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have an unbounded set of co�nalities at which strong non-reection holds,and an unbounded set where it fails.De�nition 1: Let � be a regular cardinal, and let � be an ordinal with� � �.� S�� = f � < � j cf(�) = � g.� S�<� = f � < � j cf(�) < � g.� If � is uncountable, then � strongly non-reects at � i� there is a func-tion F : � �! � such that for all � 2 S�� there is C club in � such thatF � C is strictly increasing. We will write SNR(�; �) for this.� � weakly reects at � i� � does not strongly non-reect at �.In [4] D�zamonja and Shelah prove some theorems connecting weak clubprinciples, saturated ideals, and the ideal I[�; �) consisting of those A � �such that there is h : � �! � increasing on a club at every point of A\S�� . Inparticular Theorem 2.5 of that paper shows that a certain weak club principleis incompatible with saturated ideals at successors of singulars, and Theorem2.8 connects weak reection and the weak club principle.In [3] strong non-reection is used as a tool to show that di�erent instancesof stationary reection are independent. For example it is shown there that\every stationary subset of S@3@0 reects at a point in S@3@2 " is consistent with\every stationary subset of S@3@1 has a non-reecting stationary subset".We make a few remarks about the de�nitions. The next lemma is implicitin Observation 1.2.3 from [4].Lemma 1: Let � be an ordinal, and h�i : i < �i a �-sequence of ordinalswith cf(�i) 6= �. Let F : � �! � and Fi : �i �! � witness strong non-reection at � for � and each of the �i. Then there is G : Pi<��i �! �witnessing strong non-reection for Pi<��i.2



Proof: De�ne G(Pi<j �i) = F (j) and G(Pi<j �i + �) = Fj(�) for 0 < � < �j. Itis easy to check that this works. �It is proved in [4], using the previous lemma, that the least � which weaklyreects at � is a regular cardinal greater than �.As the terminology suggests, there is a connection between weak reectionand the more familiar notion of stationary reection.De�nition 2: Let � < � < � be regular cardinals. Then Ref(�; �; �) i� forevery stationary S � S�� there is � 2 S�� such that S \ � is stationary in �.We will use also Ref(�; �;< �) as a shorthand for \8� < � Ref(�; �; �)".The next fact shows that strong non-reection at � is antithetical tostationary reection to points of co�nality �.Lemma 2: Suppose that � strongly non-reects at �. Then for every sta-tionary S � � there is T � S stationary such that T \ � is non-stationaryfor all � 2 S�� .Proof: Use Fodor's Lemma to �nd T on which F : � �! � witnessing thestrong non-reection is constant. If C � � is a club on which F is strictlyincreasing then C meets T in at most one point. �It is not hard to see that if hC� : � < �+i is a 2�-sequence then thefunction F : � 7�! o.t.(C�) witnesses that �+ strongly non-reects at �.More is true, see 1.7 of [4]. The following remark is immediate from thede�nition.Lemma 3: If � = cf(�) < � < ��, and � weakly reects at �, then �� weaklyreects at �.We are now ready to state the main result.3



Theorem 1: Let GCH hold, let � be regular, and suppose that there arecardinals h�i; �i; �i : i < �i such that for all i < �1. �i = cf(�i) < �+i < �i = cf(�i) < �i, and �i is measurable.2. �i > (sup f �j j j < i g)++.Then there is a generic extension in which SNR(�; �i) and Ref(�i; �i; < �i)for every i. In particular, by Lemmas 2 and 3, � weakly reects at �i.The proof will involve two stages. First we force functions that witnessthe strong non-reection at the points �i, via an iterated forcing with Eastonsupport. An important feature of the construction is that the individualsteps in the forcing have an increasing degree of strategic closure, and at anystage a witness to the desired degree of strategic closure was added by theprevious stages.We will show that the �rst stage preserves the measurability of all the�i. In the second stage we will force with a product of the L�evy col-lapses Coll(�i; < �i), and use Baumgartner's argument from [2] to show thatRef(�i; �i; < �i) holds in the extension.2 Forcing strong non-reectionLet � and � be regular cardinals with � < �. In this section we de�ne aforcing P(�; �) which adds a function from � to � witnessing strong non-reection for � at �. We could make the same de�nition for � an arbitraryordinal greater than �, but for our purposes it will su�ce to restrict ourselvesto regular cardinals.De�nition 3: Conditions in P(�; �) are functions p such that dom(p) < �,rge(p) � �, and for every � � dom(p) if � 2 S�� then there is is a club C in� such that p � C is strictly increasing.The condition p extends the condition q i� p � q. We write this as p � q.4



