A MODEL IN WHICH EVERY BOOLEAN ALGEBRA HAS
MANY SUBALGEBRAS

JAMES CUMMINGS AND SAHARON SHELAH

ABSTRACT. We show that it is consistent with ZFC (relative to large cardinals)
that every infinite Boolean algebra B has an irredundant subset A such that
2141 = 2IB| This implies in particular that B has 2!5I subalgebras. We also
discuss some more general problems about subalgebras and free subsets of an
algebra.

The result on the number of subalgebras in a Boolean algebra solves a
question of Monk from [6]. The paper is intended to be accessible as far
as possible to a general audience, in particular we have confined the more
technical material to a “black box” at the end. The proof involves a variation
on Foreman and Woodin’s model in which GCH fails everywhere.

1. DEFINITIONS AND FACTS

In this section we give some basic definitions, and prove a couple of useful facts
about algebras and free subsets. We refer the reader to [3] for the definitions of
set-theoretic terms. Throughout this paper we are working in ZFC set theory.

Definition 1.1. Let M be a set. F'is a finitary function on M if and only if
F : M™ — M for some finite n.

Definition 1.2. M is an algebra if and only if M = (M,F) where M is a set,
and F is a set of finitary functions on M which is closed under composition and
contains the identity function.

In this case we say M is an algebra on M.

Definition 1.3. Let M = (M,F) be an algebra and let N C M. Then N is a
subalgebra of M if and only if IV is closed under all the functions in F. In this
case there is a natural algebra structure on N given by N’ = (N, F | N).

Definition 1.4. Let M = (M, F) be an algebra. Then
Sub(M) ={ N : N is a subalgebra of M }.
Definition 1.5. Let M = (M, F) be an algebra. If A C M then
Clm(A) = {F@) : FEF,aec A}
Clar(A) is the least subalgebra of M containing A.
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Definition 1.6. Let M = (M, F) be an algebra. If A C M then A is free if and
only if

Va € Aa ¢ Clpm(A—{a}).

In the context of Boolean algebras, free subsets are more usually referred to as
irredundant. We can use free sets to generate large numbers of subalgebras using
the following well-known fact.

Fact 1.7. If A C M is free for M then |Sub(M)| > 241,

Proof. For each B C A let Ng = Ciap(B). It follows from the freeness of A that
NpNA = B, so that the map B — Np is an injection from P A into Sub(M). O

The next fact (also well-known) gives us one way of generating irredundant
subsets in a Boolean algebra.

Fact 1.8. If k is a strong limit cardinal and B is a Boolean algebra with |B| > k
then B has an irredundant subset of cardinality k.

Proof. We can build by induction a sequence (b, : @ < k) such that bg is not above

any element in the subalgebra generated by b [ 8. The point is that a subalgebra of
size less than x cannot be dense, since « is strong limit. It follows from the property
we have arranged that we have enumerated an irredundant subset of cardinality
K. O

We make the remark that the last fact works even if K = w. The next fact is a
technical assertion which we will use when we discuss free subsets and subalgebras
in the general setting.

Fact 1.9. Let u be a singular strong limit cardinal. Let M = (M, F) be an algebra
and suppose that p < |M| < 2" and |F| < p. Then Sub(M) has cardinality at least
2K,

Proof. Let A\ = cf(u) + |F|, then 2% < p since p is singular and strong limit. Define
P={ACM : |A] =cf(u) }.
From the assumptions on M and u,
2 = ot < |M|TH = | P < 2me et = o

so that |P| = 2~.
Observe that if A € P then |Cly(A)| < A. So if we define an equivalence relation
on P by setting
A=B < Cim(A) =Clpm(B),

then the classes each have size at worst 2*. Hence there are 2* classes and so we
can generate 2# subalgebras by closing representative elements from each class. O
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2. Pr(k)

Definition 2.1. Let x be a cardinal. Pr(k) is the following property of «: for all
algebras M = (M, F) with |M| = k and |F| < & there exists A C M free for M
such that |A| = k.

In some contexts we might wish to make a more complex definition of the form
“Pr(k,u, D, o) iff for every algebra on k with at most u functions there is a free
set in the o-complete filter D” but Pr(k) is sufficient for the arguments here.

