 _D", and then 
hoose ti and qi a

ordingly.We build sequen
es hpn: 1 � n < !i, ht2n+10 : n < !i, ht2n+21 : n < !i,hq2n+10 : n < !i, hq2n+21 : n < !i, and h�n: 1 � n < !i su
h that(1) pn 2 PÆ , p1 � p0 and hpn: 1 � n < !i is de
reasing.(2) (p2n+1; t2n+10 ; q2n+10 ) 2 PÆ �T0 �Q 0 , (p1; t10; q10) � (p; t0; q0), andh(p2n+1; t2n+10 ; q2n+10 ): n < !i is de
reasing.(3) (p2n+2; t2n+21 ; q2n+21 ) 2 PÆ �T1 �Q 1 , (p2; t21; q21) � (p; t1; q1), andh(p2n+2; t2n+11 ; q2n+21 ): n < !i is de
reasing.(4) h�n: 1 � n < !i is an in
reasing sequen
e of ordinals su
h that(a) �1 > maxfmax(t0);max(t1); �g.(b) �2n+1 < maxfmax(t2n+10 ); sup dom(p2n+1)g < �2n+2.(
) �2n+2 < maxfmax(t2n+21 ); sup dom(p2n+2)g < �2n+3.(d) (p2n+1; t2n+10 ; q2n+10 ) 
 ��2n+1 2 _D.(e) (p2n+2; t2n+21 ; q2n+21 ) 
 ��2n+2 2 _D.Let �� = Sn �n, and let p! be a lower bound for hpn: 1 � n < !i.De�ne u0 = [n t02n+1 [ f��g;u1 = [n t12n+2 [ f��g;p� = p! [ f((��; 0); u0); ((��; 1); u1):gUsing the 
ountable 
losure of the Q j , we �nd r0 and r1 su
h that(p�; u0; r0) is a lower bound for h(p2n+1; t2n+10 ; q2n+10 ): n < !i, and(p�; u1; r1) is a lower bound for h(p2n+2; t2n+21 ; q2n+21 ): n < !i.
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onditions (p�; u0; r0) and (p�; u1; r1) both for
e �� to be alimit point of _D, so (p�; u0; r0) 
 �� 2 _D��(p�; u1; r1) 
 �� =2 _D��
But _D�� is a V PÆ -name so p� 
 �� 2 _D�� and p� 
 �� =2 _D�� . This is a
ontradi
tion. �This 
on
ludes the proof of Theorem 5.1. �6. Global square and 1-extendible 
ardinalsIn this se
tion we investigate the question of how strong a large
ardinal axiom has to be before it be
omes in
ompatible with theexisten
e of square sequen
es. We start by re
alling the de�nition ofa 1-extendible 
ardinal.De�nition 6.1. � is 1-extendible i� there exist a 
ardinal � > �and �: H�+ �! H�+ an elementary embedding with 
rit(�) = � and�(�) = �.For more information about extendible 
ardinals see Kanamori'sbook[14℄. We note that if 
 is a 
ardinal then 
 is de�nable in H
+ asthe largest 
ardinal, so that the demand that �(�) = � in the de�ni-tion of 1-extendibility is super
uous; it follows from the elementarityof the map �.Jensen [13℄ introdu
ed a strengthening of 1-extendibility 
alledquasi
ompa
tness. For expository purposes we will also de�ne anintermediate notion 1-extendible in A.De�nition 6.2. Let � be a 
ardinal.(1) For A � H�+, � is 1-extendible in A i� there exist a 
ardinal� > �, a set B � H�+ and an elementary embedding � from(H�+ ;2; A) to (H�+ ;2; B), su
h that �(�) = � and the 
riti
alpoint of � is �.(2) � is quasi
ompa
t i� � is 1-extendible in A for all A � H�+.Jensen showed that if ~C = hC�: � < �+i is su
h that C� � � forall �, and � is 1-extendible in ~C then ~C is not a ��-sequen
e. In
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ular if � is quasi
ompa
t then �� fails. Re
e
ting on this proofJensen introdu
ed the notion of sub
ompa
tness.De�nition 6.3. Let � be a 
ardinal. � is sub
ompa
t i� for allA � H�+ there exist a 
ardinal � < �, a set a � H�+ and anelementary embedding � from (H�+;2; a) to (H�+ ;2; A), su
h that
rit(�) = � and �(�) = �.Jensen's argument shows that if � is sub
ompa
t then �� fails. Wenote that a sub
ompa
t 
ardinal need not be measurable. In fa
t if� is measurable and sub
ompa
t and U is any normal measure on �then it is routine to 
he
k that � is sub
ompa
t in Ult(V; U), so thatthere are many sub
ompa
t 
ardinals below �.At this point a few words about the inner model program are inorder. The goals of the program are to 
onstru
t 
anoni
al \L-like"inner models for large 
ardinal axioms, and to analyse the internalstru
ture of these models and their relation to V . This analysis 
anbe used to obtain lower bounds on 
onsisten
y strength for 
ombina-torial statements. We refer the reader to the survey papers [23℄ and[15℄ and the books [19℄ and [24℄ for more information.The inner models whi
h are studied in the inner model programhave the form L[ ~E℄, where ~E is a sequen
e of extenders whi
h issubje
t to 
ertain �ne-stru
tural 
onditions; we will refer to modelsof this standard type as \L[ ~E℄ models". It is anti
ipated that alllarge 
ardinal axioms below the level of super
ompa
tness 
an holdin L[ ~E℄-models, but 
urrently this has only been proved up to slightlybeyond the level of a measurable limit of Woodin 
ardinals.S
himmerling and Zeman have shown that in any L[ ~E℄-model, ifthere are no sub
ompa
t 
ardinals then �� holds for all �. Fromthe dis
ussion in the previous paragraph, this shows that �� holdsfor every � is 
onsistent with large 
ardinals up to slightly beyond ameasurable limit of Woodin 
ardinals. It should eventually be possi-ble to show that �� holds for every � is 
onsistent with the existen
eof a 1-extendible 
ardinal by 
onstru
ting a suitable L[ ~E℄-model; inthis se
tion we will use for
ing to prove this 
onsisten
y result. A
tu-ally we prove something slightly stronger but more te
hni
al to state,whi
h needs a preliminary de�nition.De�nition 6.4. hC�: � 2 ON; 
f(�) < �i is a global �-sequen
e i�



