
A MODEL IN WHICH EVERY BOOLEAN ALGEBRA HASMANY SUBALGEBRASJAMES CUMMINGS AND SAHARON SHELAHAbstract. We show that it is consistent with ZFC (relative to large cardinals)that every in�nite Boolean algebra B has an irredundant subset A such that2jAj = 2jBj. This implies in particular that B has 2jBj subalgebras. We alsodiscuss some more general problems about subalgebras and free subsets of analgebra.The result on the number of subalgebras in a Boolean algebra solves aquestion of Monk from [6]. The paper is intended to be accessible as faras possible to a general audience, in particular we have con�ned the moretechnical material to a \black box" at the end. The proof involves a variationon Foreman and Woodin's model in which GCH fails everywhere.1. Definitions and factsIn this section we give some basic de�nitions, and prove a couple of useful factsabout algebras and free subsets. We refer the reader to [3] for the de�nitions ofset-theoretic terms. Throughout this paper we are working in ZFC set theory.De�nition 1.1. Let M be a set. F is a �nitary function on M if and only ifF :Mn �!M for some �nite n.De�nition 1.2. M is an algebra if and only if M = (M;F) where M is a set,and F is a set of �nitary functions on M which is closed under composition andcontains the identity function.In this case we say M is an algebra on M .De�nition 1.3. Let M = (M;F) be an algebra and let N � M . Then N is asubalgebra of M if and only if N is closed under all the functions in F . In thiscase there is a natural algebra structure on N given by N = (N;F � N ).De�nition 1.4. Let M = (M;F) be an algebra. ThenSub(M) = f N : N is a subalgebra of M g:De�nition 1.5. Let M = (M;F) be an algebra. If A �M thenClM(A) = f F (~a) : F 2 F ;~a 2 A g:ClM(A) is the least subalgebra of M containing A.1991 Mathematics Subject Classi�cation. Primary 03E35, 03G05.Key words and phrases. Boolean algebras, free subsets, Radin forcing.The �rst author was supported by a Postdoctoral Fellowship at the Mathematics Institute,Hebrew University of Jerusalem.The second author was partially supported by the Basic Research Fund of the Israel Academyof Science. Paper number 530. 1



2 JAMES CUMMINGS AND SAHARON SHELAHDe�nition 1.6. Let M = (M;F) be an algebra. If A � M then A is free if andonly if 8a 2 A a =2 ClM(A� fag):In the context of Boolean algebras, free subsets are more usually referred to asirredundant. We can use free sets to generate large numbers of subalgebras usingthe following well-known fact.Fact 1.7. If A �M is free for M then jSub(M)j � 2jAj.Proof. For each B � A let NB = ClM(B). It follows from the freeness of A thatNB \A = B, so that the map B 7�! NB is an injection from PA into Sub(M).The next fact (also well-known) gives us one way of generating irredundantsubsets in a Boolean algebra.Fact 1.8. If � is a strong limit cardinal and B is a Boolean algebra with jBj � �then B has an irredundant subset of cardinality �.Proof. We can build by induction a sequence hb� : � < �i such that b� is not aboveany element in the subalgebra generated by ~b � �. The point is that a subalgebra ofsize less than � cannot be dense, since � is strong limit. It follows from the propertywe have arranged that we have enumerated an irredundant subset of cardinality�. We make the remark that the last fact works even if � = !. The next fact is atechnical assertion which we will use when we discuss free subsets and subalgebrasin the general setting.Fact 1.9. Let � be a singular strong limit cardinal. Let M = (M;F) be an algebraand suppose that � � jM j < 2� and jFj < �. Then Sub(M) has cardinality at least2�.Proof. Let � = cf(�)+ jFj, then 2� < � since � is singular and strong limit. De�neP = f A �M : jAj = cf(�) g:From the assumptions on M and �,2� = �cf � � jM jcf � = jP j � 2�: cf � = 2�;so that jP j = 2�.Observe that if A 2 P then jClM(A)j � �. So if we de�ne an equivalence relationon P by setting A � B () ClM(A) = ClM(B);then the classes each have size at worst 2�. Hence there are 2� classes and so wecan generate 2� subalgebras by closing representative elements from each class.