We collect some information about Pr(k).

Fact 2.2. If x is Ramsey then Pr(k).

Proof. Let M = (M,F) be an algebra with |M| = &, |F| < k. We lose nothing
by assuming M = k. We can regard M as a structure for a first-order language £
with |£| < k. By a standard application of Ramseyness we can get A C & of order
type k with A a set of order indiscernibles for M.

Now A must be free by an easy application of indiscernibility. O

Fact 2.3. If Pr(k) holds and P is a ut-c.c. forcing for some p < k then Pr(k)
holds in VT,

Proof. Let M = (&, (F, : @ < \)) name an algebra on & with A functions, A < k.
For each @ from x and a < A we may (by the chain condition of P) enumerate the
possible values of F, (@) as (Ga.3(a@) : B < p).

Now define in V' an algebra M* = (&, (Gap: a < X\, < p)) and use Pr(k) to
get I C k free for M*. Clearly it is forced that I be free for M in V7. O

3. BUILDING IRREDUNDANT SUBSETS

In this section we will define a combinatorial principle (%) and show that if (x)
holds then we get the desired conclusion about Boolean algebras. We will also
consider a limitation on the possibilities for generalising the result.

Definition 3.1 (The principle (x)). The principle (x) is the conjunction of the fol-
lowing two statements:

S1. For all infinite cardinals &, 2" is weakly inaccessible and
R<A<28 = 2% =2%,
S2. For all infinite cardinals &, Pr(2") holds.

Theorem 3.2. (x) implies that every infinite Boolean algebra B has an irredundant
subset A such that 2141 = 2IBI

Proof. Observe that a Boolean algebra can be regarded as an algebra with Ng
functions (just take the Boolean operations and close under composition).
Define a closed unbounded class of infinite cardinals by

C={p: 302° =y or puis strong limit }

There is a unique g € C such that p < |B| < 2#. By the assumption S1, 2# = 2/B,
so it will suffice to find a free subset of size u. Since p is infinite we can find By a
subalgebra of B with |By| = p, and it suffices to find a free subset of size p in By.
Case A: p = 2%, In this case u > w, and S2 implies that Pr(u) holds, so that By
has a free (irredundant) subset of cardinality u.
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Case B: p is strong limit. In this case Fact 1.8 implies that there is an irredundant
subset of cardinality u. O

At this point we could ask about the situation for more general algebras. Could
every algebra with countably many functions have a large free subset, or a large
number of subalgebras? There is a result of Shelah (see Chapter III of [9]) which
sheds some light on this question.

Fact 3.3. If k is inaccessible and not Mahlo (for example if & is the first inacces-

sible cardinal) then r -+ [k].

From this it follows immediately that if x is such a cardinal, then we can define
an algebra M on k with countably many functions such that |Sub(M)| = k.

In the next section we will prove that in the absence of inaccessibles some in-
formation about general algebras can be extracted from (x). The model of (x)
which we eventually construct will in fact contain some quite large cardinals; it will
be a set model of ZFC in which there is a proper class of cardinals « which are
Js(@)-supercompact.

4. GENERAL ALGEBRAS

In this section we prove that in the absence of inaccessible cardinals (x) implies
that certain algebras have a large number of subalgebras. By the remarks at the
end of the last section, it will follow that the restriction that no inaccessibles should
exist is essential.

Theorem 4.1. Suppose that (x) holds and there is no inaccessible cardinal. Let k
and X be infinite cardinals. If M = (M,F) is an algebra such that |M| = X and
|F| = k, and 2% < X, then Sub(M) has cardinality 2*.

Proof. Let M, k and X be as above. Define a class of infinite cardinals C' by
C={p: 302% = por uis singular strong limit. }

There are no inaccessible cardinals, so C' is closed and unbounded in the class of
ordinals.

Let u be the unique element of C' such that u < A < 2#, where we know that
1 exists because A > 2% and C is a closed unbounded class of ordinals. Since
28 <A< 2%, K < .