INDEXED SQUARES 33(1) For every singular ordinal �, C� is 
lub in � with ot(C�) < �.(2) If 
f(�) < � and � 2 lim(C�), then 
f(�) < � and C� =C� \ �.Jensen proved that if V = L there is a global square sequen
e, andthat if a global square sequen
e exists then �� holds for all �. We
an now state the result of this se
tion pre
isely.Theorem 6.5. Let GCH hold, let � be 1-extendible as witnessed by�: H�+ �! H�+, and let Æ be ina

essible with Æ > �. Then in somegeneri
 extension there is a transitive set W and a predi
ate ~C on Wsu
h that (W;2; ~C) is a model of ZFC~C + � is 1-extendible + ~C is aglobal square sequen
e.The rest of this se
tion will be devoted to a proof of this theorem.Before starting the proof a few remarks are in order:(1) Doug Burke [3℄ showed that the existen
e of a superstrong
ardinal is 
onsistent with �� holds for every �.(2) At �rst sight the most natural pro
edure for showing that a1-extendible 
ardinal is 
onsistent with global square wouldbe to start with a model with some large 
ardinal �, use 
lassfor
ing to add a global square sequen
e and then argue thatthe resulting stru
ture is a model of set theory in whi
h �is 1-extendible. We were unable to make this s
enario workwithout assuming some additional re
e
tion properties for the
lass of ordinals, whi
h amounted to assuming that the uni-verse has the form VÆ for Æ ina

essible; we therefore de
idedto eliminate the 
ompli
ations of 
lass for
ing and build atransitive set model of our desired hypothesis by set for
ing.(3) It is easy to see that if � is 1-extendible then � is 1-extendiblein A for every de�nable A, so that there 
an be no ��-sequen
e whi
h is de�nable in H�+. While we are on thesubje
t of de�nability we note that in Theorem 6.5 the se-quen
e ~C is not de�nable in W , so our theorem leaves openwhether a de�nable global square sequen
e is 
onsistent withthe existen
e of a 1-extendible 
ardinal.(4) Jensen showed that if �� holds for all � and a weak form ofglobal square holds on singular 
ardinals, then global squareholds. Zeman showed that the weak form of global square