BOOLEAN ALGEBRAS 32. Pr(�)De�nition 2.1. Let � be a cardinal. Pr(�) is the following property of �: for allalgebras M = (M;F) with jM j = � and jFj < � there exists A � M free for Msuch that jAj = �.In some contexts we might wish to make a more complex de�nition of the form\Pr(�; �;D; �) i� for every algebra on � with at most � functions there is a freeset in the �-complete �lter D" but Pr(�) is su�cient for the arguments here.We collect some information about Pr(�).Fact 2.2. If � is Ramsey then Pr(�).Proof. Let M = (M;F) be an algebra with jM j = �, jFj < �. We lose nothingby assuming M = �. We can regard M as a structure for a �rst-order language Lwith jLj < �. By a standard application of Ramseyness we can get A � � of ordertype � with A a set of order indiscernibles for M.Now A must be free by an easy application of indiscernibility.Fact 2.3. If Pr(�) holds and P is a �+-c.c. forcing for some � < � then Pr(�)holds in V P.Proof. Let _M = (�̂; h _F� : � < �i) name an algebra on � with � functions, � < �.For each ~a from � and � < � we may (by the chain condition of P) enumerate thepossible values of _F�(~a) as hG�;�(~a) : � < �i.Now de�ne in V an algebra M� = (�; hG�;� : � < �; � < �i) and use Pr(�) toget I � � free for M�. Clearly it is forced that I be free for _M in V P.3. Building irredundant subsetsIn this section we will de�ne a combinatorial principle (�) and show that if (�)holds then we get the desired conclusion about Boolean algebras. We will alsoconsider a limitation on the possibilities for generalising the result.De�nition 3.1 (The principle (�)). The principle (�) is the conjunction of the fol-lowing two statements:S1. For all in�nite cardinals �, 2� is weakly inaccessible and� � � < 2� =) 2� = 2�:S2. For all in�nite cardinals �, Pr(2�) holds.Theorem 3.2. (�) implies that every in�nite Boolean algebra B has an irredundantsubset A such that 2jAj = 2jBj.Proof. Observe that a Boolean algebra can be regarded as an algebra with @0functions (just take the Boolean operations and close under composition).De�ne a closed unbounded class of in�nite cardinals byC = f � : 9� 2� = � or � is strong limit gThere is a unique � 2 C such that � � jBj < 2�. By the assumption S1, 2� = 2jBj,so it will su�ce to �nd a free subset of size �. Since � is in�nite we can �nd B0 asubalgebra of B with jB0j = �, and it su�ces to �nd a free subset of size � in B0.Case A: � = 2�. In this case � > !, and S2 implies that Pr(�) holds, so that B0has a free (irredundant) subset of cardinality �.



4 JAMES CUMMINGS AND SAHARON SHELAHCase B: � is strong limit. In this case Fact 1.8 implies that there is an irredundantsubset of cardinality �.At this point we could ask about the situation for more general algebras. Couldevery algebra with countably many functions have a large free subset, or a largenumber of subalgebras? There is a result of Shelah (see Chapter III of [9]) whichsheds some light on this question.Fact 3.3. If � is inaccessible and not Mahlo (for example if � is the �rst inacces-sible cardinal) then �9 [�]2�.From this it follows immediately that if � is such a cardinal, then we can de�nean algebra M on � with countably many functions such that jSub(M)j = �.In the next section we will prove that in the absence of inaccessibles some in-formation about general algebras can be extracted from (�). The model of (�)which we eventually construct will in fact contain some quite large cardinals; it willbe a set model of ZFC in which there is a proper class of cardinals � which arei3(�)-supercompact. 4. General algebrasIn this section we prove that in the absence of inaccessible cardinals (�) impliesthat certain algebras have a large number of subalgebras. By the remarks at theend of the last section, it will follow that the restriction that no inaccessibles shouldexist is essential.Theorem 4.1. Suppose that (�) holds and there is no inaccessible cardinal. Let �and � be in�nite cardinals. If M = (M;F) is an algebra such that jM j = � andjFj = �, and 2� � �, then Sub(M) has cardinality 2�.Proof. Let M, � and � be as above. De�ne a class of in�nite cardinals C byC = f � : 9� 2� = � or � is singular strong limit. gThere are no inaccessible cardinals, so C is closed and unbounded in the class ofordinals.Let � be the unique element of C such that � � � < 2�, where we know that� exists because � � 2� and C is a closed unbounded class of ordinals. Since2� � � < 2�, � < �.Now let N be a subalgebra of M of cardinality �; such a subalgebra can beobtained by taking any subset of size � and closing it to get a subalgebra. S1implies that 2� = 2�, so it su�ces to show that the algebra N = (N;F � N) has2� subalgebras.We distinguish two cases:Case A: � is singular strong limit. In this case we may apply Fact 1.9 to concludethat N has 2� subalgebras.Case B: � = 2�. It follows from S2 that Pr(�) is true, hence there is a free subsetof size � for N . But now by Fact 1.7 we may generate 2� subalgebras.This concludes the proof.For algebras with countably many functions the last result guarantees that thereare many subalgebras as long as jM j � 2@0 . In fact we can do slightly better here,using a result from [1].Fact 4.2. If C is a closed unbounded subset of [@2]@0 then jCj � 2@0 .