Now let N be a subalgebra of M of cardinality u; such a subalgebra can be
obtained by taking any subset of size p and closing it to get a subalgebra. S1
implies that 2* = 2#, so it suffices to show that the algebra ' = (N, F | N) has
2* subalgebras.

We distinguish two cases:

Case A: p is singular strong limit. In this case we may apply Fact 1.9 to conclude
that A/ has 2# subalgebras.

Case B: p = 27, Tt follows from S2 that Pr(u) is true, hence there is a free subset
of size pu for A. But now by Fact 1.7 we may generate 2* subalgebras.

This concludes the proof. O

For algebras with countably many functions the last result guarantees that there
are many subalgebras as long as |[M| > 2%0. In fact we can do slightly better here,
using a result from [1].

Fact 4.2. If C is a closed unbounded subset of [No]° then |C| > 2%0.
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Corollary 4.3. If (x) holds and there are no inaccessibles, then for every algebra
M with |M| > R, and countably many functions |Sub(M)| = 2/M.

Proof. If |M| > 2% we already have it. If Xy < |[M| < 2%0 then apply the theorem
we just quoted and the fact that 2/MI = 2%o, [l

5. HOW TO MAKE A MODEL OF (%).

In this section we sketch the argument of [2] and indicate how we modify it to get
a model in which (%) holds. We begin with a brief review of our conventions about
forcing. For us p < ¢ means that p is stronger than ¢, a forcing is A-closed if every
decreasing sequence of length less than A has a lower bound, a forcing is A-dense
if it adds no < A-sequence of ordinals, and Add(k, A) is the forcing for adding A
Cohen subsets of .

Foreman and Woodin begin the construction in [2] with a model V' in which &
is supercompact, and in which for each finite n they have arranged that 3, (k) is
weakly inaccessible and J,(x)<=»(*) = 1, (k). They force with a rather complex
forcing PP, and pass to a submodel of V' which is of the form VF™ for P™ a projection
of P.

P here is a kind of hybrid of Magidor’s forcing from [5] to violate the Singular
Cardinals Hypothesis at X, and Radin’s forcing from [8]. Just as in [5] the forcing
PP does too much damage to V and the desired model is an inner model of V¥, but
in the context of [2] it is necessary to be more explicit about the forcing for which
the inner model is a generic extension.

The following are the key properties of P™.

P1. £ is still inaccessible (and in fact is Js(k)-supercompact) in VF".

P2. P™ adds (among other things) a generic club of order type x in k. In what
follows we will assume that a generic G for P™ is given, and enumerate this
club in increasing order as (ko : @ < K).

P3. In V each cardinal k, reflects to some extent the properties of k. In particular
in V each k, is measurable, and for each n we have that J,(k,) is weakly
inaccessible and J,, (ko) <="(=) = 1, (ka).

P4. For each a, if p € P™ is a condition which determines £, and k441 then P™ [ p
(the suborder of conditions which refine p) factors as

]Poz X Add(:4(’€a)7 Iﬁla+1) X QC”

where

(a) Py is kE-c.c. if a is limit and Dy (kg)"-c.c. if a = B+ 1.

(b) All bounded subsets of 3 (k1) Which occur in VP7? have already ap-
peared in the extension by P, x Add(J4(ka), Kat1)-

Given all this it is routine to check that if we truncate V" at s then we obtain
a set model of ZFC in which GCH fails everywhere, and moreover exponentiation
follows the pattern of clause 1 in (x).

The reader should think of P™ as shooting a club of cardinals through s, and
doing a certain amount of work between each successive pair of cardinals. Things
have been arranged so that GCH will fail for a long region past each cardinal x, on
the club, so that what needs to be done is to blow up the powerset of a well-chosen
point in that region to have size kq41.
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For our purposes we need to change the construction of [2] slightly, by changing
the forcing which is done between the points of the generic club to blow up power-
sets. The reason for the change is that we are trying to get Pr(\) to hold whenever
A is of the form 27, and in general it will not be possible to arrange that Pr()\) is
preserved by forcing with Add(\, p).

