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(Cantor) 2% > k.

(Konig) «SF(5) > k. so in particular cf(2}) > A
for all .

(Easton) If GCH holds and F : REG — CARD
is a class function such that Kk < A = F(k) <
F(\), cf(F(k)) > k then there is a cardinal and
cofinality preserving class generic extension in
which 2% = F(k) for every regular k.

(Scott) If U is a normal measure on &, u < kK
and {a < k2% < aTH} € U then 28 < kxTH. In
particular GCH does not first fail at k.

(Silver) If k is singular strong limit of uncount-
able cofinality, p < k and {a < k : 2% < aTH}
is stationary then 2% < xt#. In particular GCH
does not first fail at k.

(Galvin and Hajnal) If k is singular strong limit
of uncountable cofinality, and k = N, for some
n < k (that is to say x is not a cardinal fixed
point) then 2F < N(2|77|)+'



The Singular Cardinals Hypothesis (SCH): For
all singular A\

AN = max{at, 2¢F My,

Fact: if SCH holds then cardinal arithmetic
IS determined by the continuum function on
the regulars and the cofinality function, and
roughly speaking A* has the least value possi-
ble. To be more precise if SCH holds then

1. Let k be singular. If the continuum func-
tion is eventually constant below x then
or = 2<K otherwise 2F = (2<K)*t.

D.If A< 2K, M =2H_ If 24 < X\ then A = ) if
p < cf(A), and M = AT if u > cf()).

(Solovay) If k is strongly compact and A > k is
singular, strong limit then 2* = \T.



The following are equiconsistent:

1. SCH fails.

2. GCH first fails at N,,.

3. GCH fails at a measurable

4. There exists k with o(k) = k1.



Outline of the lectures.

1) How close can we come to proving SCH?
Pcf theory (Shelah)

2) Upper bounds for the failure of SCH. Forc-
ing (Gitik, Magidor, Woodin).

3) Lower bounds for the failure of SCH. Core
models (Dodd, Gitik, Jensen, Mitchell)

4) Other combinatorics at singulars. Scales,
squares, reflection (Cummings, Foreman, Magi-
dor, Shelah).



Let P be a poset.
1. ACP s cofinal iff VpePdge Ap <gq.
2. cf(P) = min{|A| : A is cofinal in P}.

3. (pi i< A)is a scale in P iff Vi < j p; < pj,
{p; : i < A} is cofinal and A = cf(}\).

4. tcf(lP) = X\ iff there is a scale of length X in
P.

5. P is A-directed iff for all A C P with |A| < A
there is g € A such that Vpe A p <gq.

6. Let p = (p; : i < A) be increasing. gq is a
bound for p iff Vi p;, < q. q iS an least upper
bound (lub) iff ¢ < r for all bounds r.



Let I be an ideal on a set X, let F be a filter
on X.

1. If f,g € XON then

f<rg <= {z:f(x)>g9(@)}el
f<rg <= {z:f(x)>g=x)}el
f<rg <= {z:flx)<g(@)}eF
f<rg <= {z:f(x)<gl@)}eF

We study (XON, <j).

Remark: “f <7 ¢" is (in general) stronger
than “f <;g and f #rg".

2. Let f = (f; -1 < X\) be asequence such that
Vi < f; <r fj- Then jis an exact upper
bound (eub) for f iff f is a bound for f and

Vg<rfdi<Ag<yf;



Fact: an eub is an lub.

Proof: let f be an eub for fwhich is not an lub.
Let g be a bound such that A = {z : g(x) <
f(x)Y €eIT. Let hbesuchthath|A=g¢g | A
and h | A= 0. Then h <; f, so h < f; for
some ¢ and g is not a bound. Contradiction.

The converse is false in general.

Example: let I be the NS ideal on N1, and let
fa(i) = o for « < Xqy. Then f = id is an lub
but not an eub for (fo : a < Nqp).

Proof: f is an lub by Fodor. If we write N{ =
U<y, Sg With Sg stationary, and define g(:) to
be the least g such that ¢ € Sg if 5 <7 and O
otherwise, then g <; f but g is above each f,
for a < N1 on a positive set.



Convention: A is usually a set of regular car-
dinals with |A|T < min(4) and no largest ele-
ment. D is usually an ultrafilter on A.

Remark: for any singular 4 we may choose
such an A with sup(4) = p. If p < X, we
may in addition choose A to be an interval of
regular cardinals.

pcf(A) = {A: 3D cf(J] A/D) = A}

Jox(A) = {B :VD > B cf(J[[ A/D) < A}.

Remark: clearly |pcf(4)] < 22 sup pcf(4) <
[ TTAJ.



Some basic facts.

1. J., is an ideal.

2. [TA/J.) is A-directed.

3. cf([TA/D) < X iff DN J_y # 0.

4. X € pcf(A) iff J_y4\ Joy # 0.

5. For A a limit cardinal, Jo) = Uu<) J<pu-

6. pcf(A) has a maximal element, namely the
least A where J_,4 = P(A).

7. |pcf(4)| < 241,



Fact: [TA/J.) is A-directed.

Proof: let J = J_.), k = |A|. Reduce to the
case where |A|+ < p=cf(u) < X and we need
an upper bound for (fo:a < p) which is <j-
increasing. Suppose for a contradiction that
no bound exists and build a pointwise strictly
increasing sequence (gg : 8 < k™) of elements
of [T A as follows.

gg is not an upper bound so {i : fo(i) > gg(i)} €
JT for all large o, and we can find D such that
cf(ITA/D) > X and gg <p fa for all large a.
Choose ggy1 sO that fo <p gg41 for all a; for
all large o there is 7 such that

95(1) < fa(i) < gp41(2).

Find a so large that this holds for every 3 < sk,
and then find 2 which works for two values of
B. Contradiction since the gg are pointwise
increasing.



More basic facts.
1. If B € J<>\+ \ J<a, then tcf(HB/J<>\) = ).

2. J_,+ is generated from J_, by a single set:
that is to say there is a set B such that

3. Let (By : A € pcf(A)) be such that By gen-
erates J_,4 over J.y, and for each A fix
(f2 1o < A) a scale in [[By/J<y. Then for
any D we have

cf(][ A/D) = min{u : B, € D},

and if cf([TA/D) = X then (f2 :a < \) is a
scale in [ By/D.



Shelah's trichotomy theorem.

Theorem: let [ be anideal on k, let (fo : a < \)
be a <j-increasing sequence from "ON with
A = cf(\) > kT. Then one of the following
holds:

(The Good case) There exists an eub f for f.

(The Bad case) There exists an ultrafilter D
on k with DN I =0, and a sequence of sets of
ordinals (S; : i < k) with |S;| < k, such that

Va <A3h e ]][S;38< X fa <p h <p f5
i

(The Ugly Case) For some g € *ON the se-
quence of sets {i: fo(i) < g(i)} is not eventu-
ally constant modulo I.



Remark : if I is prime then the Ugly case can-
not occur, and the only D which can occur in
the Bad case is the dual of I.

Remark: If cf(\) > 2F, easy counting argu-
ments show we are in the good case.



Proof : We assume that we are not in the
Good, Bad or Ugly case and work towards con-
tradiction.

