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Abstract

We analyse the Mitchell ordering in a model where s is Pok-
hypermeasurable and 22" > (2%)*.
1 Introduction and preliminaries

The Mitchell ordering on normal measures was introduced by Mitchell [7], in
his work on inner models for cardinals carrying many measures.

Definition 1: Let x be measurable, let Uy and U; be normal measures on a
cardinal k. Then Uy < Uy if and only if Uy € Ult(V,U;), the ultrapower of

The following facts are standard.

e < is transitive.

e < is well-founded.



e < is strict.

e An ultrafilter has at most 2" ancestors in the ordering <.

We make the remark that there are certain limitations on the partial
ordering <; there can be at most 22" normal measures on x, and the ordering
can have height at most (2")*.

If x is supercompact then it is shown in [9] that these maximal values are
achieved; in fact a much weaker hypothesis on & will suffice [10].

Theorem 1 (Solovay): Let j : V — M be an elementary embedding
where x = crit(j) and Vo C M, *M C M. Then for every X € V, ;5 there
is a normal measure U on « such that X € Ult(V,U).

Proof: An easy adaptation of the proof in [9].
¢

A Pyk-hypermeasurable cardinal is one which satisfies the hypothesis of
this theorem.
We spell out the consequences for the Mitchell ordering.

1. Observe that |V, o NUIL(V,U)| = 2%, since any element of V, .o in
Ult(V,U) is represented by a function from x to V. Since 22" > 2%,
there must be 22" normal measures U.

2. Any 2" measures may be coded by an element of V, 5. So any family of
2" measures has a upper bound in the Mitchell ordering. In particular
the height of the ordering has its maximal value, namely (2%).

Using inner model theory (of which more anon) we may get models where
GCH holds, and the Mitchell ordering at x is linear of ordertype x**. On
the other hand if x is a Pyk-hypermeasurable cardinal) and 22" > (2%)" then
the ordering is necessarily non-linear; in this paper we explore the ordering
in a particular model where these circumstances prevail, and prove a result
(theorem 13) which goes some way towards characterising it.

We have taken a fairly digressive approach to the proof. Some arguments
needed here are so similar to those of [3] that we have just sketched them
here.



2 Inner model theory

We sketch what we need from the theory of inner models for large cardinals
below a strong cardinal. The reader is referred to [8] and [5] for more details.
The theory is due to Mitchell, Jensen, Dodd and Koepke.

Definition 2: E is a (coherent, non-overlapping) extender sequence if E is
a function with dom(F) C On x On such that

1. There is some function o : On — On such that o(a) > a+ 1 and
dom(E) = { (k,\) | k < X < o(k) }.

2. If (k,A\) € dom(E) then E(k, \) is a (k, \)-extender.

3. (coherence) Let < be the lexicographic order on On x On, so that

(HU,)\U) < (’{1;)\1) < (/ﬁ}() < Hl) V (Ii[) =K1 N\ )\0 < )\1)

—

If (k,\) € dom(E) and E = E(k, \) then
o j5(0)() = X, ju(o) [k =0 I K.
o If (v, B) < (k, ) then E(a, 8) = jg(E)(a, B).
4. (non-overlap) If kg < k1 and o(k1) > k1 + 1 then o(ky) < Ky.
The ideology of inner mﬁodel theory is roughly this; if k is a large cardinal
in V, then we can build E reflecting this, and L[E] is a well-behaved “L-

like” model in which « is still large. As a more concrete example, let x be
Pyk-hypermeasurable. Then it may be shown that

1. There is an extender sequence E such that o(k) > &'

2. In L[E], the embedding associated with the extender E(x, xt1) wit-
nesses that k is Pok-hypermeasurable.

3. L[E] is a model of GCH, has a AL wellorder of the reals, and has a
reasonable fine-structure theory.



The key to the good properties of L[E] is the Comparison Lemma.

Lemma 1 (Comparison): If (M, F) and (N,G) are such that

M F F'is an extender sequence

N FE @G is an extender sequence

and M and N are sufficiently iterable, then we may compare the models M
and N. That is, we may iterate M by F and N by G so as to get (M*, F*)
and (N*, é*), such that one of the sequences F*, G* is an initial segment of
the other as far as sets in M* N N* are concerned.

For the benefit of the reader, we collect some information about L[E],
with (very sketchy) proofs. The theory of L[E] was worked out by Mitchell
in [8], using the language of “hypermeasures”; here we just translate into the
language of extenders. Assume till the end of this section that V = L[E],
where E is an arbitrary extender sequence whose domain is a set.

Lemma 2 (Uniqueness): E(k,)) is the only (k, A)-extender which has the
“coherence” properties demanded in clause 3 of definition 2.