The solution to this dilemma is to replace the Cohen forcing defined in V' by a
Cohen forcing defined in a well chosen inner model. We need to choose this inner
model to be small enough that Cohen forcing from that model preserves Pr(\), yet
large enough that it retains some degree of closure sufficient to make the arguments
of [2] go through. For technical reasons we will be adding subsets to J5(k, ), rather
than J4(kq) as in the case of [2].

To be more precise we will want to replace clauses P3 and P4 above by
P3*. For each n < 6 it is the case in V that s, is measurable, 3, (k) is weakly

inaccessible, and 3, (ko) <= (#e) = 1, (ks). Also Pr(3,(k.)) holds for each
such n.
For all possible (kq,kat1) there is a notion of forcing Add*(Js(kea), Kat1)
(which we will denote by R, in what follows) such that
(a) Ry is Jy(ka)-closed, y(kq)T-c.c. and Js (k4 )-dense.
(b) R, adds k41 subsets to Js(kq).
(c) In VRe the property Pr(3,(kq)) still holds ! for n < 6.
P4*. If p determines k, and K441 then P™ | p factors as
Po X Ry X Qu,
where
(a) P, is k%-c.c. if v is limit, and J5(kg)T-c.c. if @ = B+ 1.
(b) Ry = Add*(35(Ka), Kat+1) is as above.
(c) All bounded subsets of Js(ka1) in VP P are already in the extension
by Py X Ry .

We’ll show that given a model in which P1, P2, P3* and P4* hold we can

construct a model of ().

Lemma 5.1. Let G be generic for a modified version of P™ obeying P1, P2, P3*
and P4*. If we define Vi = V[G], then Vi is a model of ZFC in which (x) holds.

Proof. S1 is proved just as in [2].

It follows from our assumptions that in V; we have the following situation:

e 4 is strong limit if and only if 4 = k) for some limit A.

e Cardinal arithmetic follows the pattern that for n < 5

:n(lﬁla) S 6 < :n+1(/€a) —— 20 = :n+1(/€a)7
while
Js(ka) <O < kap1 = 2% = Koy

We need to show that for all infinite A\ we have Pr(2*). The proof divides into

two cases.

Case 1: 2 is of the form J,,(x,) where 1 < m < 5 and 7 is a limit ordinal. By the
factorisation properties in P4* above it will suffice to show that Pr(2*) holds
in the extension by P, x R,.

IThe hard work comes in the case n = 5, density guarantees that the property survives for
n < 5.
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Certainly Pr(2*) holds in the extension by R, because P3* says just that.
Also we have that ;7 < J;(ky) < 2*, and Py, is ;/-c.c. so that applying Fact
2.3 we get that Pr(2*) holds in the extension by P, x R,,.

Case 2: 2% is of the form J,,(k341) where 0 < m < 5. Again it suffices to show that
Pr(2*) holds in the extension by Pgy1 X Rgyq.

Pr(2)) holds in V®s+1 s (kg)t < kg1 < 2* and Pgyq is s (k)T -c.c. so
that as in the last case we can apply Fact 2.3 to get that Pr(2*) in the
extension by Pgy1 X Rgiq.

This concludes the proof. [l

6. THE PREPARATION FORCING

Most of the hard work in this paper comes in preparing the model over which
we intend (ultimately) to do our version of the construction from [2].

We’ll make use of Laver’s “indestructibility” theorem from [4] as a labour-saving
device. At a certain point below we will sketch a proof, since we need a little more
information than is contained in the statement.

Fact 6.1 (Laver). Let k be supercompact, let n < k. Then there is a k-c.c. and
n-directed closed forcing P, of cardinality x, such that in the extension by P the
supercompactness of k is indestructible under k-directed closed forcing.

Now we will describe how to prepare the model over which we will do Radin
forcing. Let us start with six supercompact cardinals enumerated in increasing
order as (k; : 4 < 6) in some initial model V5.

6.1. Step One. We'll force to make each of the k; indestructibly supercompact
under k;-directed closed forcing. To do this let S¢ € Vy be Laver’s forcing to
make kg indestructible under ko-directed closed forcing, and force with So. In VOSO
the cardinal k¢ is supercompact by construction, and the rest of the k; are still
supercompact because |Sp| = ko and supercompactness survives small forcing.