Step One: show that since we are not in Ugly
case, an lub for fis automatically an eub.

Proof: let f be an lub which fails to be an eub.
Let g <; f be such that

Ao ={i 1 9(G) > fa(i)} e IT

for all «. As we are not in Ugly case the se-
quence of A, eventually stabilises; fix A which
is equal to An, mod I for all large a. Define
hsothatt h[|A=g¢g [ Aand h | A° = f | A€,
then h is a bound and below f on a positive
set. Contradiction!

Step Two: show there is (gg : 8 < k1) a strictly
<r-decreasing sequence such that each gg is a
bound for f.



Proof: Build g inductively. By Step One gg is
not an lub, so we may choose 934+1 suitably.
At limit 3 define

R (i) = min({gs(i) : 6 < B} \ fali)).

We claim that hg stabilises mod I for large «,
so that we may continue by choosing gg as a
representative of the stable class.

Suppose hg does not stabilise; this means that
for a fixed o, Aoy = {2 : hg(z') < f4v(@)} € It for
all large ~v. As we are not in Ugly case we may
choose Aq such that Aq =; Aqy for all large ~.
The A, are positive and decreasing mod I, so
choose D such that DNI =0 and Ay € D for
all . By construction

Vo Iy fo <p hB <p fy

so setting S; = {g5(i) : § < B} we are in Bad
case. Contradiction.



Step Three: no sequence as constructed in
Step Two can exist.

Proof: let

ha(i) = min({gs(i) : 6 < KT\ fal8)).
For all a there exists limit 8 < xT such that
ha = hS. Fix B such that he = hS for un-
boundedly many «, then choose « such that
hao = hg =1 gg- This is a contradiction since
by construction ha <1 gg+1-

This concludes the proof.

Remark: if Bad and Ugly fail then an eub f
exists. f will have the property that cf(f(z)) >
k for almost all ¢, otherwise we would be Bad.



Definition: Let (fa:a <) be <j-increasing.
3 is a good point for f iff cf(3) > k and
there is a pointwise strictly increasing sequence
(hy v < cf(8)) such that h is ‘“cofinally inter-
leaved” with f | 8 mod I; that is Va < 8 3y <

cf(B) fo <1 hy and Vv < cf(B) Ja < B hy < fa.

Fact: if f = (fa 1o < A) is <j-increasing, A =
cf(\) > kT, and the set of good points is sta-
tionary in X then there exists an eub for f

Proof : it is enough to show that we are not
in Bad or Ugly case. Suppose D and S witness
that we are in Bad case. Let

C={y:Va<y3he]][S;IB<v fa<ph<p fs}
1

Let 3 € lim(C) be a good point, as witnessed
by (hy : v < cf(B)). Find (v5 : 6 < cf(B)) increas-
ing and Hs € [[S; such that hyy <p Hs <p

h75+1'



Find ¢ < k such that hy;(i) < Hs(i) < hys ()
for an unbounded set X of § < cf(8). Since
(hy 1 v < cf(B)) is pointwise strictly increasing
the values Hg(i) for § € X are distinct, a con-
tradiction since cf(8) > k but |S;| < k.

The proof for Ugly is similar.



Theorem: Let §, A be regular with §T < .
Then there exists S C Ancof(d) stationary and
(Sy 1y < A) such that

1. 0t(Sy) <8, Sy CA.
2. VB €Sy Sg=5SyNg.
3. If y € S, sup(Sy) =~.

Definition: if S and S are as above then an
<y-increasing sequence (fo : a < A) is docile iff

1. Va € Sy Vi < Kk fa(i) < fy(3).

Key point: if 6 > x then an docile f has a
stationary set of good points, hence an eub.



In a typical application of docility we would
have k = |A|, § = |A|™, A € pcf(A). Here is
such an application.

Theorem: if B € J_,4\Joy, tef(I1B/J<y) = A.

Proof: I = J_\U{C :tcf(JIC/J.)) = A} is an
ideal. If B ¢ I choose D such that B € D and
DNI=1, and observe cf([IB/D) = A. Build
(fa : a« < A) a sequence in [] B which is docile,
increasing mod J_., and cofinal mod D. Let g
be an eub where WLOG ¢g(b) < b for all b € B,
and let C = {b: g(b) = b}.

C €I, and so B\ C € D, so modulo D we

have g € [[ B. Find a with g <p fa. fa <7 g9,
contradiction!



A combinatorial lemma.

Lemma: let (f5: B8 < k™) be pointwise increas-
ing and define Cg, = {i : f3g(i) < fy(i)}. Then
there is a club E C kT such that C[M IS con-
stant on [E]Z.

Proof: CBV is constant for all large ~, say C’@V =
DB' DB is constant for all large 3, say DB = D.
Now let

E = {¢: D¢ = D,Vn < ( Cye = Dy}.



Fact: J<>\+ is generated from J_, by a single
set.

Proof: Suppose not. Let k = |A|, reduce to
case where A = cf(\) > «kTT. Fix stationary
S C Ancof(kT) and (S, : a < A) as above. Let
J = J<)\, K = J<>\_|_.

We will build a matrix of functions

(f2:8<kt,a <)

from [[ A such that (fg > a < A) is docile and
< j-increasing, and (f5: 8 < xT) is pointwise
increasing. Let kB be an eub for (f5 :a < \),
where we may assume hP(a) < a for all a; let
Sg = {a : hP(a) = a}, then it is easy to see that
S@» e K. Sﬁ does not generate K over J.



We find ¢ € K such that C'\ Sg ¢ J, and
then choose Dg such that C € Dg, Sg ¢ Dg,

cf(II A/Dg) = A. Now we choose (f; frl. o< A)
cofinal mod Dg where V( Vn fC <Dy fﬁ'l'l.

If B <y, B(B,v) ={n:V¢<n T <p, fi '}
If ne SNE(B,~) then f5+1 f7+1. To see

this observe that by obedlence there is ( < n
such that

i 6 < @Y =G 716 < 17760,

which is a set of Dﬁ—measure Zero.

Now choose n € SN (ﬂg<7<m+ E(3,v)), and
define Cg, = {i : f77() < ()} Find

B1 < B> < B3 such that 05152 05253 = 05153.
This is impossible because by construction

fﬁl‘l’l f52+1 f63+1-



A technical lemma.

Lemma: Suppose supA < u = cf(p) < v.
Let J be an ideal on A such that [[A/J is
v-directed, and An~ € J for all v < sup A.
Then there is a < j-increasing sequence f:
(fa o < p) such that

1. f has an eub g € [] A.

2. For all y <supA, {a:cf(g(a)) <~} € J.
Proof: Fix (Cq : a < u) such that

1. Cq is a family of clubs in «, |Ca| < u.

2. There is C € Cy with ot(C) = cf(«).

3. VD € Ca VB € lim(D) DN B € Cp.



At every limit stage o, compute for each E € Cq,
with ot(EF) < sup A the function g% : a —
Sup~cr fy(a). Choose fo to dominate all such

9%

Claim 1: Let o < sup A. There cannot exist an
ultrafilter D with DN J = (), and a sequence of
sets of ordinals (S; : i < k) with |S;| < o, such
that

VOz</JE|hEHS7;E|B<,LLfa§Dh<DfB.
7

Proof. let £ be the club of v < u such that
Va < p 3h € 11; S; 36<,Lbfa <Dh<DfB Let
B e lim(E)ncof(ct) and let F € CB Choose
(v 1 § < oT)increasing and h; € I]; S; such that
v € BN lim(F) and fyj <p hj <D f’Yj—l—l' By
construction fyj >D g}jﬂw’ SO choose a; such
that

gFﬂ'y (a]) < f’YJ(a’j) <p hj (a’j) <D f73+1(a])
Find X unbounded such that Vj € X a; = a,

then by construction {h;(a) : j € X} has size
o1, contradiction.