BOOLEAN ALGEBRAS 5Corollary 4.3. If (�) holds and there are no inaccessibles, then for every algebraM with jM j > @1 and countably many functions jSub(M)j = 2jM j.Proof. If jM j � 2@0 we already have it. If @2 � jM j < 2@0 then apply the theoremwe just quoted and the fact that 2jM j = 2@0 .5. How to make a model of (�).In this section we sketch the argument of [2] and indicate how we modify it to geta model in which (�) holds. We begin with a brief review of our conventions aboutforcing. For us p � q means that p is stronger than q, a forcing is �-closed if everydecreasing sequence of length less than � has a lower bound, a forcing is �-denseif it adds no < �-sequence of ordinals, and Add(�; �) is the forcing for adding �Cohen subsets of �.Foreman and Woodin begin the construction in [2] with a model V in which �is supercompact, and in which for each �nite n they have arranged that in(�) isweakly inaccessible and in(�)<in(�) = in(�). They force with a rather complexforcing P, and pass to a submodel of V Pwhich is of the form V P� for P� a projectionof P.P here is a kind of hybrid of Magidor's forcing from [5] to violate the SingularCardinals Hypothesis at @! and Radin's forcing from [8]. Just as in [5] the forcingP does too much damage to V and the desired model is an inner model of V P, butin the context of [2] it is necessary to be more explicit about the forcing for whichthe inner model is a generic extension.The following are the key properties of P�.P1. � is still inaccessible (and in fact is i3(�)-supercompact) in V P�.P2. P� adds (among other things) a generic club of order type � in �. In whatfollows we will assume that a generic G for P� is given, and enumerate thisclub in increasing order as h�� : � < �i.P3. In V each cardinal �� re
ects to some extent the properties of �. In particularin V each �� is measurable, and for each n we have that in(��) is weaklyinaccessible and in(��)<in(��) = in(��).P4. For each �, if p 2 P� is a condition which determines �� and ��+1 then P� � p(the suborder of conditions which re�ne p) factors asP� �Add(i4(��); ��+1)� Q� ;where(a) P� is �+� -c.c. if � is limit and i4(��)+-c.c. if � = � + 1.(b) All bounded subsets of i4(��+1) which occur in V P��p have already ap-peared in the extension by P� �Add(i4(��); ��+1).Given all this it is routine to check that if we truncate V P� at � then we obtaina set model of ZFC in which GCH fails everywhere, and moreover exponentiationfollows the pattern of clause 1 in (�).The reader should think of P� as shooting a club of cardinals through �, anddoing a certain amount of work between each successive pair of cardinals. Thingshave been arranged so that GCH will fail for a long region past each cardinal �� onthe club, so that what needs to be done is to blow up the powerset of a well-chosenpoint in that region to have size ��+1.