Now let §; € V3° be (as guaranteed by Fact 6.1) a forcing which makes &,
indestructible and is kq-directed closed. In VOSO*Sl we claim that all the k; are
supercompact and that both kg and x; are indestructible. The point for the in-
destructibility of kg is that if Q € VOSO*Sl is kg-directed closed then S; x Q is
ko-directed closed in VOSO, so that kg has been immunised against its ill effects and
is supercompact in VOSO*S”@.

Repeating in the obvious way, we make each of the k; indestructible. Let the
resulting model be called V.

6.2. Step Two. Now we will force over V' with a rather complicated ko-directed
closed forcing. Broadly speaking we will make ¢ have the properties that are
demanded of &, in P3* from the last section.

Of course kg will still be supercompact after this, and we will use a reflection
argument to show that we have many points in k¢ which are good candidates to
become points on the generic club.

To be more precise we are aiming to make a model W in which the following list
of properties holds:

K1. kg is supercompact.

K2. For each i < 5, 2% = k;41 and k;+1 is a weakly inaccessible cardinal with
<Kit1 __
Riv1 = Rt
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For any p1 > k5 there is a forcing Q,, C V), such that (if we define Q,, = Q, NV},
for n with ks <n < )

K3. |Q,| =n<"s, Q, is ks-directed closed, k5-dense and & -c.c.

K4. In W, 2% > 5 and Pr(k;) holds for i < 6.

K5. If n < ¢ < p then Q, is a complete suborder of Q.

For each i < 5 let P; be the Cohen conditions (as computed by V') for adding
Kit1 subsets of ;. We will abbreviate this by P; = Add(k;, ki1)v. Let P;; =
[Ticne; B

Let Vi = V[Py3]. In Vi we know that 2% = ;4 for i < 4, and that ;s is still
supercompact since |Pg 3| = k4. In V; define a forcing as in Fact 6.1 for making x5
indestructible. More precisely choose R € V; such that

e In V;, R is k5-c.c. and ﬁf’o—directed closed with cardinality k5.

e InV; []R] the supercompactness of k5 is indestructible under ks-directed closed

forcing.

Let Vo = Vi[R]. Define Q, = Add(ks, pt)v,, and observe that for every n Q, =
Add(ks,n)v,. This is really the key point in the construction, to choose Q, in
exactly the right inner model (see our remarks in the last section just before the
definition of P3*).

Finally let W =V, []P4], where we stress that P4 is Cohen forcing as computed
inV.

We’ll prove that we have the required list of facts in W.

K1. kg is supercompact.
Proof. Clearly Py 3 * R is ko-directed closed in V. P4 is k4-directed closed in
V so is still kp-directed closed in Vs, hence Py 3 * R * P4 is xo-directed closed

in V. By the indestructibility of k¢ in V, k¢ is supercompact in W. O
K2. For each i < 5, 2% = k;41 and k;41 is a weakly inaccessible cardinal with
’%<+Nf“ = Kit1-

Proof. In Vi we have this for ¢ < 4. P4 is k4-closed and nj—c.c. in V, Py 3 is
ki -c.c. even in V[]m] so by the usual arguments with Easton’s lemma P4 is
k4-dense and ni—c.c. in Vi. Ris niso—closed in Vi so that P4 is k4-dense and
ni—c.c. in V5. Moreover, by the closure of R we still have the claim for 7 < 4
in V2. ks is inaccessible (indeed supercompact) in V5 so that after forcing
with P4 we have the claim for ¢ < 5. O
Recall that Q, = Add(ks,n)vs.
K3. |Q,| =n<"s, Q, is ks-directed closed, k5-dense and &} -c.c.
Proof. The cardinality statement is clear. Q, is xs-directed closed in V5, so
that (by what we proved about the properties of P4 in V5 during the proof of
K2) Q, is ka-directed closed and ks-dense in W. Since Q, is k5-closed in V5,
Py is ni—c.c. in Vg[@n] Q, is ngL—c.c. in V5 so that Q, x Py is ngL—c.c. in Vs,
so that finally Q, is k7 -c.c. in W. O
K4. In W@ 2% > p and Pr(;) holds for i < 6.
Proof. Easily 275 > n. We break up the rest of the proof into a series of
claims.