34 JAMES CUMMINGS AND ERNEST SCHIMMERLINGholds in all L[ ~E℄ models. Combining these results with theS
himmerling-Zeman result, we see that global square holdsin L[ ~E℄ if L[ ~E℄ has no sub
ompa
t 
ardinals. See [22℄.The following de�nition is not standard usage but is 
onvenienthere.De�nition 6.6. Let � be an ordinal. A GS(�)-sequen
e is a sequen
ehC�: � < �; 
f(�) < �i where(1) For every singular ordinal � < �, C� is a 
lub subset of �with ot(C�) < �.(2) If 
f(�) < � and � 2 lim(C�), then 
f(�) < � and C� =C� \ �.Intuitively a GS(�)-sequen
e is a potential initial segment of aglobal square sequen
e.We now state our large 
ardinal hypothesis, whi
h will be in e�e
tfor the rest of this se
tion:Hypothesis: GCH holds and there are regular 
ardinals � < � < Æsu
h that(1) There exists j: H�+ �! H�+ su
h that 
rit(j) = �, j(�) = �and j is elementary (that is to say j witnesses that � is 1-extendible).(2) Æ is ina

essible.Our plan for proving Theorem 6.5 is as follows: we will build atwo-step generi
 extension V [G℄[g℄ su
h that(1) Æ is ina

essible in V [G℄[g℄.(2) V V [G℄Æ = V V [G℄[g℄Æ (we denote this model by VÆ[G℄ below).(3) VÆ[G℄ j= \� is 1-extendible".(4) In V [G℄[g℄ there is a sequen
e ~C = hC�: � < Æ; 
f(�) < �isu
h that(a) ot(C�) < �, and 8� 2 lim(C�) C� = C� \ �.(b) (VÆ[G℄;2; ~C) is a model of ZFC~C .Before giving the details of the 
onstru
tion we dis
uss a 
ouple ofdistin
tive features. We note that very similar issues arise (and aredis
ussed in more detail) in a paper by Cummings, Dzamonja andShelah [4℄.
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onstru
tion is a \Reverse Easton" iteration of the same gen-eral type as those dis
ussed in Baumgartner's survey [2℄. It is 
om-mon in Reverse Easton iterations for the for
ing being done at stage
 to be 
-
losed, but in our situation we will only assume that it is< 
-strategi
ally 
losed. We re
all the de�nition of strategi
 
losure.De�nition 6.7 (Foreman [9℄). Let 
 be a 
ardinal. A poset P is< 
-strategi
ally 
losed if and only if for every ordinal � < 
 playerII wins the following two-player game of perfe
t information. PlayersI and II 
ollaborate to build a de
reasing 
hain hp�: 0 < �i in P withplayer I playing at odd � and player II at even � (in
luding all limitstages). Player II wins if play pro
eeds for � many moves, that is tosay p� is de�ned for all � < �.Repla
ing 
losure by strategi
 