Claim 2: We are not in the Ugly case.
Proof: Similar to Claim 1.

Conclusion: Claim 1 implies we are not in the
Bad case, so by trichotomy there is a suitable
g. Claim 1 implies that the cofinality of g(a)
tends to sup A modulo J.



Let A be a singular cardinal, k = cf()\).

Definition (non standard): PP()) is the set of
regular u such that for some uf D on k and
some sequence (\; ;¢ < k) of regular cardinals
we have limp X\, = A, u = cf(I[; \;/D).

Definition: pp()\) is the sup of PP()).

Theorem: PP()) is an interval of regular car-
dinals.

Proof: let A < u <v € PP()\), say v = cf([[; \;/D).
Using the technical lemma, find (fo : o < p) in
[I; A; increasing mod D with an eub g such that

limpcf(g(z)) = X. Now cf(I];cf(g(:))/D) = p.

Theorem: if Ais an interval of regular cardinals
then so is pcf(A).

Proof: similar.



Convention: 0 is some very large regular car-
dinal, and <y is a fixed well ordering of Hjy.
We will form substructures of (Hy,c,<p). If
X C Hy and Hull(X) is the set of points de-
finable from parameters in X, then Hull(X) is
the least substructure containing the set X.

IA chains: A chain of substructures X is in-
ternally approachable (IA) iff X is increasing
and continuous, and X | (84 1) € Xgy; for
all B. It is easy to see that aa C X, and that
a < f = Xq € Xg.

Characteristic function of a structure: if B is a
set of regular cardinals and | X| < min(B) then
we may define xx € [ B by xx(b) = sup(X nNb)
for all b € B.



Fact: Let X be an IA chain, let X = X,
where cf(a) > w. Suppose B C REG with
| X| < min(B). Suppose B C Xp. Then for
all b€ B, X Nb contains a club in xx(b).

Proof: X;,b € X;41 and |X;| < b, s0O xx,(b) €
Xiy1MNb. So (xx,(b) :i <) is continuous, in-
creasing and cofinal in xx(b).

Fact: Suppose also that B is an interval of
regular cardinals, min(B) = |X|T and |X| C X.
If Z C X is such that Z is unbounded in x x(b)
for all b € B, then Hull(Z) Nnsup B = X Nsup B.

Proof: Show by induction on b € Z that

Hull(Z)Nb= X Nb.

Step: let « € ZNbt and fix f € Z such that
f:a~b. Then f:Hull(Z)Na~Hull(Z)Nnb =
XnNb, so HUll(Z)Na = XNea. As Z is unbounded
in X Nbt, we are done.



Fact: In the situation above we can recon-
struct X Nsup B from xx.

Proof: Intersect Hull(Z)Nsup B for all the Z C

Hy such that, for all b € B, Zn xx(b) contains
a club in xx(b).

1. For any such Z we have that Hull(Z) N
supB D Hull(ZnNn X) Nsup B = X Nnsup B.

2. Setting Z = X gives Hull(Z)NnsupB = X N
sup B.

So the intersection is precisely X Nsup B.



Smoothing: we may as well assume that for
every limit 3 of cofinality |A|+ we have fé‘(i) =
min{sup,cc f2(i) : C club in B}. Note we can
fix C club in 8 such that for any club D C C
we have f3 = sup,ep f3-

Theorem: Let A C REG be an interval of reg-
ular cardinals, where min(A) = 6t for some
§ and max{|A|T,|pcf(A)|} < min(A), Fix a se-
quence of generators (B) : A € pcf(A)) such that
Bmaxpcf(4) = A. Fix (fa 1o <A, X € pcf(A))
such that (£2 : a < \) is cofinal in [ By/Jcy.

Let (Xq : a < |A|T) be an IA chain such that
A, B,f € Xg, § C Xg, | Xa| = 6 for all a. Let
Xa be the characteristic function of Xy, X =

|A|+, X = X|A|+ Then x can be obtained by
taking a pointwise sup of finitely many of the

fa-



Proof: let A € pcf(A4), u = sup(X N A). We
claim

1) Va € By, f;(a) < x(a)

2) {a € By : fi(a) < x(a)} € Jcy.

For the first claim, observe that by smoothing
and the construction of X there is D C X N
such that D is club in p and f; = sup,ep f3-
Each f,i‘ € X, so ff; Is pointwise dominated by

X -

For the second claim, choose a < |A|+ such
that {a € B) : fﬁ‘(a) < x(a)} = {a € B, :
fi(a) < xa(a)} Now xo € X so that by ele-
mentarity xa <j<x fi-

We now define inductively a decreasing sequence
of points \; € pcf(A), along with F; € Jon,- We
let pu; = sup(X N A;) for all i.



A
Ao = maxpcf(A), Fo = {a : fiJ(a) < x(a)}.
If F; is not empty then let A;; 1 be such that
F; € J<>\;5r1 \ J<x 410 OF to put it another way
>‘i+1 = maxpcf(F;). F; \ B>‘z‘+1 c J<>"i+1 as the

—

B are generators.

A
Fiq1={a€ F:ia¢ By, V fuiii(a) < x(a)}.

Eventually we reach n such that F, = 0. By
construction, for every a € A thereis: < n such
that fﬁ‘g(a) = x(a). Since y dominates each
f,i‘; pointwise, we have that x is the pointwise
supremum of {fﬁ‘;’ i < n}.

Remark: these ideas are also relevant to She-
lah’'s “Strong covering” theorems.



A sample application: bounding Nﬁo.
Theorem: If 280 <« X, then Nﬁo = pp(Ny).

Proof: Let A = {R; : k < w,2% < X.}. Then

pp(Ny) = maxpcf(A), and clearly maxpcf(A) <
— o

[MA = R.0.

Notice that max{|A|T,|pcf(4)|} < min(4) =
(2R0) T, If a € [Ny ]R0 then we can build an IA
chain (Xa : o < 2%0) such that aU2%0 C X and
each structure has size 2%0.

There are at most pp(Xy) possibilities for the
characteristic function of Xo%gs SO there are at
most pp(Ry) possibilities for Xz, N N,. This
means there are at most pp(Ry) x (2%0)No =
pp(R,) possibilities for a.

Remark: pp(Xy) = maxpcf(4) < N(2N0)+.



Generalisation: if A is an interval of regular
cardinals, min(A4)I4l < sup(4) then sup(4)I4l =
max pcf(A).

Let u be a singular strong limit cardinal which
iIs not a cardinal fixed point, say p = N, for
some n < u. Let A= punREG. Then 2! =
max pcf(A).