6 JAMES CUMMINGS AND SAHARON SHELAHFor our purposes we need to change the construction of [2] slightly, by changingthe forcing which is done between the points of the generic club to blow up power-sets. The reason for the change is that we are trying to get Pr(�) to hold whenever� is of the form 2�, and in general it will not be possible to arrange that Pr(�) ispreserved by forcing with Add(�; �).The solution to this dilemma is to replace the Cohen forcing de�ned in V by aCohen forcing de�ned in a well chosen inner model. We need to choose this innermodel to be small enough that Cohen forcing from that model preserves Pr(�), yetlarge enough that it retains some degree of closure su�cient to make the argumentsof [2] go through. For technical reasons we will be adding subsets to i5(��), ratherthan i4(��) as in the case of [2].To be more precise we will want to replace clauses P3 and P4 above byP3�. For each n < 6 it is the case in V that �� is measurable, in(��) is weaklyinaccessible, and in(��)<in(��) = in(��). Also Pr(in(��)) holds for eachsuch n.For all possible (��; ��+1) there is a notion of forcing Add�(i5(��); ��+1)(which we will denote by R� in what follows) such that(a) R� is i4(��)-closed, i4(��)+-c.c. and i5(��)-dense.(b) R� adds ��+1 subsets to i5(��).(c) In V R� the property Pr(in(��)) still holds 1 for n < 6.P4�: If p determines �� and ��+1 then P� � p factors asP� � R� � Q� ;where(a) P� is �+� -c.c. if � is limit, and i5(��)+-c.c. if � = � + 1.(b) R� = Add�(i5(��); ��+1) is as above.(c) All bounded subsets of i5(��+1) in V P��p are already in the extensionby P� � R� .We'll show that given a model in which P1, P2, P3� and P4� hold we canconstruct a model of (�).Lemma 5.1. Let G be generic for a modi�ed version of P� obeying P1, P2, P3�and P4�. If we de�ne V1 = V [G], then V1 is a model of ZFC in which (�) holds.Proof. S1 is proved just as in [2].It follows from our assumptions that in V1 we have the following situation:� � is strong limit if and only if � = �� for some limit �.� Cardinal arithmetic follows the pattern that for n < 5in(��) � � < in+1(��) =) 2� = in+1(��);while i5(��) � � < ��+1 =) 2� = ��+1:We need to show that for all in�nite � we have Pr(2�). The proof divides intotwo cases.Case 1: 2� is of the form im(��) where 1 � m � 5 and � is a limit ordinal. By thefactorisation properties in P4� above it will su�ce to show that Pr(2�) holdsin the extension by P� � R� .1The hard work comes in the case n = 5, density guarantees that the property survives forn < 5.



BOOLEAN ALGEBRAS 7Certainly Pr(2�) holds in the extension by R� , because P3� says just that.Also we have that �+� < i1(��) � 2�, and P� is �+� -c.c. so that applying Fact2.3 we get that Pr(2�) holds in the extension by P� � R� .Case 2: 2� is of the form im(��+1) where 0 � m � 5. Again it su�ces to show thatPr(2�) holds in the extension by P�+1 � R�+1 .Pr(2�) holds in V R�+1, i5(��)+ < ��+1 � 2� and P�+1 is i5(��)+-c.c. sothat as in the last case we can apply Fact 2.3 to get that Pr(2�) in theextension by P�+1 � R�+1 .This concludes the proof.6. The preparation forcingMost of the hard work in this paper comes in preparing the model over whichwe intend (ultimately) to do our version of the construction from [2].We'll make use of Laver's \indestructibility" theorem from [4] as a labour-savingdevice. At a certain point below we will sketch a proof, since we need a little moreinformation than is contained in the statement.Fact 6.1 (Laver). Let � be supercompact, let � < �. Then there is a �-c.c. and�-directed closed forcing P, of cardinality �, such that in the extension by P thesupercompactness of � is indestructible under �-directed closed forcing.Now we will describe how to prepare the model over which we will do Radinforcing. Let us start with six supercompact cardinals enumerated in increasingorder as h�i : i < 6i in some initial model V0.6.1. Step One. We'll force to make each of the �i indestructibly supercompactunder �i-directed closed forcing. To do this let S0 2 V0 be Laver's forcing tomake �0 indestructible under �0-directed closed forcing, and force with S0. In V S00the cardinal �0 is supercompact by construction, and the rest of the �i are stillsupercompact because jS0j = �0 and supercompactness survives small forcing.Now let S1 2 V S00 be (as guaranteed by Fact 6.1) a forcing which makes �1indestructible and is �0-directed closed. In V S0�S10 we claim that all the �i aresupercompact and that both �0 and �1 are indestructible. The point for the in-destructibility of �0 is that if Q 2 V S0�S10 is �0-directed closed then S1 � Q is�0-directed closed in V S00 , so that �0 has been immunised against its ill e�ects andis supercompact in V S0�S1�Q0 .Repeating in the obvious way, we make each of the �i indestructible. Let theresulting model be called V .6.2. Step Two. Now we will force over V with a rather complicated �0-directedclosed forcing. Broadly speaking we will make �0 have the properties that aredemanded of �� in P3� from the last section.Of course �0 will still be supercompact after this, and we will use a re
ectionargument to show that we have many points in �0 which are good candidates tobecome points on the generic club.To be more precise we are aiming to make a model W in which the following listof properties holds:K1. �0 is supercompact.K2. For each i < 5, 2�i = �i+1 and �i+1 is a weakly inaccessible cardinal with�<�i+1i+1 = �i+1.