losure ne
essitates a few 
hanges inthe standard Reverse Easton arguments. We outline these 
hangesat the relevant points below.In our iteration, at ea
h regular 
 we will for
e with a poset Q 
whi
h adds a GS(
)-sequen
e by approximation via initial segments.A potential problem with this strategy is that a priori there may notbe enough 
onditions in Q 
 , in fa
t what we need (see Claim 6.11for the details) is that GS(�)-sequen
es already exist for all ordinals� < 
; we will arrange this using the fa
t that we already for
edwith Q � for all regular � < 
 and the following sequen
e of te
hni
allemmas.Lemma 6.8. Let � be an in�nite 
ardinal. If there exists a GS(�)-sequen
e, then there exists a GS(�)-sequen
e for every � < �+.Proof. Let hC�: � < �; 
f(�) < �i be a GS(�)-sequen
e. We provethe existen
e of a GS(� + 1)-sequen
e by indu
tion on limit � in theinterval [�; �+).Case 1: � = �. If � is regular there is nothing to do, so we assumethat � is singular. Choose h�i: i < 
f(�)i in
reasing, 
ontinuous and
o�nal in � with �0 = 0 and 
f(�) < �1. De�ne for singular ordinals� � �
D� = 8><>:f�i: i < jg � = �j, j limitf�i: i < 
f(�)g � = �C� n (�i + 1) �i < � � �i+1
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+!, 
 limit. Let hD�: � � 
; 
f(�) < �i be a GS(
+1)-sequen
e. We may extend this to be a GS(� + 1)-sequen
e byde�ning D� = f
 + n: n < !g.Case 3: � < � < �+, � a limit of limit ordinals. Let 
f(�) = �,where ne
essarily � � �. Choose h�i: i < �i in
reasing, 
ontinuousand 
o�nal in �, in su
h a way that(1) �0 = 0.(2) �i+1 is a singular limit ordinal for all i.(3) �1 > �.Fix hCi+1� : � � �i+1; 
f(�) < �i a GS(�i+1+1)-sequen
e for ea
h i <�.De�ne for singular ordinals � � �
D� = 8><>:f�i: i < jg � = �j, j limitf�i: i < �g � = �Ci+1� n (�i + 1) �i < � � �i+1 �Lemma 6.9. If � is a singular 
ardinal and there is a GS(�)-sequen
efor every regular � < �, then there is a GS(�)-sequen
e.Proof. Like Case 3 in Lemma 6.8. �Lemma 6.10. Let 
 be a 
ardinal and suppose that for every regular
ardinal � < 
 there is a GS(�)-sequen
e. Then for every ordinal� < 
 there is a GS(�)-sequen
e.Proof. If 
 is a limit 
ardinal then there are unboundedly many reg-ular 
ardinals less than 
, and the result is 
lear. So suppose 
 = �+for some 
ardinal �. If � is regular then there is a GS(�)-sequen
eby assumption, if � is singular then there is a GS(�)-sequen
e byLemma 6.9. In either 
ase, by Lemma 6.8 there is a GS(�)-sequen
efor every � < �+ = 
. �We 
an now des
ribe our iterated for
ing 
onstru
tion. Given aregular 
ardinal 
 we de�ne a poset Q 
 . p 2 Q 
 if and only ifp = hC�: 
f(�) < �;� � �i where(1) � is a singular limit ordinal less than 
.(2) p is a GS(� + 1)-sequen
e.
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f(�) < �;� � �i and q = hD�: 
f(�) < �;� � ��i arein Q 
 then p � q i� � � �� and C� = D� for all � � ��. We notethat by GCH Q 
 is a poset of size at most 
, and so trivially has the
+-
hain 
ondition.Claim 6.11. If there is a GS(�)-sequen
e for every � < 
 thenfor
ing with Q 
 adds a GS(
)-sequen
e.Proof. We need to 
he
k that for every � < 
 the set of GS(� + 1)-sequen
es is dense. Let p = hC�: 
f(�) < �;� � �i be a GS(� + 1)sequen
e for some singular ordinal �, and let � be a singular ordinalwith � < � < 
. Let q = hD�: 
f(�) < �;� � �i be a GS(� + 1)-sequen
e.We de�ne E� for singular � with � � � by letting E� = C� for� � � and E� = D� n (� + 1) for � < � � �. It is routine to 
he
kthat if r = hE�: 
f(�) < �;� � �i then r is a GS(� + 1)-sequen
eextending p. �We de�ne PÆ+1 to be the Reverse Easton iteration of Q 
 for regular
 � Æ. To be a little more expli
it we de�ne sequen
es hP� : � � Æ + 1iand h _Q � : � � Æi indu
tively by(1) _Q � is a P�-name for the version of Q � 
omputed by V P� , if �is regular in V P� (whi
h will turn out to be the 
ase for everyregular �, see 
laim 6.12). Otherwise _Q � names the trivialfor
ing.(2) P�+1 = P� � _Q � .(3) For � � Æ a limit ordinal, P� is the dire
t limit of hP� : � < �ifor � ina