Since pcf(A) is an interval of regular cardinals
and |pcf(A)| < 2141 =20, 28 <R o 0. This
generalises the Galvin-Hajnal result.



Theorem: if X is singular with x = cf(\) and
JPd is the bounded ideal on k then there is
(X\; -1 < k) increasing and cofinal in A such that
tcf ([T Ai/JRY) = AT,

Proof: as PP()\) is an interval we may choose
A C X\ with ot(A) = &k such that AT € pcf(A4).
Let B € J_y++ \ Jo\+, then tcf(JIB/J_ +) =
AT. Now it is easy to see that J_,y = J.y
and every element of J_) is a bounded sub-
set of A, so if ()\; 14 < k) enumerates B then
tcf (I1; A;/JP9) = AT as required.



Theorem: |pcf(A)| < min(A) = pcf(pcf(A)) =
pcf(A).

Proof: Let A* = pcf(A), where clearly A* C
pcf(A*). For each XA € A* choose D), with
cf([TA/Dy) = X, and then (f2:a < \) cofinal
in cf([TA/Dy). Now let u € pcf(A*), and let
(98 : B < u) be cofinal in [T A*/D for some D.

Define D*={X CA:{\: X € Dy} € D}, and
let hg(a) — SUDP)cA* ngBO‘)(a)

Claim: if h € [T A then h <p« hg for all large 3.

Proof: fix g € [TA™ such that h <p, fg(A) or
all A, and then g such that g <p gg. For each
of the D-many X such that g(A) < gg(A), we

have h <p, hg, and so by definition h <px hg.

Using the claim we can thin out (hg: 8 < u) to
a p-sequence which is increasing and cofinal in
[I(A/D*). So u € pcf(A) = A*, and we have
proved that A* = pcf(A4*).



Theorem: let XA be singular with kK = cf(\) > w.
Let ()\; 1 4 < k) be an increasing and continuous
sequence of singular cardinals with limit A. Let
pwi=A", p=2T. If A={u; 1 i <k} and B, is
such that J_ 4 = J<u + By then {i: p; € Bu}
contains a club. In particular u € pcf(A) and
p = tcf([Leo i/ JPY) for some club C.

Proof: Let BeJ <= {i:u; € B\ By} € NS;.
Suppose {:: u; ¢ By} is stationary, so that J is
not trivial.

Since J_,+ C J, [1A/J is pt-directed. We may
therefore apply the technical lemma to build a
< j-increasing (fo : a < wp), which has an eub
g € [T A such that cf(g(u;)) tends to A mod J.
Now cf(g(u;)) < A; for all i, so by Fodor there
is j < w such that cf(g(u;)) < A; for stationarily
many i with u; ¢ By, this contradicts the stated
property of g.



L_ocalisation.

Theorem: if |pcf(A)| < min(A) (so in partic-
ular pcf(pcf(A)) = pcf(A)) then for all B C
pcf(A) and all A € pcf(B) there exists By €
[B]l4] such that A € pcf(Bp).

Proof: Does anyone know a proof of this that
would fit on two slides?

Remark: if R, is strong limit and 2% > R,
then there are sets (Aq:a <Njp) with A, C
REG such that a < 8 = sup(4qa) < min(Ag)
and N, 11 € pcf(Aq) for all a.

Roughly speaking this is what makes the prob-
lem of forcing “N, is strong limit and oNw >
Nw;" SO hard. It is also crucial in the proof
that this statement implies inner models for
substantial large cardinals.



Club guessing:

Theorem: if k, A\ are regular and uncountable
with kT < X then there exists (S, : a € AN cof (k))
such that

1. Sy is club in «a, ot(Cy) = k.

2. For every E club in A, {a: So C ENa} is
stationary.

Proof: Start with any choice of So. Every time
you see a bad club FE, replace So by So N E.
Repeat for kT steps and argue that for some
a, So shrank kT times.



Sample bound on pp.
Theorem: pp(Ry) < Ny,

Proof: If not we can manufacture a topology
7 on N4 4+ 1 such that for any Y # 0, ~.

1. cl(Y) has a maximal element.

2. Vz e cl(Y) Yy € [Y]R0 z € cl(Yp).

3. If cf(v) > w then there is C club in ~ such
that v = max(cl(C))



We claim no such topology 7 can exist. To see
this fix (Sa :a € XzgnNcof(Ny)) which guesses
clubs in R3. Build an IA chain (X4 : a < N3) of
structures of size N3 such that NgU {r, 5} c Xp.
If va = Xa NNy then (y4 : a < N3) is increasing
and continuous; let v = ;.

By the hypotheses on 7, fix D C ~ club with
~v = maxcl(D). Fix a such that So, C {3 :
vg € D}, and let S* = {y3 : B € Sa}. Now
let & = maxcl(S*), so that 7o < 6§ < N4. AS
cf(a) = Ny we may find & < a such that § =
maxcl{yg : B € Sa Na}.

Now So € Mg and (yg: 8 < a) € Mz41, SO that
0 € M5z41 NNy =v541. Contradiction!

Remark: a similar method shows that if \ is
singular, A = R, 45 and § < Ry then pp(A) <
N(;4+|(5|+4'

Remark: there is a theory of “pcf structures'’ .



More interesting facts:

cf([R]™0, C) = pp(Rw).

cf(ITA,<) = maxpcf(A).

If [pcf(A)| < min(A) then we can choose gener-
ators (B) : A € pcf(A)) such that VA € By, B) C

B,, and pcf(B)) = B,.

Analogues of Silver's theorem and the Galvin-
Hajnal theorem hold for pp.

If § <Ny and cf(d) = w then pp(Ns) < Ny,.

If X\ is the least counterexample to SCH then
A > 280, cf(\) = Rg, plo < pt for 280 < 4 <
A, and there exists (A, : n < w) increasing and
cofinal in A such that tcf(I],, An/J29) = ATT.



Some hypotheses proposed by Shelah:
STRONG: for all singular A, pp()\) = \T.
MEDIUM: |pcf(A4)| = |A].

WEAK: For singular A

{pw < X:pp(p) <\ cf(pu) = w} is countable.

{p < X:pp(p) < A\ cf(u) >w} is finite.



Review of large cardinal notions:

k IS measurable iff there exists a k-complete
non-principal ultrafilter on k iff there is 5 :
V — M such that crit(j) =k and “M C M.

The Mitchell order: if U, V are normal mea-
sures on k then U < V iff U is in the ultrapower
by V. < is a well founded partial ordering of
height at most (2%)1. o(k) is the height of <.

k IS A\-strong iff there is 5 : V — M such that
j(k) > A, V CM and *M C M.

Remark: if k is (k 4+ 2)-strong then o(a) =
(24)* for many «a < .

k IS A-supercompact iff thereis 3 : V. — M
such that j(k) > A and *M C M.



Some forcing results relevant to SCH:

(Silver: supercompact) s supercompact with
p LN

(Prikry) A measurable k can be made to have
cofinality w by a cardinal preserving forcing.

(Magidor) A cardinal of Mitchell order at least
A = cf(\) < k can be made to have cofinality
A In a cardinal preserving extension.

SCH can fail at large singular strong limit car-
dinals.