8 JAMES CUMMINGS AND SAHARON SHELAHFor any � > �5 there is a forcing Q� � V� such that (if we de�ne Q� = Q�\V�for � with �5 < � < �)K3. jQ� j = �<�5 , Q� is �4-directed closed, �5-dense and �+4 -c.c.K4. In WQ� , 2�5 � � and Pr(�i) holds for i < 6.K5. If � < � � � then Q� is a complete suborder of Q� .For each i < 5 let Pi be the Cohen conditions (as computed by V ) for adding�i+1 subsets of �i. We will abbreviate this by Pi = Add(�i; �i+1)V . Let Pi;j =Qi�n�j Pn.Let V1 = V [ _P0;3]. In V1 we know that 2�i = �i+1 for i < 4, and that �5 is stillsupercompact since jP0;3j = �4. In V1 de�ne a forcing as in Fact 6.1 for making �5indestructible. More precisely choose R 2 V1 such that� In V1, R is �5-c.c. and �+504 -directed closed with cardinality �5.� In V1[ _R] the supercompactness of �5 is indestructible under �5-directed closedforcing.Let V2 = V1[ _R]. De�ne Q� = Add(�5; �)V2 , and observe that for every � Q� =Add(�5; �)V2 . This is really the key point in the construction, to choose Q� inexactly the right inner model (see our remarks in the last section just before thede�nition of P3�).Finally let W = V2[ _P4], where we stress that P4 is Cohen forcing as computedin V .We'll prove that we have the required list of facts in W .K1. �0 is supercompact.Proof. Clearly P0;3 � R is �0-directed closed in V . P4 is �4-directed closed inV so is still �0-directed closed in V2, hence P0;3 � R � P4 is �0-directed closedin V . By the indestructibility of �0 in V , �0 is supercompact in W .K2. For each i < 5, 2�i = �i+1 and �i+1 is a weakly inaccessible cardinal with�<�i+1i+1 = �i+1.Proof. In V1 we have this for i < 4. P4 is �4-closed and �+4 -c.c. in V , P0;3 is�+3 -c.c. even in V [ _P4] so by the usual arguments with Easton's lemma P4 is�4-dense and �+4 -c.c. in V1. R is �+504 -closed in V1 so that P4 is �4-dense and�+4 -c.c. in V2. Moreover, by the closure of R we still have the claim for i < 4in V2. �5 is inaccessible (indeed supercompact) in V2 so that after forcingwith P4 we have the claim for i < 5.Recall that Q� = Add(�5; �)V2 .K3. jQ� j = �<�5 , Q� is �4-directed closed, �5-dense and �+4 -c.c.Proof. The cardinality statement is clear. Q� is �5-directed closed in V2, sothat (by what we proved about the properties of P4 in V2 during the proof ofK2) Q� is �4-directed closed and �5-dense in W . Since Q� is �5-closed in V2,P4 is �+4 -c.c. in V2[ _Q� ]. Q� is �+5 -c.c. in V2 so that Q� � P4 is �+5 -c.c. in V2,so that �nally Q� is �+5 -c.c. in W .K4. In WQ� , 2�5 � � and Pr(�i) holds for i < 6.Proof. Easily 2�5 � �. We break up the rest of the proof into a series ofclaims.Claim . For i < 4, Pr(�i) holds in W [ _Q� ].Proof. �i is supercompact in V [ _Pi;3], because Pi;3 is �i-directed closed. P0;i�1has �+i�1-c.c. in that model so that Pr(�i) holds in V1. Also we know that



BOOLEAN ALGEBRAS 9W [ _Q� ] = V1[ _R][ _P4][ _Q� ] is an extension of V1 by �4-dense forcing, so Pr(�i)is still true in W [ _Q� ].Claim . Pr(�4) holds in W [ _Q� ].Proof. W = V2[ _P4] = V [ _P0;4][ _R]. Arguing as in the previous claim, Pr(�4)holds in V [P0;4]. P4 is �+4 -c.c. in V1 so R is �+4 -dense in V [ _P0;4],hence Pr(�4)holds in W . Finally Q� is �5-dense in W , so Pr(�4) holds in W [ _Q� ].Claim . Pr(�5) holds in W [ _Q� ].Proof. W [ _Q� ] = V2[ _P4][ _Q� ] = V2[ _Q� ][ _P4]. As Q� is �5-directed closed in V2,�5 is supercompact in V2[Q� ]. P4 is �+4 -c.c. in V2[ _Q� ], so that Pr(�4) is stilltrue in W [ _Q� ].This �nishes the proof of K4.K5. If � < � � � then Q� is a complete suborder of Q� .Proof. This is immediate by the uniform de�nition of Cohen forcing.We �nish this