Clearly this forcing has at most �<� conditions, so enjoys the (�<�)+-c.c.There are several pieces of information about the closure properties of theforcing that we will need later.Lemma 4: Let hp� : � < �i be a strictly decreasing sequence of conditionsin P(�; �), where � 2 S�6=�. Then p = S� p� is the greatest lower bound forthe sequence.Proof: Notice that cf(dom(p)) = cf(�) 6= �, so that if � � dom(p) andcf(�) = � then � 2 dom(p�) for some � < �. There is C club in � such thatp � C = p� � C is strictly increasing. �We remind the reader of the notion of strategic closure.De�nition 4: Let P be a partial ordering, and let � be an ordinal.1. The game G(P; �) is played by two players I and II, who take turns toplay elements p� of P for 0 < � < �, with player I playing at odd stagesand player II at even stages (Nota bene: limit ordinals are even).The rules of the game are that the sequence that is played must bedecreasing (not necessarily strictly decreasing), the �rst player whocannot make a move loses, and player II wins if play proceeds for �stages.2. P is �-strategically closed i� player II has a winning strategy in G(P; �).3. P is < �-strategically closed i� for all � < � P is �-strategically closed.We say that a forcing notion P is < �-distributive i� it does not add any< �-sequence of ordinals to the ground model (equivalently, the intersectionof fewer than � dense open sets is nonempty). The following lemma is easy.Lemma 5: If P is < �-closed it is �-strategically closed, and if P is < �-strategically closed it is < �-distributive.5



Notice that P(�; �) will only contain conditions of lengths unbounded in� if SNR(�; �) holds for all � < �. This condition is actually enough to makeP(�; �) be < �-strategically closed.Lemma 6: Suppose that all � 2 [�; �) are strongly non-reecting at �. ThenP(�; �) is < �-strategically closed.Proof: Let � < �. If � < � then player II can win with the followingstrategy; he plays p2 =def S�<2 p�.If � � � < � then by hypothesis there is a function F : � �! � witnessingstrong non-reection. Player II will play p2 =def (S�<2 p�) _ F (). Wecheck that this is a winning strategy.Let 2� be an even stage of co�nality � in G(P(�; �); �). There is D club in� such that F � D is strictly increasing. If we de�ne C = f lh(p2) j  2 D gthen C witnesses that II does not lose at stage 2�. �We will be interested in forcing strong non-reection to several values of �simultaneously. For this we will use a certain dense subset of the < �-supportproduct of the appropriate P(�; �).De�nition 5: Let A � REG\�. Then P(A; �) is the set of functions p suchthat1. dom(p) = (A \ )�  for some  < �.2. If dom(p) = (A \ ) �  and � 2 A \  then � <  7�! p(�; �) is acondition in P(�; �).If p; q 2 P(A; �) then p � q i� p extends q.Clearly jP(A; �)j � �<�, so the forcing has the (�<�)+-c.c. We also recordsome information about the closure of the forcing.Lemma 7: Let hp� : � < �i be a strictly decreasing sequence of conditions inP(A; �), where cf(�) =2 A. Then the condition p given by p(i) =def S�<� p�(i)is the greatest lower bound for the sequence.6