(Magidor: supercompact) Supercompact Prikry
forcing.

(Magidor: supercompact) X, strong limit, 28 =
Ryt

(Magidor: huge) 2% =R, for all n, 2% =
Roto.



(Shelah: supercompact) X, strong limit and
2Nw p— Noz—l—lv for a < N]_.

(Magidor: huge) 2% = X, ; for all n and
2Nw p— Noz—l—lv for a < N]_.

(Shelah: supercompact) u the least cardinal
fixed point of order w, u strong limit with 2#
arbitrarily large.

(Radin) Adding a club of V-regulars to large
cardinal k, preserving some large cardinal prop-
erties of k.

(Foreman and Woodin: supercompact) Super-
compact Radin forcing.

(Foreman and Woodin: supercompact) GCH
fails everywhere, in fact 2% weakly inaccessi-
ble for all k. For fixed n < w, can build the
model to contain many X which are 3,(\)-
supercompact.

(Woodin: supercompact) 2F = kT for all k.



Woodin: reduction of hypotheses to level of
hypermeasurability.

(x) GCH + thereisj:V — M and f : x —
k such that crit(y) = &, j(f)(k) = kTT and
KM C M.

Remark: (x) follows from GCH + “kis (k+2)-
strong”, and if 5 witnesses the strength we may
take f(a) =atT.

(Woodin: (x)) k measurable with 2f = xt++.

(Woodin: (x)) 2% = R,y for all n, 2% =
Roto.

(Cummings: strong) GCH holds at every suc-
cessor, fails at every limit.

(Gitik) () can be forced starting from o(k) =
KT



The paradigm shift: up to now powerset of
was blown up keeping k large, and then x was
made singular. Problem: GCH will fail at many
points on the Prikry sequence, and collapsing
to restore GCH tends to collapse at x also.

(Gitik-Magidor: strong) adding many cofinal
w-sequences to x without adding bounded sub-
sets.

Example: from k which is (k + wi)-strong,
2Xn = W, ;1 for all n and 2% = N, q, for
a < Niq.

(Segal:strong) Gitik-Magidor for uncountable
cofinalities.

(Gitik and Merimovich:strong) R, strong limit,
oRw — Ntm for m < w, complete freedom be-
low N,.



o(k) = k11 is an upper bound for the con-
sistency strength of the failure of SCH. More:
we can build a model where R, is strong limit
(or even GCH holds below R,) and 2% =R_ 5
starting from this hypothesis.

Two routes are available:

1. Gitik showed that forcing over a suitable
model with o(k) = kT1 we can produce a
model of (x). Work of Woodin then gives
models as required. We also get a model
where GCH fails at a measurable.

2. Gitik showed that forcing over a suitable
model with o(k) = kTT gives a suitable
ground model for a version of the Gitik-
Magidor construction, which will produce
a model where GCH holds up to XN, and
QN"‘J = Nw—|—2-



Prikry forcing: if k is measurable, can define a
xt-c.c. forcing which adds no bounded subsets
of k and makes cf(k) = w.

U normal measure on . Conditions in Py are
(s, A) where a € [k]<¥ and A € U. Intuition: s
IS an initial segment of the w-sequence and the
rest is inside A. Accordingly (s,A) C (¢t,B) iff t
extends s, AC B and s\t C B. (s,A) <* (¢, B)
iff s=+¢ and A C B.

Some attractive properties:

Strongly xT-c.c. as a union of x filters.
(Prikry) For every sentence ¢ and condition p
there is ¢ <* p deciding ¢. <* is k-closed (as U
is k-complete), so we add no bounded subsets

of k.

(Mathias) ¥ is generic iff every A € U contains
a tail of x.

(Kunen) Generic sequence can be obtained by
iterating ultrapowers.



Tree version: V a k-complete ultrafilter on k.
Conditions are trees T' C <%k, which have some
finite stem and V-large branching above the
stem. T <* U iff T C U and they have the
same stem.

More generally: there is a family Vs of ultra-
filters, and the tree has Vs-large branching at
every s above the stem.

Abstractly: (P, <,<*) is “Prikry-like"” if <* is
stronger than <, and all questions about the
generic extension by (P, <) can be decided by
strengthening in <*,

(Magidor) Iterated Prikry forcing: finite sup-
port on s-parts, full support on A-parts.



Gitik's iteration technique. A is a set of in-
accessibles. For v € A have a Py-name for a
Prikry-like (Qy, <4, <%), which is forced to have
size less than min(A\ (y+ 1)).

P, is the set of a-sequences p such that supp(p)
is an Easton subset of A (bounded in every in-
accessible), p [y € Py and p [ v IF p(y) € Q, for
all v € supp(p).

p < q iff supp(q) C supp(p) , p [ vIF p(v) < q(v)

for all v € dom(q), p [ v IF p(v) <* q(v) for all
but finitely many ~ € dom(q).

p <* q iff supp(q) C supp(p) , p [ vIFp(y) <*
g(~) for all v € dom(q).

Iteration? P,y 1 ~Py*Qy and p—p [ B is a
projection from P, to IPB.

Theorem (Gitik): (Pq, <,<*) is Prikry-like.



Gitik: from o(k) = kT T to (x).

By work of Mitchell, we may assume that our
ground model has nice L-like properties (GCH,
squares) and there is (U, : a < kT T) increasing
in the Mitchell ordering.

Aim: force to get a model with (U : oo < kT 7T)
a sequence of ultrafilters on k which is increas-
ing in the Rudin-Keisler ordering. Also we want
(T 0 < B<kTT) such that X € U, <
T ol [X] € Uﬁ and may =17, Tap © Tay-

Now if jo : V — My = Ult(V,Uy) is the ul-
trapower map, then m,g induces a map from
Mq to Mg by 77;6_: [fla, |—> [fo?aﬁ]l—jﬁ. These
maps commute with the j, and with each other,
that is jg = ja owzﬁ and 7, 2;7 owaﬁ

Given this we can form a limit ultrapower j :
V — M such that j(k) > «T1 and *M C M,
and it is then possible to force the existence of
a function f such that j(f)(k) =TT,



A motivating example (Mitchell).

Assume GCH. Let k be minimal with o(k) =
2, A={a < k:ola) = 1}. Fix (Uy:a€ A)
measures of order zero on a« € A. Let U, V be
measures on x where U has order zero, V has
order 1 and U = [a — Ugy]y. Notice that U,
and U concentrate on A€ V concentrates on
A.

Iterate Prikry forcing at o« € A. At stage «
observe that ji (Po) is a Gitik iteration whose
support does not contain «. Use GCH and
the Prikry lemma to build (canonically) a de-
creasing (gy : v < a™T) in j(Py)/Gq, such that
for every A a Py,-name for a subset of « there
is r € Go and v < aT such that r —~ ¢y decides

a € jy,(A).
Ua = {AGO‘ Ir € GaIyr ~ gy b a € 5y (A)}.

Qq is Prikry forcing defined from the normal
measure Ug,.



In V[Gk], extend U to U in the same way. Now
consider jy(Px): this is a Gitik iteration of
Prikry forcing where the support does contain
k, and in fact the measure used at stage « in
this iteration is U.