Claim . For i < 4, Pr(k;) holds in W[Q,].

Proof. k; is supercompact in V[Pi,g], because P; 3 is k;-directed closed. Py ;_1
has k] ,-c.c. in that model so that Pr(s;) holds in V;. Also we know that
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W[Q,] = Vi[R][P4][Q,] is an extension of Vi by k4-dense forcing, so Pr(x;)
is still true in W[Q,]. O

Claim . Pr(k4) holds in W[Q,].

Proof. W = Va[P,] = V[P 4][R]. Arguing as in the previous claim, Pr(k4)
holds in V[Pg 4]. Py is ni‘—c.c. inV; soRis /ﬁi‘—dense in V [Py 4],hence Pr(k4)
holds in W. Finally Q, is x5-dense in W, so Pr(k4) holds in W[Q,]. O

Claim . Pr(ks) holds in W[Q,].

Proof. W[Q,] = Va[P4][Q,] = V2[Q,][P4]. As Q, is rs-directed closed in V3,
K5 is supercompact in V3[Q,]. Py is k] -c.c. in V5[Q,], so that Pr(k4) is still

true in W[Q,]- O
This finishes the proof of K4. O

K5. If n < ¢ < p then Q, is a complete suborder of Q.
Proof. This is immediate by the uniform definition of Cohen forcing. O

We finish this section by proving that in W we can find a highly supercompact
embedding 7 : W — M with critical point kg such that in M the cardinal kg has
some properties resembling K1-K5 above. The point is that there will be many
a < kg which have these properties in W, and eventually we’ll ensure that every
candidate to be on the generic club added by the Radin forcing has those properties.

For the rest of this section we will work in the model W unless otherwise specified.

Definition 6.2. A pair of cardinals (o, k) is sweet iff (setting o, = 3, ()
1. o is measurable.
2. For each i < 6, a; is weakly inaccessible and af“i = .
There is a forcing Qf C V,; such that (setting Q = QF N'V})
3.|Q2| =<, Q) is as-directed closed, as-dense and of -c.c.
4. In the generic extension by Qf, 2% > n and Pr(a;) holds for i < 6.
5. If n < ¢ <k then Qf is a complete suborder of Qf .

Theorem 6.3. Let A = Jso(ks). In W there is an embedding j : W — M such
that crit(j) = ko, *M C M, and in the model M the pair (ko,j(ko)) is sweet.

Proof. Recall that we started this section with a model Vj, and forced with some
So to make kg indestructible. Let S be the forcing that we do over VOSO to get to the
model V5, and recall that we force over Vo with P4 to get W. S % P4 is kg-directed
closed in V.

Fix a cardinal p much larger than A, such that y<* = u. Asin [4], fix in V5 an
embedding jo : Vo — N such that

L. crit(jo) = Ko, p < Jo(ko)-

2. Vo E*N CN.

3. jo(So) = So* S * Py x R, where R is pu*-closed in NSo*5*Ps,
Let G be Sqp-generic over Vp, let g1 * go be S % Py-generic over Vp[Go]. Let W =
Vo[Gol[g1][g2] and let N+ = N[Go][g1][g2]-

Now Nt is closed under p-sequences in W so that the factor forcing R is ut-
closed in W. Let H be R-generic over W, then it is easy to see that jo lifts to

jl : ‘/E)[Go] — N+[H]
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FIGURE 1. Factorisation of js.

Now we know that j; | S*Py € N[Go], and g1 x go € NT[H], so that j[g1 * go] €
N*[H]. By the directed closure of j(S * P4) in NT[H] we can find a “master
condition” p (a lower bound in j(S * P4) for j[g1 * ¢g2]) and then force over W[H]
with j(S «[P4) | p to get a generic X and an embedding

j2 1 W — N* = NT[H][X].

Of course this embedding is not in W but a certain approximation is. Observe
that R * j(S % P4) is u*-closed in W. Now factor j; through the ultrapower by

U={ACPwu : jlu € j2(A) },
to get a commutative triangle as in Figure 1.