The next lemma is easy, with a proof almost identical to that of Lemma6.Lemma 8: Let A and � be as above. Suppose that for all � 2 A, all� 2 [�; �) are strongly non-reecting at �. Then P(A; �) is < �-strategicallyclosed.3 The iterationThe idea of the construction is now to de�ne A = f �i j i < � g (where the �iare as in the statement of Theorem 1) and to iterate P(A\�; �) for all regular� � �. A crucial point will be that the forcing at stage � is < �-strategicallyclosed, using Lemma 8 and the fact that in the iteration we have alreadyarranged the required instances of non-reection below �.We will do a \Reverse Easton" iteration, that is to say an iteration wheredirect limits are taken at strongly inaccessible limit stages and inverse limitsare taken at other limit stages. We will refer to [1] for details about this sortof iteration, and we will also follow the notation of that paper (in particularP� is the forcing up to stage � and _Q� 2 V P� is the forcing at �).Formally, we will de�ne _Q� to be f0g if � is not a regular cardinal, andto be P(A \ �; �)VP� if � is regular. We will collect some information aboutthe iteration in the following lemma.Lemma 9: Let P� and _Q� be as above, and let _R�;� be the canonical iterationin V P� such that P� � _R�;� has a dense subset isomorphic to P�. Then for allregular � � �1. jP�j � �.2. V P� � GCH, so in particular V P� � j _Q� j = �.3. P�+1 has the �+-c.c. In addition, if � is Mahlo, then P� has the �-c.c.4. V P� � _Q� is < �-strategically closed.5. For all regular � < �, R�;� is < �-strategically closed in V P�.7



6. P� preserves all cardinals and co�nalities.Proof: The proof will be by induction on �. Most of the proof is straight-forward, using the results of Section 2 in [1] to power the induction. Thedistinctive point here is in showing that clauses 4 and 5 hold at �, given thatwe have proved the lemma for regular cardinals less than �.By construction, P� forces that for every � 2 A and every regular cardinal� 2 [�; �) we have SNR(�; �). As we remarked after Lemma 1, this impliesthat for every ordinal  2 [�; �) we have SNR(; �). By Lemma 8 this meansthat P(A \ �; �) is < �-strategically closed in V P�.Finally, to see that clause 5 holds one should check that Theorem 2.5from [1] is still true if \�-closed" is replaced by \< �-strategically closed".This is routine, the point is that a term for a strategy can be applied to aterm for a condition to get a term for a stronger condition. �We make some remarks about this construction.1. Since cardinals and co�nalities are preserved, a witness to strong non-reection added at some stage by some P(�; �) will remain a witness atall subsequent stages.2. At stage � we forced with P(A; �), so added witnesses to all the strongnon-reection that is claimed in Theorem 1.4 Preserving measurabilityAs we mentioned in the �rst section, we want to show that for each i themeasurability of �i is preserved by the iteration P�. It is enough to argue that�i is measurable in the extension by P�+i +1, because the rest of the forcingis �+i -strategically closed, so that the power set of �i does not change and ameasure remains a measure. For brevity, we will denote �i by � throughoutthis section. 8



Let G be P�-generic over V , let g be P(A\�; �)-generic over V [G], and leth be P(A\ �+; �+)-generic over V [G][g]. Let j : V �!M be the ultrapowermap arising from a normal measure U on �. We list some facts about j andM , all of whose proofs can be found in [5].1. crit(j) = �.2. �M �M .3. H�+ �M .4. �+ = �+M .5. �+ < j(�) < j(�+) < �++.6. M = f j(F )(�) j F 2 V and dom(F ) = � g.The strategy of the proof will be to de�ne, in V [G][g][h], an extensionof j : V �! M to a new embedding j : V [G][g][h] �! N � V [G][g][h].The existence of such an extension will imply that � is still measurable inV [G][g][h].We start by comparing the iterations P�++1 and j(P�++1). The forcingj(P�++1) is an iteration de�ned in M , forcing strong non-reection at co�-nalities in the set j(A)\ j(�+) for allM -regular cardinals up to j(�+). SinceA \ � is bounded in � and �i+1 > �+, we see thatA \ (�+ + 1) = j(A) \ (j(�+) + 1) = A \ �:By the resemblance between V and M , if we compute the iterationj(P�++1) up to stage �+ we get P�++1. We can therefore compute a genericextension M [G][g][h] of M by using the V -generic �lters, and observing thatV -generic �lters are M -generic.We claim that V [G][g][h] � �(M [G][g][h]) �M [G][g][h]. Since P�+1 is �+-c.c. every canonical P�+1-name for a �-sequence of ordinals is in M , so thateasily V [G][g] � �(M [G][g]) � M [G][g]. The forcing Q�+ is < �+-strategicallyclosed in V [G][g], so it adds no �-sequence of ordinals, and we are done.9