Building a suitable sequence (g% : v < k™) we
define in V[Gk] ACx € V iff

IreGyIBeUr ~((),B) ~ ¢ -k ejy(A).

U is normal and concentrates on A¢. V con-
centrates on A, and so is not normal since A
consists of cofinality w ordinals. Define mgy
with domain A by mg1(d) = min(bs), then we
claim that mg; projects V to U.

If not then find E € U, F € V such that mg1[F]N
E=0. Let F = FCGs E = ECs and find r €
Gx, E* € U and ~ such that rlF mg1[F]N E =
O and r ~ ((),E*) ~ ¢5lFr € jy(F). Now
the condition r ~ ({), EN E*) —~ ¢} forces that
min(bs) € E, contradiction.



Woodin: from (x) to a measurable cardinal
where GCH fails. Fix 5 : V — M and f such
that crit(j) =k, *M C M and j(f)(k) =TT,

Stage 1: Iterate Coll(a™,< f(a)) for a <
and then do Coll(kT,< «TT1). Show that in
the extension we may lift 5 and get a situation
in which (x) holds and k1 = x¥ T, so that we
may take f(a) =aTT.

Stage 2: Iterate Add(a,atT) for a < k, and
argue that 5 can be lifted so that the mea-
surability of x is preserved. Less closure than
in Silver's argument from a supercompact, so
harder to build generic filters and master con-
ditions: these problems are resolved by forcing,
transferring and rearranging of generic filters.



Remark: if you just want failure of GCH at a
measurable, you can start with (x) and iterate
Add(a, f(a)) for a < k followed by Add(k, kTT).
In this two stage approach you get a bonus; in
the final model we can arrange

(xx): K is measurable, 2 = kT and for some
normal measure U on k there exists F which
is generic over M = Ult(V,U) for the forcing

Coll(rk {7, < ju(K) -

Woodin: given a model of (xx) we can force us-
ing “Prikry forcing with interleaved collapses”
to make k = N, while preserving k7. Magi-
dor did supercompact Prikry forcing with inter-
leaved collapses and then went to a certain in-
ner model, analysis of this inner model done by
Foreman and Woodin for the GCH fails every-
where result motivated the construction from

().



How to prove the Prikry lemma for Prikry forc-
ing. U normal, U ={X : k € jy(X)}. P="Py.

Diagonal intersection: Given a family of con-
ditions (s, Ag) let

A={§:Vs max(s) < == § € As}.
Then Aec U and (s,A) < (s,As) for all s.

Now fix a statement ¢.

Stage 1: find A such that if (s, B) decides ¢
for any B, then (s, A) decides ¢.

Stage 2: Consider (s —~ k,Jy(A)) and jy(¢).
Find As € U such that all (s —~ 3§, A) with § €
Ag behave the same way wrt ¢ (all force ¢,
all force —¢ or all fail to decide ¢). Take a
diagonal intersection to get A*.

Stage 3: Given (s, A*) take an extension of
minimal length which decides ¢. WIlog exten-
sion is (t,A*). If t # s then t = tog —~ § for
some § € Ay, but now by construction (¢g, A*)
decides ¢.



(xx): K is measurable, 2 = k71 and for some
normal measure U on k there exists F' which
is generic over M = Ult(V,U) for the forcing

Coll(rk i, < ju(K) -

Define generalised Prikry forcing P as follows:
conditions have the form

P — (K’OapOaK'lapla SR K’n—lapn—laAa H)

where kg < ... < kp_1 < kK, dom(H) = A € U,
p; € COll(&jS, < Kjg1), H(S) € Coll(§75, < k),
[H] € F.

A typical extension is

q — (K:07p67’£17pﬂ]<_7 c e Hm—17p1>|;7,—17A*7H*)

where pf < p; for i <n, A* C A, H*(§) < H(Y)
for 6 € A*.

qg <*p iff m = n.



Theorem: (P, <,<*) is Prikry-like and xt-c.c.

Corollary: in the extension by (P, <) we have
K = /a:a"w, k strong limit, 2 = kT1. Now we
can do Coll(Ng, kg) to get Kk = V.

Proof of theorem: Conditions have form p =
xN(A, H) where xz € Vi (we call x the lower part
of p). zN(A, H) and zN(A*, H*) are compatible,
so Pis kT-c.c.

Proof of Prikry Lemma is just like for Prikry
forcing. First show the analogue of the diago-
nal intersection theorem. Then

Step One: find (A, H) such that for any z, if
there exists (B,G) such that z —~ (B,G) de-
cides ¢ then z —~ (A, H) decides ¢.



Step Two: consider z —~ (k,p) —~ (Jy(A),juy(H)).
Use genericity to find p = [H*] € F such that
for all x if there is ¢ < p such that x —~ (k,q) —

(Ju(A),juy(H)) decides ji;(¢) then z ~ (k,p) —~
(Ju(A),jy(H)) decides jy (o).

Step Three: Find A* C A such that for all
x and all § € A*, if there is ¢ < H*(d) such
that © —~ (6,q) —~ (A, H) decides ¢ then =z —~
(6, H*(8)) —~ (A, H) decides ¢

Step Four: for each z find A} C A* such that
all conditions z —~ (6, H*(6)) — (A, H) behave
the same wrt ¢. Diagonally intersect to get
A**,

Now consider an extension of x —~ (A**, H*)
which has minimal length and decides ¢. If it
is not direct then wlog it has form yg —~ (6,q) —~
(A**, H*) where yg extends z, § € Ay, and
g < H*(§). By construction yg —~ (6, H*(d)) —~
(A**, H*) decides ¢, but then yg —~ (A™, H*)
decides ¢. Contradiction.



A more elaborate argument gives GCH up to
N, and 2% = R 4, by similar means. Idea:
interleave Coll(k;™>, < k;t1) x Coll(kiy1, K7 1)
between successive points «; and x;4.1. Need a
more elaborate mechanism of constraint, func-
tions of two variables representing a generic
filter over the second iterated ultrapower for
Coll(kT2,< j(k)) xColl(j(k),j(kT)). Pcf argu-
ments show this idea will not generalise easily
to get GCH up to Ry, and 2% =R, 3.



Gitik-Magidor method.

Idea: want to add many Prikry sequences to
large cardinal x, without adding bounded sub-
sets of k. Problem: new reals may be coded
by (say) the relationship between two Prikry
sequences. Solution: arrange that if £, y are
two Prikry sequences then there is a sequence
Z and mz, ™y € V such that up to finite pertur-
bation m; o Z agrees with £ and my o 2 agrees
with ¢

To be a little more precise we are given a k-
directed poset(A4, <) together with (U, : a € A)
a system of measures on k and (m,g:a < 3) a
system of commuting projection maps. These
have to satisfy some technical conditions. A
will have a minimal element 0 with Ug normal.



A condition p then prescribes

1. A set gy, € [A]”, where there is v, € gp Such
that V3 € gp B < vp.

2. A set pf e [k]<¥ for each 3 € gp.

3. A tree with stem p’ and U,,-large branch-
ing.

There are two special kinds of extension.

Direct: ¢ <* p. g4 O gp (maybe with a larger
maximal element), and ¢7 = p7 for all v € gp.