section by proving that in W we can �nd a highly supercompactembedding j :W �!M with critical point �0 such that in M the cardinal �0 hassome properties resembling K1{K5 above. The point is that there will be many� < �0 which have these properties in W , and eventually we'll ensure that everycandidate to be on the generic club added by the Radin forcing has those properties.For the rest of this section we will work in the modelW unless otherwise speci�ed.De�nition 6.2. A pair of cardinals (�; �) is sweet i� (setting �n = in(�))1. � is measurable.2. For each i < 6, �i is weakly inaccessible and �<�ii = �i.There is a forcing Q�� � V� such that (setting Q�� = Q�� \ V�)3. jQ�� j = �<�5 , Q�� is �4-directed closed, �5-dense and �+4 -c.c.4. In the generic extension by Q�� , 2�5 � � and Pr(�i) holds for i < 6.5. If � < � � � then Q�� is a complete suborder of Q�� .Theorem 6.3. Let � = i50(�5). In W there is an embedding j : W �! M suchthat crit(j) = �0, �M �M , and in the model M the pair (�0; j(�0)) is sweet.Proof. Recall that we started this section with a model V0, and forced with someS0 to make �0 indestructible. Let S be the forcing that we do over V S00 to get to themodel V2, and recall that we force over V2 with P4 to get W . S� P4 is �0-directedclosed in V S00 .Fix a cardinal � much larger than �, such that �<� = �. As in [4], �x in V0 anembedding j0 : V0 �! N such that1. crit(j0) = �0, � < j0(�0).2. V0 j= �N � N .3. j0(S0) = S0 � S� P4 � R, where R is �+-closed in NS0�S�P4.Let G0 be S0-generic over V0, let g1 � g2 be S� P4-generic over V0[G0]. Let W =V0[G0][g1][g2] and let N+ = N [G0][g1][g2].Now N+ is closed under �-sequences in W so that the factor forcing R is �+-closed in W . Let H be R-generic over W , then it is easy to see that j0 lifts toj1 : V0[G0] �! N+[H ]:



10 JAMES CUMMINGS AND SAHARON SHELAHFigure 1. Factorisation of j2.Now we know that j1 � S� P4 2 N [G0], and g1 � g2 2 N+[H ], so that j[g1 � g2] 2N+[H ]. By the directed closure of j(S � P4) in N+[H ] we can �nd a \mastercondition" p (a lower bound in j(S� P4) for j[g1 � g2]) and then force over W [H ]with j(S� P4) � p to get a generic X and an embeddingj2 :W �! N� = N+[H ][X ]:Of course this embedding is not in W but a certain approximation is. Observethat R � j(S� P4) is �+-closed in W . Now factor j2 through the ultrapower byU = f A � P�� : j[�] 2 j2(A) g;to get a commutative triangle as in Figure 1.By the closure U 2 W , so j is an internal ultrapower map. It witnesses the�-supercompactness of �0 in the model W , because (as can easily be checked) U isa �ne normal measure on P��.It remains to check that (�0; j(�0)) is sweet in M . We'll actually check that(�0; j2(�0)) is sweet in N�, this su�ces because crit(k) > � > �0.Clauses 1 and 2 are immediate by the closure of M inside the model W . Nowto witness sweetness let us setQ�0j2 (�0) = Add(�5; j2(�0))V0 [G0][g1] = Add(�5; j2(�0))N [G0][g1]:Clause 3 is true in N+ by the same arguments that we used for W above. N� isan extension of N+ by highly closed forcing so that Clause 3 is still true in N�.Clause 5 is easy so we are left with Clause 4.Let h be Q�0� -generic over N� for Q�0� . Then h is generic over N+. By thechain condition of Q�0� and the closure of N+ in W , W and N+ see the same setof antichains for Q�0� . Hence h is Q�0� -generic over W , and we showed that Pr(�i)holds inW [h]. But then by closure again Pr(�i) holds in N+[h], by Easton's lemmaH �X is generic over N+[h] for highly dense forcing so that �nally Pr(�i) holds inN�[h]. 