In M [G][g][h] let R = R�++1;j(�) be the canonical factor forcing to prolongG � g � h to a j(P�)-generic. We claim that R is �+-strategically closed inV [G][g][h]. This follows from the fact that R is < �++M -strategically closed inM [G][g][h] and the fact that V [G][g][h] � �(M [G][g][h]) � M [G][g][h]. Thepoint is that if II plays for �+ steps in V [G][g][h] using the strategy fromM [G][g][h], then every initial segment of the play is in M [G][g][h], so thatplayer II does not get stuck at any stage below �+.The previous claim explains why we are working in V [G][g][h] rather thanV [G][g]. If we truncate j(P�) at � + 1 then the rest of the forcing will be< �+-strategically closed in V [G][g], but the following stage of the proof willdemand �+-strategic closure.Recall that �+ < j(�) < �++. In M [G][g][h] the forcing R is j(�)-c.c. andhas size j(�), so there are at most j(�) maximal antichains in that model. InV [G][g][h] let us enumerate these antichains as hA� : � < �+i. Now considera run of the game G(R; �+) in which player I plays the following strategy;in response to p2 player I will choose some element q of A such thatp2 is compatible with q , and then will play p2+1 which is some commonre�nement. Player II will play according to some winning strategy; after�+ steps we have built a decreasing sequence of conditions which clearlygenerates an M [G][g][h]-generic �lter H.Now we will start to extend j. De�ne G+ =def G � g � h � H, whichwill be j(P�)-generic over M . We attempt to de�ne j : V [G] �! M [G+] byj( _�G) =def j( _�)G+. We check that this is a well-de�ned elementary embed-ding, using the following well-known fact.Lemma 10: Let k : M �! N be an elementary embedding between twotransitive models of ZFC. Let P 2 M be some forcing, let k(P) = Q, andsuppose that we have G which is P-generic over M and H which is Q-genericover N . Suppose also that k\G � H. Then de�ning k( _�G) = k( _� )H for every_� 2 MP gives a well-de�ned elementary embedding k : M [G] �! N [H],which extends k : M �! N and has k(G) = H.Proof: Easy, using the Truth Lemma and the elementarity of k. �10



By Lemma 10, it is enough to check that j\G � G+. G is generic forP� which was constructed as a direct limit, so every condition p in G hassupport bounded in �. Since crit(j) = �, the condition j(p) contains thesame information as p, and since G = G+ � � we conclude that j(p) 2 G+.Since G+ 2 V [G][g][h], we see that M [G+] � V [G][g][h]. Also, we knowthat H is generic for a forcing which adds no �-sequences of ordinals overM [G][g][h], so that V [G][g][h] � �(M [G+]) � M [G+].Now we aim to lift j further to get a map with domain V [G][g]. In V [G]the forcing Q� has cardinality �, and is < �-strategically closed with at most2� (that is �+) many maximal antichains. Since j : V [G] �! M [G+] iselementary, in M [G+] the forcing Qj(�) is < j(�)-strategically closed with atmost j(�+) maximal antichains.Arguing as before, Qj(�) is �+-strategically closed in V [G][g][h]. Sincej(�+) < �++ we can repeat the argument from the construction of H tobuild g+ which is Qj(�) -generic over M [G+]. But it is not clear at this pointthat we can lift j onto V [G][g], because it may not be the case that j\g � g+.We will use Silver's \master condition" idea. Observe that g 2 M [G+],and that g is equivalent to a function p where dom(p) = (A \ �) � � andp(�;�) : � < � 7�! p(�; �) witnesses SNR(�; �) for each � 2 A \ �.Recall that Qj(�) is de�ned to be P(j(A) \ j(�); j(�)). We claim thatp 2 Qj(�) . The support condition is satis�ed because � < j(�) and (as wesaw before) j(A) \ j(�) = j(A \ �) = A \ �. It is enough to show that foreach � we have p(�;�) 2 P(�; j(�)), which is to say that for all � � � ofco�nality � there is a club in � on which p(�;�) is increasing. This is easybecause V , M and M [G+] agree about cardinals and co�nalities up to �+.Since p is a condition in Qj(�) , when we construct g+ we can arrange thatg+ 3 p. We claim that this su�ces to guarantee that j\g � g+. This followsfrom the observation that p � j(q) for every q 2 g, which is true because qhas size less than � and so j(q) is just a copy of q.We can now build j : V [G][g] �! M [G+][g+], using Lemma 10. Beforewe can �nish the construction, we need one piece of information about thisembedding. We claim thatM [G+][g+] = f j(F )(�) j F 2 V [G][g] and dom(F ) = � g:11