“Projective’”: q <9 p. g7 = gP and ¢° \ p° is
obtained (roughly) by projecting ¢” \ p7 along
WﬁV'

Extension = projective followed by direct. This

IS transitive because the system 7 is ‘“‘commu-
tative enough'.



The key facts:

1. (P,<) is kT T-c.c. and (P, <*) is k-closed.

2. (P, <, <*) is Prikry-like.

3. P adds (zq:a € A), distinct w-sequences
cofinal in k.

4. P preserves k7.



How to get a suitable family of measures?

Kk IS A-strong, A\ successor ordinal or a cardinal
with cf(A) > x, and GCH holds. Can build a
family of size k1.

o(k) = k1 is enough if \ is successor or k <
cf(A) < A,



GCH up to X, and 2% =R -1 1, ¢ countable.

Start with GCH and & which is (k + {4+ 1)-
strong.

To bring  down to Ng, interleave with col-
lapses along the Prikry sequence for Up. It is
comparatively easy to get a suitably generic
constraint filter because GCH holds.

If ¢ is finite the construction is essentially as
before.

If ¢ is infinite then let ( + 1 = U,D,; with
D,, finite. Build P so that if § is the Prikry
sequence for Ug then (roughly) the cardinals
{kT* i€ Dy} survive in [Kn, Kp41)-

P is now only k1t¢t2-c.c. but for all § < ¢ it
embeds in a forcing that preserves x19+1,



From a strong cardinal: no bound on 2% where
Kk 1S the least fixed point of order w.

(Segal) Versions of the Gitik-Magidor construc-
tion which make « singular of uncountable co-
finality.

Example: 2R =R 3 for a < wj limit, GCH
holds except at limits and their successors up
to Ny .

(Gitik and Merimovich) Fine control.

Example: From x which is (k + m)-strong,
28w =X, and complete freedom below R,,.



LLower bounds: core models, covering lemmas.

Core models: on the hypothesis “there is no X
cardinal”, build a model Kx and

1. Prove that Kx has a nice internal struc-
ture. GCH, diamonds, squares, morasses
etc.

2. Prove that there is some resemblance be-
tween Kx and V.

In general for M C V:

Strong covering: every uncountable set of or-
dinals is contained in a set of the same V-
cardinality which lies in M.

Weak covering: M computes successors of sin-
gulars correctly.

If M is a model of GCH and strong covering
holds then SCH is true in V.



X =0 Ky=1L.

(Jensen) If 0f does not exist, then strong cov-
ering holds between L and V.

Once measurable cardinals are allowed into K
then we can no longer ask for strong covering
by K itself, because of Prikry forcing. Weak
covering goes a long way.

X = 0f, Ky has maximal form L[u].

(Dodd-Jensen) If L[u] exists and 0T does not
then EITHER strong covering holds between
L[u] and V OR there is C € V a maximal Prikry
generic sequence over L[u] such that strong
covering holds between L[u,C] and V.

Still a misleadingly simple example. When K
contains many measures then there is no longer
a uniform set of indiscernibles which works to
cover all sets in V, and it is hard to see the set
of indiscernibles as a generic object for some
forcing.



Typical covering lemma for K a large core model:

x C ON covered by a set h"“(pUl) where h € K,
p € ON, I CON.

I arises from iterating some small “L[E] model”
up to a model in K. The analysis gets harder
as K gets larger.



Lower bounds for failure of SCH.

(Mitchell) If there is k singular strong limit with
2k > kT then in a suitable core model K, Va <
k v < kK o(v) > a. If in addition cf(k) > w
o(k) =rkTT in K.

(Shelah) If X\ is the least counterexample to
SCH then X > 2%, cf()\) = Rg, pio < uT for
2%0 < 1 < X, and pp(A\) > ATT.

(Gitik) If A > 2%0 is singular and pp()\) > ATt
then there is an inner model for 3k o(k) = kT 7.

These results can be extended: need to un-
derstand “o(k)” as a measure of how many
extenders there are at k.



Gitik and Mitchell: further results.

1) k strong limit, cf(k) =8 < Kk, 26 > A > kT
where \ is not pT for cf(p) < k.

1. If 6 > wy, there is an inner model where
o(k) > X+ 6 (Optimal by work of Woodin,
or by work of Segal).

2. If 6 = wq, there is an inner model where
o(k) > X (and X\ + wq suffices).

3. If 6 = w then there is an inner model where
either o(k) > X or {a < k : o(a) > a1} is
unbounded for all n < w. The latter case
can actually occur, by work of Gitik.



2) If n > 0, cf(k) = w, GCH holds below «
and 2% > k1712 then there is an inner model
where either o(k) > kT"T2 4+ 1 or {a < k :
o(a) > aT™} is unbounded for all m < w.

3) If X, is strong limit and 2% > R, then
there is an inner model for a Woodin cardi-
nal (assuming that we can build the Steel core
model).



Gitik: more on failure of GCH at a measurable.

1) kK measurable and 2% = k12 for o > 2. Then
there is an inner model where o(k) > kT or
some 7 is strong up to the next measurable.

2) k measurable and 2F = x1t8+1 for 3 singular,
cf(B) < k. Then there is an inner model where
o(k) > kTPT1 41 or some 7 is strong up to the
next measurable.

Complementary consistency results: If o = 8+
1 for B a successor or cf(8) > k, or « is limit
with cf(a) > k then o(k) = kT suffices to
make k measurable with 2F = gt

Work of Woodin shows o(k) = k% + 1 always
suffices.



Combinatorial problems about regular cardi-
nals tend to be hardest at successors of sin-
qgulars. Examples:

1. Is there a k-Aronszajn tree?

2. Is there a non-trivial non-reflecting station-
ary subset of k7

3. k<F = k? (=SCH, essentially)

4. Is there a Jonsson algebra on k7



Some ways to resolve problems about singular
cardinals and their successors.

1. Reflection principles (typically obtained from
large cardinals by forcing).

2. Squares (typically obtained by forcing or
from inner models).

3. Pcf theory.

Q: How are they related?



Definition: Let  be an uncountable cardinal.
A Ok-sequence is a sequence (Cy : o < kT, lim(a))
such that for all a < kT

1. C, is closed and unbounded in «.

2. If cf(a) < K, then ot(Cy) < k.

3. Forall Belim(Cqa), Cg=CanNp.

We say that [, holds iff there exists a [lk-
sequence.

CFM = Cummings, Foreman and Magidor.
CS = Cummings and Schimmerling.

FM = Foreman and Magidor.



Approachability (Shelah)

Definition: (Cs:a < k1) is an APs-sequence
Iff for a club of «

1. Cq is club in a, ot(Cy) = cf(a).

2. VB<ady<aCqnp=~0C.

Here we could just demand that C, was un-
bounded and get an equivalent definition.



Very weak square (Foreman and Magidor)

Definition: (Cu : a < k1) is an VWS,-sequence
iff for a club of a < k™

2. For every bounded z € [C,]Y0, there is 8 <
a With © = CB'

Here demanding that C, be club in a gives
a stronger property, the Not So Very Weak
Square or NSVWS,.



By scale we will mean scale of length R, 44
in a product of the form [],,ca Nn ordered by
eventual domination.