By the closure U € W, so j is an internal ultrapower map. It witnesses the
p-supercompactness of kg in the model W, because (as can easily be checked) U is
a fine normal measure on Py pu.

It remains to check that (ko,j(x0)) is sweet in M. We’ll actually check that
(Ko, j2(k0)) is sweet in N*, this suffices because crit(k) > p > ko.

Clauses 1 and 2 are immediate by the closure of M inside the model W. Now
to witness sweetness let us set

@ o) = Add(ks, G2 (K0))va Gollg:] = Add(Ks, j2(Ko)) Nicolign]-

Clause 3 is true in N by the same arguments that we used for W above. N* is
an extension of N* by highly closed forcing so that Clause 3 is still true in N*.
Clause 5 is easy so we are left with Clause 4.

Let h be Q)°-generic over N* for Q)°. Then h is generic over N7T. By the
chain condition of (° and the closure of N Tin W, W and NT see the same set
of antichains for Q. Hence h is Q°-generic over W, and we showed that Pr(;)
holds in W[h]. But then by closure again Pr(k;) holds in N*[h], by Easton’s lemma
H % X is generic over NT[h] for highly dense forcing so that finally Pr(x;) holds in
N*[h]. O

7. THE FINAL MODEL

In this section we will indicate how to modify the construction of [2], so as to
force over the model W obtained in the last section and produce a model of (x). The
modification that we are making is so minor that it seems pointless to reproduce
the long and complicated definitions of PP and P™ from [2]; in this section we just
give a sketch of what is going on in [2], an indication of how the construction there
is to be modified, and then some hints to the diligent reader as to how the proofs
in [2] can be changed to work for our modified forcing.

As we mentioned in Section 5, the construction of [2] involves building a forcing
P and then defining a projection P™; the idea is that the analysis of P provides in-
formation which shows that P™ does not too much damage to the cardinal structure
of the ground model. We start by giving a sketchy account of P™ as constructed in
[2].

Recall the the aim of P™ is to add a sequence {(kq, Fu) : @ < k) such that:

1. R enumerates a closed unbounded subset of .

2. F, is Add(J4(kqa), Katr1)-generic over V.

3. In the generic extension, cardinals are preserved and & is still inaccessible.
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A condition will prescribe finitely many of the k., and for each k. that it pre-
scribes it will give some information about F; it will also place some constraint
on the possibilities for adding in new values of x, and for giving information about
the corresponding F,. The idea goes back to Prikry forcing, where a condition
prescribes an initial segment of the generic w-sequence and puts constraint on the
possibilities for adding further points.

To be more specific P™ is built from a pair (@, F) where w(0) = £ and w(a) is
a measure on Vj for @ > 0. w(a) will concentrate on pairs (@, 1) that resemble
(@ | o, F | «); in particular if we let Kz =g4ey u(0), Kz will be a cardinal that
resembles k. F(a) will be an ultrafilter on a Boolean algebra Q(, ), which consists
of functions f such that dom(f) € w() and f(@, k) € RO(Add(Js(r3),K)), with
the operations defined pointwise.

Conditions in P™ will have the form

—

((ido, ko, Ao, fo,50), - , (i1, kn1, A1, a1, 801), (0, F, B, §)
where

1. (@, k;) € Vi, Kig < - Ki,_, < K.

2. dom(f;()) = A;(a) € ui(a), dom(g(a)) = B(a) € w(a).

3. fi(a) € ki(a), g(a) € F(a).

4. s5; € Add(Qy(ku,),uip1) for i <n—1, sp—1 € Add(Dy(ku,_,), k).

The aim of this condition is to force that the cardinals ,,, are on the generic club,
and that the conditions s; are in the corresponding generics. It is also intended to
force that if we add in a new cardinal o and Add condition s between &, and k.,
then there is a pair (#, 1) in some A;1(3) such that a = kg and s < kiy1(8)(7, h).
This motivates the ordering (which we do not spell out in detail here); a condition
is refined either by refining the “constraint parts” or by adding in new quintuples
that obey the current constraints and which impose constraints compatible with
the current ones.