essible, and the inverse limit otherwise.Claim 6.12. Let 
 be regular. Then in V P
1
. For every 
ondition p 2 Q 
 and every � < 
 there is a 
ondi-tion q 2 Q 
 with q � p and max(dom(q)) � �.2
. Q 
 is < 
-strategi
ally 
losed.3
. Cardinals and 
o�nalities are preserved.Proof. We pro
eed by indu
tion. Assume that we have 1Æ, 2Æ and3Æ for regular Æ < 
. We start by outlining the argument that P
preserves all 
ardinals and 
o�nalities.Given a 
ardinal � < 
, we fa
tor P
 in the standard way asP� � Q � � R and note that �+ is the �rst point at whi
h the iteration
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ing. The arguments of [2℄, suitably adaptedfor strategi
ally 
losed for
ing, gives us that R is < �+-strategi
ally
losed in V P�+1 . The usual 
ounting arguments give us that P�+1 isalways �+-
.
. A suitable adaptation of Easton's arguments from [8℄shows that all �-sequen
es from V P
 must lie in V P�+1 , and argumentsexa
tly like those of [8℄ then show that all 
ardinals and 
o�nalitiesare preserved in V P
 .It follows by the indu
tion hypothesis and Claim 6.11 that in V P
we will have a GS(Æ)-sequen
e for every regular Æ with Æ < 
. ByLemma 6.10 there is a GS(�)-sequen
e for every ordinal � < 
. ByLemma 6.11 again 1
 holds in V P
 .Re
all the strategi
 
losure game from De�nition 6.7. We de-s
ribe a winning strategy for player Even in the game of length� + 1 played on Q 
 , where � < 
 is a limit ordinal. Let p� =hE� : 
f(�) < �; � � 
�i be the 
ondition whi
h is played at stage �,where player Even's strategy will guarantee that h
�: � � �i is 
on-tinuous.Case 1: � = 2: Even plays a 
ondition p2 � p1 with 
2 > �. Noti
ethat for all limit � � � we will have 
f(
�) = 
f(�) � � < 
2 < 
�.Case 2: � = �0 + 2, �0 > 0 even: Even sets 
� = 
�0+1 + ! andE
� = f
�0+1 + n: n < !g.Case 3: lim(�): Even sets 
� = sup��<� 
�� and E
� = f
��: �� < �g.This is a legal move be
ause(1) If � 2 lim(E
�) then � = 
�� for �� limit, and soE� = f
�: � < ��g = E
� \ �:(2) ot(E
�) = � � � < 
2 < 
�.It is routine to 
he
k that this is a winning strategy, 
on
ludingthe proof of Claim 6.12. �
We will 
hoose G to be some PÆ -generi
 �lter subje
t to a 
ertainte
hni
al 
ondition; if ~C� and ~C� are the sequen
es added at stages� and �, then we 
hoose G so that ~C� � � = ~C�. This is possible
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ause � is regular in V [G�℄, so that ~C� 
an be extended 2 to a
ondition M in Q � and we may for
e below M to get ~C� as desired.The reason for doing this is explained in detail in Claim 6.15 below;in the jargon of large 
ardinal theorists M is a \master 
ondition" inQ � , whi
h is to say that for
ing below M at stage � will guaranteethat we 
an lift our original embedding j to an elementary embeddingj: H�+[G� � g�℄ �! H�+ [G� � g�℄. For more about master 
onditionssee the se
tion on Reverse Easton for
ing in Baumgartner's surveypaper [2℄.By Lemma 6.12, V [G℄[g℄ has the same 
ardinals and 
o�nalities asV and Æ is ina

essible in V [G℄[g℄. This implies that every set of rankless than Æ is 
oded by a bounded subset of Æ, so V V [G℄Æ = V V [G℄[g℄Æ ; tosave the reader from a plague of supers
ripts we denote this set byVÆ[G℄ in what follows.Let ~C be the generi
 GS(Æ)-sequen
e added by g. The stru
ture(VÆ[G℄;2; ~C) is a model of ZFC~C be
ause V [G℄[g℄ is a model of ZFC,Æ is ina