(FM) VWSy  implies that in any scale the set
of non-good points of cofinality Nq is non-
stationary.

(Ry41, o) = (Nq,Rp) implies that in any scale
the set of non-good points of cofinality Ny is
stationary.

APy, implies that in any scale, the set of non-
good points of uncountable cofinality is non-
stationary.



Relations with large cardinals etc

(FM) If GCH holds and k is supercompact then
there is a class generic extension in which k
IS supercompact, cardinals and cofinalities are
preserved and VWS, holds for all singular .
We can also preserve hugeness.

NSVWS, fails if A is the supremum of w super-
compact cardinals.



Definition: Let k be an uncountable regular
cardinal. Let S be a stationary subset of k.

1. S reflects at a iff a < k, cf(a) > w and SN«
IS stationary in «.

2. Refl(S) holds iff every stationary subset of
S reflects at some «a.

3. S is non-reflecting iff S does not reflect at
any «.

Fact: Let Ug hold and let S be a stationary
subset of kT. Then Refl(S) fails.



Definition: Let x be a cardinal. A Ll; \-sequence
is a sequence (Cq : a < kT,lim(a)) such that

1. Ca C P(a), 1 <|Cal <A, and Cq is a set of
closed and unbounded subsets of «.

2. If cf(a) < k then VC € C, 0ot(C) < &.
3. VC € Ca VB € lim(C) C N B € Cg.

A D,i,<>\—sequence is defined similarly, only we
demand that 1 < |Cq| < A.

I:IK, — Dl{,,li I:I:; — DK,,K,-

Fact: Let k<* =« and let O, - hold. If S C
kT is stationary then there exists a stationary
set T'C S such that T does not reflect at any
a with cf(a) > A.



Theorem (CFM): Let xk be supercompact, and
suppose 267 = T+l et 4, v be two car-
dinals (one or both can be finite) such that
1< u<v <R, Then there is a generic exten-
sion in which

1. All cardinals less than or equal to v are
preserved.

3. Oy, holds.

4. Ly, fails.



Failure of s for k singular requires substan-
tial large cardinals. More information in Ernest
Schimmerling’s talk.

Fact (Solovay): If k is supercompact and X is
a cardinal with k < A then [, fails.

Fact (Shelah) If k is supercompact and cf()\) <
k < A then LI} fails.

Fact (Burke and Kanamori): If k is supercom-
pact and k,cf(A) < A then Ly ¢y fails.

Fact (Magidor): PFA implies that [, x, fails
for k > N1, while "PFA +Vk > Rp Ll n," IS
consistent.



Definition: A Dmgf(”—sequence is a matrix of

sets (Cu;:a < AT, i(a) <i< cf(N)) such that
for some increasing sequence (\; : ¢ < cf(\)) of
regular cardinals with limit A

1. i(a) < cf()) for all a < AT.

2. ot(Cy,;) < A; for all a.

3. Cq,; is Club in a.

4. If i(a) <1< j <cf(A) then C,; C Cy ;.

5. If «(B) < ¢ < cf(X) and a € lim(Cg;) then
i(a) <iand Cy; = Cg;Na.

6. If « and 3 are limit ordinals with a < 8 < AT
then a € lim(Cg;) for all sufficiently large

1 < .



O\'dr 5y implies Oy cr(yy @nd the transfer prin-

ciple (R1,Rg) — (AT, N).

Theorem (CFM): Let X be a singular cardinal.
Then there exists a forcing poset P such that

1. P is cf(\)-directed closed.
2. P is < A-strateqically closed.

i d 3]

Corollary: Let x be a Laver indestructible su-
percompact cardinal and let & < cf(\) < A.
Then there is a forcing extension in which «
IS still supercompact, cardinals and cofinalities

up to Mt are preserved, and Dk‘gf(” holds.



Definition: (&, f) is a very good scale for « iff

1. K= {(k;:1 < cf(k))isanincreasing sequence
of regular cardinals cofinal in k.

2. f={(fa:a<kT)isascalein [J; '%/Jgf(},{)-

3. For every point a < kT such that cf(a) >
cf(x) there exists a closed and unbounded
set C C o and ¢ < cf(k) such that Vj3,~ €

CVj>i(B<vy= fg() < fy()).

VGS, holds iff there exists a very good scale
for k.



Theorem (CFM): Let k be singular, let \ < k.
Then L, \ implies VGS.

Theorem (CFM): Let k be singular, and let
VGS, hold. Then for every stationary T C skt
there are stationary (T} :¢ < cf(x)) such that
T; C T and the T; do not reflect simultaneously
at any point of cofinality greater than cf(x).

Theorem (CFM): Let (kn:n <w) be an in-
creasing sequence of supercompact cardinals.
Let x = sup,, kn. Then there is a generic ex-
tension in which

1. k = N,, and k71 is preserved.
2. OR9, holds.

3. For every finite set f of stationary subsets
of N, there exists N < w such that if N <
n < w then there exists o« of cofinality N,
such that all sets in f reflect at «.



Theorem (CFM): Let P be Prikry forcing at .
In V let Sg =ger {a < kT : cf(a) < sk} and let
S1 ={a <kt :cf(a) =k}. Then in VP

1. 571 is a non-reflecting stationary set of co-
finality w ordinals.

2. If kis n"‘—supercompact, then any finite set
of stationary subsets of Sp reflect simulta-
neously.

3. There are w subsets of Sy which do not
reflect simultaneously.

Theorem (CS): Ok, holds in VF,



Definition: ADSy holds iff there exists (Aq 1 a < kT)
such that

1. Ay is unbounded in k, ot(Ay) = cf(k).

2. For all B8 < kT there exists g : 8 — &
such that the sequence (Aqy \ g(a) @ a < 3)
consists of pairwise disjoint sets.

Theorem (CFM): If VGS, or % holds then
ADS holds.

Theorem (CFM): Let k be singular of cofinality
w. If ADSk holds then there is stationary S C
Refl*([T]%0) which does not reflect to any X
with | X| = cf(X) = N;.



Theorem (CFM): Let (kn:n <w) be an in-
creasing sequence of supercompact cardinals.
Let Kk = sup,, kn, and assume that GCH holds
above k.

Then there is a forcing P such that in V¥

1. k =N, and GCH holds.

2. D§w holds.

3. For all n, any N,, stationary subsets of the
set N, 11 Ncof(< Ny) reflect simultaneously
at some point of cofinality Ny.



Theorem (CFM): Let k be supercompact. Then
there is a generic extension W such that

1. kK= Ng/
2. D§w fails in W.

3. If H is Coll(w,wy)-generic over W then Uy
holds in W[H].

A similar argument shows that for \ regular
we can create a situation in which [y fails,
and forcing with Coll(w,w1) makes [y hold.
However, in general it may not be possible to
force LI, with mild forcing if we demand that
L1} should fail in the ground model.

Theorem (CFM): Let1 <n <wandlet A\ =N,
Let P be A-c.c. and suppose that I p "y holds”.
Then LI} holds in V.



Theorem (CFM): Let MM™T hold. Let x be
regular and uncountable. Then there is a forc-
ing extension in which

e [ here are two stationary subsets of k which
do not reflect simultaneously.

e Stationary subsets of [A]N0 reflect for all
A > R,