The key fact about P™ is that given a condition p, any question about the generic
extension can be decided by refining the constraint parts of p (this is modelled on
Prikry’s well-known lemma about Prikry forcing). It will follow from this that
bounded subsets of k are derived from initial segments of the generic as in P4 b)
from Section 5, which in turn will imply that P™ has the desired effect of causing
the GCH to fail everywhere below k. It remains to be seen that forcing with P™
preserves the large cardinal character of k; this is done via a master condition
argument which succeeds because W is quite long (it has a so-called repeat point)
and the forcing Add(34(N\), 1) is g(N)-directed-closed.

We can now describe how we modify the construction of [2]. To bring our
notation more into line with [2], let Kk = ko, let V.= W, let j : V — M be
the embedding constructed at the end of the last section. For each a < &k such
that (a, k) is sweet let us fix (Qf : 1 < k) witnessing this. Our modification of [2] is

simply to restrict attention to those pairs (i, k) such that (kg, k) is sweet (there are
sufficiently many because (k,j(k)) is sweet in M) and then to replace the forcing
Add(34(kg), k) by the forcing QF7. It turns out that the proofs in [2] go through
essentially unaltered, because they only make appeal to rather general properties
(chain condition, distributivity, directed closure) of Cohen forcing.

There is one slightly subtle point, which is that is we will need a certain unifor-
mity in the dependence of Q) on 7, as expressed by the equation Q) = Qz‘ nv,.
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The real point of this is that when we consider a condition in j(PP™) which puts onto
the generic club a point a < & followed by the point &, the forcing which is hap-
pening between « and & is j(Q)¢; it will be crucial that j(Q)% = j(Q¥) NV, = QY,
that is the same forcing that would be used in P™ between a and k.

We conclude this section with a short discussion of the necessary changes in the
proofs. We assume that the reader has a copy of [2] to hand; all references below
are to theorem and section numbers from that paper.

Section Three: We will use j : V. —» M to construct the master sequence (M, §).
Recall that we chose j to witness Jso(k5)-supercompactness of ko, it can be checked
that this is enough to make all the arguments below go through.

When we build (M, §) we will choose each g, so that dom(g,) contains only
(i, k) with (kg, k) sweet, and then let g (@, k) € Qf7. Asin [2],if jo : V — N, is
the ultrapower by M, then W |= ®*3s N, C N,. If we let F be the function given by

F : (i, h) — Qi

then [F]yz, is k4-closed in N,, hence is x5 -closed in V.
This closure will suffice to make appropriate versions of 3.3, 3.4 and 3.5 go
through.

Section Four: 4.1 is just as in [2]. A version of 4.2 goes through because Qf¢* C V.

Section Five: In the definition of “suitable quintuple” we demand that ks(b) € Q
and s € Q.

The definition of “addability” is unchanged. Clauses d) and e) of that definition
still make sense because (e.g.) Qf* is a complete suborder of Q= .

Versions of 5.1 and 5.2 go through without change.

In the definition of “condition in P” we demand that ks(b) € Qi , s € Q::H .
The ordering on P is as before.

The definitions of “canonical representatives” and of “upper and lower parts”
are unchanged, as is 5.3.

We can do a “local” version of our argument for 3.3 above to show 5.4 goes
through. Similarly 5.5, 5.6 and 5.8 go through.

Section Six: We need to make the obvious changes in the definitions of “suitable
quintuple” and of the projected forcing P™. The proofs all go through because the
forcing Q) has the right chain condition and closure.

Section Seven: The master condition argument of this section goes through because
the forcing notion j(a — Q%)(k) is ks-directed closed.

8. CONCLUSION

Putting together the results of the preceding sections we get the following result.

Theorem 8.1 (Main Theorem). If Con(ZFC + GCH + sixz supercompact cardi-
nals) then Con(ZFC + every infinite Boolean algebra B has an irredundant subset
A such that 2141 = 2181,

Shelah has shown that the conclusion of this consistency result implies the failure
of weak square, and therefore needs a substantial large cardinal hypothesis.
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