To see this let _�G+�g+ be some element of M [G+][g+], where _� is a Pj(�)+1-name in M . We know that _� = j(f)(�) for some f 2 V , and we mayas well assume that f(�) is a P�+1-name for every � < �. Let us de�neF 2 V [G] by F (�) =def f(�)G�g. Since j(G � g) = G+ � g+, we see thatj(F )(�) = (j(f)(�))G+�g+ = _�G+�g+ as required.We will now de�ne a �lter h+ on Qj(�+ ), by settingh+ =def f q j (9p 2 h) j(p) � q g:It is easy to see that h+ is in fact a �lter, and certainly j\h � h+ andh+ 2 V [G][g][h]. We claim that h+ is generic. To see this, let D 2M [G+][g+]be a dense subset of Qj(�+ ). We know D = j(F )(�) for some F 2 V [G][g].De�ne E � Q�+ byE =\ f F (�) j F (�) is a dense subset of Q�+ g:Q�+ is < �+-distributive, so that E is dense, and clearly E 2 V [G][g]. There-fore there is some p 2 E \ h. Certainly j(p) 2 h+, and by elementarityD = j(F )(�) � j(E) so that j(p) 2 h+ \D.In conclusion, we can de�ne j : V [G][g][h] �! M [G+][g+][h+] in themodel V [G][g][h], so that � is still measurable in V [G][g][h].5 The collapseTo save on notation, we will now denote the model V P� constructed in Section3 by V . In this model we have the following situation. For all i1. GCH holds.2. �i = cf(�i) < �+i < �i = cf(�i) < �i, and �i is measurable.3. �i > (sup f �j j j < i g)++.4. SNR(�; �i) holds for every i. 12



We still have to get the reection property Ref(�i; �i; < �i) for every i.We will do this by collapsing the measurable cardinals �i, using an idea fromSection 7 of [2]. We will also check that this collapse does not destroy thestrong non-reection.Let Si =def Coll(�i; < �i). We de�ne S to be the Easton product of theSi, to be precise p 2 S i� p is a function with1. dom(p) � �.2. p(i) 2 Si for all i 2 dom(p).3. If � � � is an inaccessible cardinal and i < � =) �i < �, thendom(p) \ � is bounded in �.The ordering is the natural one.For each i, the forcing S factorises as Sli�Si�Sui , where Sli talks about thecoordinates below i and Sui talks about those above. Using Easton's Lemmaand the GCH, it is easy to see that S collapses cardinals in the interval [�i; �i)to �i and preserves all other cardinals. In particular SNR(�; �i) still holdsin V S, because �i is still regular and there are no new points of co�nality �i(this is easy, because by our assumptions on �i we have jSlij < �i, and Si�Suiis �+i -closed).For the reection, it will su�ce to check that Ref(�i; �i; < �i) holds inV Sli�Si, because this model agrees with V S up to �i+1. We will look at V Sli�Siin a slightly di�erent way, by writing it as (V Si)Sli.Since GCH holds in V and �i is measurable there, the results of [2] showthat Ref(�i; �i; < �i) holds in V Si. Of course, �i is now �+i . We claim thatRef(�i; �i; < �i) still holds in (V Si)Sli. Observe that jSlij < �i < �i, so that if Sis a stationary subset of S�i<�i in (V Si)Sli then there is T � S stationary withT 2 V Si. By the reection which holds in V Si, there is  2 S�i�i such thatT \ is stationary in V Si. Since jSlij < �i, we see that T \ is still stationaryin (V Si)Sli (and of course  still has co�nality �i).We have shown that SNR(�; �i) and Ref(�i; �i; < �i) hold in V S for alli < �. This concludes the proof of Theorem 1.13
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