essible in V [G℄[g℄ and ~C 2 V [G℄[g℄.To �nish, we show that in VÆ[G℄ there is an elementary embeddingfrom HVÆ [G℄�+ to HVÆ [G℄�+ . It will then follow that � is 1-extendible inVÆ[G℄. The elements of H�+ are 
oded by subsets of � and no subsetsof � are added past stage � of the iteration so HVÆ [G℄�+ = HV [G�+1℄�+ =HVÆ [G�+1℄�+ Similarly we see that HVÆ [G℄�+ = HV [G�+1℄�+ = HVÆ [G�+1℄�+ .The intuition behind the rest of the proof is that we want to treatHVÆ [G�+1℄�+ as a generi
 extension of H�+ by P�+1 , and then apply thete
hniques of Reverse Easton for
ing to lift the embedding j. Theargument requires a little 
are be
ause H�+ is not a model of ZFC.Sin
e jP�+1j = �, every element of HVÆ [G�+1℄�+ has the form _�G�+1 forsome P�+1-name _� 2 H�+ . What is more P�+1 2 H�+. A tedious butroutine argument now shows that for any formula � there exists aformula �� su
h that for any P�+1-name _� and 
ondition p 2 P�+1p 
VP�+1 \HVÆ [ _G�+1℄�+ j= �( _� _G�+1)" () H�+ j= ��(p; P�+1; _� ):
2De�ne M to agree with ~C� up to �, to have �+ ! as the largest point in itsdomain and to asso
iate f�+ n: n < !g to �+ !.



40 JAMES CUMMINGS AND ERNEST SCHIMMERLINGAbusing notation slightly we write p 
H+�P�+1 �( _�) for this relation,where the key point is that the relation is de�nable in H�+. Anexa
tly similar analysis works for HVÆ [G�℄�+ and we write p 
H+�P� �( _�)as an abbreviation for the indigestible p 
VP� \HVÆ [ _G�℄�+ j= �( _� _G�)".In line with our intuitive remarks above we further abuse notationand write H�+ [G�℄ for HVÆ [G�℄�+ , H�+[G�+1℄ for HVÆ [G�+1℄�+ , H�+ [G�℄ forHVÆ [G�℄�+ , and H�+[G�+1℄ for HVÆ [G�+1℄�+ .As usual, the problem is to lift the embedding j. We break upG�+1 as G� �g� �H �g�, where g� is the generi
 obje
t added at �, Hthe generi
 obje
t added between � and �, and g� the generi
 obje
tadded at �. Here G� = G� � g� �H will be the generi
 obje
t for P� .Claim 6.13. j\G� � G�.Proof. Let p 2 G�, then sin
e we did a Reverse Easton iteration weknow that the support of p is some ordinal � with � < �. Now
rit(j) = �, so the support of j(p) is also � and p � � = j(p) � �. So
learly we have j(p) 2 G� � g� �H = G�, as desired. �We now attempt to extend the embedding j to the larger domainH�+ [G�℄ by de�ning j( _�G�) = j( _�)G� for all _� 2 H�+ .Claim 6.14. This de�nition gives a well-de�ned elementary em-bedding j: H�+[G�℄ �! H�+ [G�℄ whi
h extends our original mapj: H�+ �! H�+.Proof. Suppose that _�G� = _�G� . By the truth lemma there is p 2 G�su
h that p 
H�+P� _� = _�. This is a �rst-order statement in H�+ andso sin
e j is elementary j(p) 
H�+P� j( _�) = j( _�). j(p) 2 G� and soj( _�)G� = j( _�)G� .The proofs that the map we have de�ned is elementary and extendsthe original map are very similar. �Claim 6.15. j\g� � g�.Proof. Let p 2 g�. Then p is in an initial segment of ~C�, and j(p) = p.Sin
e we 
hose ~C� to extend ~C�, j(p) 2 g�. �By the same method as in Claim 6.14 we may further extend j toget an elementary embedding j: H�+ [G��g�℄ �! H�+ [G��g�℄. Sin
e



INDEXED SQUARES 41H�+ [G��g�℄ = HVÆ [G℄�+ and H�+ [G��g�℄ = HVÆ [G℄�+ , we have shown that� is 1-extendible in VÆ[G℄. This 
on
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