7. The final modelIn this section we will indicate how to modify the construction of [2], so as toforce over the modelW obtained in the last section and produce a model of (�). Themodi�cation that we are making is so minor that it seems pointless to reproducethe long and complicated de�nitions of P and P� from [2]; in this section we justgive a sketch of what is going on in [2], an indication of how the construction thereis to be modi�ed, and then some hints to the diligent reader as to how the proofsin [2] can be changed to work for our modi�ed forcing.As we mentioned in Section 5, the construction of [2] involves building a forcingP and then de�ning a projection P�; the idea is that the analysis of P provides in-formation which shows that P� does not too much damage to the cardinal structureof the ground model. We start by giving a sketchy account of P� as constructed in[2].Recall the the aim of P� is to add a sequence h(��; F�) : � < �i such that:1. ~� enumerates a closed unbounded subset of �.2. F� is Add(i4(��); ��+1)-generic over V .3. In the generic extension, cardinals are preserved and � is still inaccessible.



BOOLEAN ALGEBRAS 11A condition will prescribe �nitely many of the ��, and for each �� that it pre-scribes it will give some information about F�; it will also place some constrainton the possibilities for adding in new values of �� and for giving information aboutthe corresponding F�. The idea goes back to Prikry forcing, where a conditionprescribes an initial segment of the generic !-sequence and puts constraint on thepossibilities for adding further points.To be more speci�c P� is built from a pair (~w; ~F) where w(0) = � and w(�) isa measure on V� for � > 0. w(�) will concentrate on pairs (~u;~h) that resemble(~w � �; ~F � �); in particular if we let �~u =def u(0), �~u will be a cardinal thatresembles �. F(�) will be an ultra�lter on a Boolean algebra Q(~w; �), which consistsof functions f such that dom(f) 2 w(�) and f(~u;~k) 2 RO(Add(i4(�~u); �)), withthe operations de�ned pointwise.Conditions in P� will have the formh(~u0; ~k0; ~A0; ~f0; s0); : : : ; (~un�1; ~kn�1; ~An�1; ~fn�1; sn�1); (~w; ~F ; ~B;~g)iwhere1. (~ui; ~ki) 2 V�, �~u0 < : : : �~un�1 < �.2. dom(fi(�)) = Ai(�) 2 ui(�), dom(g(�)) = B(�) 2 w(�).3. fi(�) 2 ki(�), g(�) 2 F(�).4. si 2 Add(i4(�ui); ui+1) for i < n� 1, sn�1 2 Add(i4(�un�1); �).The aim of this condition is to force that the cardinals �ui are on the generic club,and that the conditions si are in the corresponding generics. It is also intended toforce that if we add in a new cardinal � and Add condition s between �ui and �ui+1then there is a pair (~v;~h) in some Ai+1(�) such that � = �~v and s � ki+1(�)(~v;~h).This motivates the ordering (which we do not spell out in detail here); a conditionis re�ned either by re�ning the \constraint parts" or by adding in new quintuplesthat obey the current constraints and which impose constraints compatible withthe current ones.The key fact about P� is that given a condition p, any question about the genericextension can be decided by re�ning the constraint parts of p (this is modelled onPrikry's well-known lemma about Prikry forcing). It will follow from this thatbounded subsets of � are derived from initial segments of the generic as in P4 b)from Section 5, which in turn will imply that P� has the desired e�ect of causingthe GCH to fail everywhere below �. It remains to be seen that forcing with P�preserves the large cardinal character of �; this is done via a master conditionargument which succeeds because ~w is quite long (it has a so-called repeat point)and the forcing Add(i4(�); �) is i4(�)-directed-closed.We can now describe how we modify the construction of [2]. To bring ournotation more into line with [2], let � = �0, let V = W , let j : V �! M bethe embedding constructed at the end of the last section. For each � < � suchthat (�; �) is sweet let us �x hQ�� : � � �i witnessing this. Our modi�cation of [2] issimply to restrict attention to those pairs (~u;~k) such that (�~u; �) is sweet (there aresu�ciently many because (�; j(�)) is sweet in M) and then to replace the forcingAdd(i4(�~u); �) by the forcing Q�~u� . It turns out that the proofs in [2] go throughessentially unaltered, because they only make appeal to rather general properties(chain condition, distributivity, directed closure) of Cohen forcing.There is one slightly subtle point, which is that is we will need a certain unifor-mity in the dependence of Q�� on �, as expressed by the equation Q�� = Q�� \ V� .



12 JAMES CUMMINGS AND SAHARON SHELAHThe real point of this is that when we consider a condition in j(P�) which puts ontothe generic club a point � < � followed by the point �, the forcing which is hap-pening between � and � is j(Q)�� ; it will be crucial that j(Q)�� = j(Q�� )\V� = Q�� ,that is the same forcing that would be used in P� between � and �.We conclude this section with a short discussion of the necessary changes in theproofs. We assume that the reader has a copy of [2] to hand; all references beloware to theorem and section numbers from that paper.Section Three: We will use j : V �! M to construct the master sequence ( ~M;~g).Recall that we chose j to witness i50(�5)-supercompactness of �0, it can be checkedthat this is enough to make all the arguments below go through.When we build ( ~M;~g) we will choose each g� so that dom(g�) contains only(~u;~h) with (�~u; �) sweet, and then let g�(~u;~h) 2 ~Q�~u� . As in [2], if j� : V �! N� isthe ultrapower by M� then W j= �3N� � N�. If we let F be the function given byF : (~u;~h) 7�! Q�~u�then [F ]M� is �4-closed in N�, hence is �+3 -closed in V .This closure will su�ce to make appropriate versions of 3.3, 3.4 and 3.5 gothrough.Section Four: 4.1 is just as in [2]. A version of 4.2 goes through because Q�a� � V�.Section Five: In the de�nition of \suitable quintuple" we demand that k�(b) 2 Q�b�uand s 2 Q�u� .The de�nition of \addability" is unchanged. Clauses d) and e) of that de�nitionstill make sense because (e.g.) Q�a�v is a complete suborder of Q�a�w .Versions of 5.1 and 5.2 go through without change.In the de�nition of \condition in P" we demand that k�(b) 2 Q�b�w , s 2 Q�ui�ui+1 .The ordering on P is as before.The de�nitions of \canonical representatives" and of \upper and lower parts"are unchanged, as is 5.3.We can do a \local" version of our argument for 3.3 above to show 5.4 goesthrough. Similarly 5.5, 5.6 and 5.8 go through.Section Six: We need to make the obvious changes in the de�nitions of \suitablequintuple" and of the projected forcing P�. The proofs all go through because theforcing Q�� has the right chain condition and closure.Section Seven: The master condition argument of this section goes through becausethe forcing notion j(� 7�! Q�� )(�) is �4-directed closed.8. ConclusionPutting together the results of the preceding sections we get the following result.Theorem 8.1 (Main Theorem). If Con(ZFC + GCH + six supercompact cardi-nals) then Con(ZFC + every in�nite Boolean algebra B has an irredundant subsetA such that 2jAj = 2jBj.Shelah has shown that the conclusion of this consistency result implies the failureof weak square, and therefore needs a substantial large cardinal hypothesis.
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