Proof:[Sketch| Let E be a minimal counterexample, in the sense that no
proper initial segment of E falsifies the lemma. Let (k, ) be the first place
on E where the lemma is false.

Let F be an extender differing from E(x, \), but having the same coher-
ence property. Compare the ultrapowers Ult(V, F') and Ult(V, E(/{, A)), and



argue as in [7] that they iterate to a common model N and that the diagram

N

ULt(V, E(k, \)) Ult(V, F)

v

commutes, where k and [ are the maps from the comparison iteration.

Since F' has the coherence property, the least point of disagreement be-
tween the extender sequences of the two ultrapowers is greater than A, so
that £ and [ have critical points greater than A. Using this, we may argue
that in fact F = E(k, A).

Lemma 3 (Condensation): For f some large regular cardinal, let X < Hy
be a structure with V.1 C X and F € X. Let X collapse to M and let £
collapse to F'. Then for all n < o (k) we have F'(x,n) = E(k,n).

Proof: V and M agree to rank x + 1, and below critical point x their
sequences agree. Use this to argue (by induction on 7) that F(x,n) is an
extender with the same coherence properties as E (k, 1), so that by uniqueness
the two are equal.

¢

Lemma 4: GCH holds.



Proof: By induction on the cardinal A\. Suppose we have established GCH
for cardinals less than A, and notice that |H,| = A\. Now there are two cases.

1. For all @ < X\ we have o(a) < A™.

Then any subset of A can be built into an iterable M O H) of cardinality
A, whose extender sequence agrees with E at critical points less than
A. If two such models M and N are compared then the iterations on
each side fix the powerset of A, hence one of PAN M and PAN N is a
subset of the other. So the powerset of A is the union of a chain of sets
each of cardinality A, so 2* = AT,

2. For some oo < A\ we have o(a) > A%,
We claim that if A C X, then A € Ult(V, E(a, 8)) for some f < A*.
To see this, let us build A into X < 6 (0 large and regular) such that
Hy, C X, E € X, |X| =\ Collapsing we get an iterable M = L,[F]
where F agrees with F at critical points below «, and (by condensation)

F is an initial segment of E at critical point . Let 8 = o' (), then
A< B < AT,

Now compare M and Ult(V, E(a, (3)). Let the iteration maps be
i M — M*
j oo UV, E(a,8)) — N

Both have critical points greater than A. It may be argued that AM*
is an initial segment of N, for otherwise we could iterate M* to get
indiscernibles for NV, and hence for V. M can be recovered from M* so
M € N, then by agreement M € Ult(V, E(a, 3)).

This proves the claim. Now we are done, because in Ult(V,E(a,ﬂ))
there are at worst 2.\ = A subsets of \.

¢

The claim in case 2 of the last proof is also the key to the hypermeasur-
ability of k in L[E].



Lemma 5: Let o(k) > k7. Let E = E(k,kt*). Let jg: V — M be the
ultrapower by E. Then V., C M.

Proof: By GCH, it is enough to show Px™ C M. If A C k*, the claim from
the last lemma shows that for some § < k™t we have A € Ult(V, E(x, ()).
By coherence E(k, ) = j(E)(x, ), and we also have that Ult(V, E(x, (3))
and Ult(M, E(k, 8)) agree to a high rank. So A € Ult(M, E(x, 8)) C M

¢

3 Core models

We look briefly at the theory of (non-overlapping) core models, which was
developed in tandem with the inner model theory of the last chapter by the
same authors (Mitchell, Jensen, Dodd, Koepke). The reader is referred to
[5] for details. Our goal is to show that if V = L[E] then the construction
of the core model and maximal sequence as in [5] will recover V' and E.
Combined with some facts about core models, this will let us do an analysis of
elementary embeddings (in particular ultrapower maps) definable in certain
generic extensions of L[E].

The reader who is prepared to take our use of core models on trust should
skip ahead to the results at the end of the section, which are all that will be
used subsequently.

Claim 1: If V = L[E], then there is no inner model of a strong cardinal.

Proof: [Sketch] If there is such an inner model, then there is an inner model
of the form L[F], where F is a sequence with similar properties to those in
definition 2, but such that for some r we have of (k) = co. That is to say, k
is the largest critical point on F and F has (s, \)-extenders for A arbitrarily
large.

It can be shown that the comparison of this model with V' will terminate.
This must lead to a situation in which an iterate M of V is a proper ] initial
segment of an iterate N of L[F] because the extender sequence E does
not have unboundedly large extenders on any critical point. But were this



situation to arise, we could iterate N to generate indiscernibles for M, so that
V' would be able to compute a set of indiscernibles for V. Contradiction.

—

Theorem 2: Let V = L[E]. If we perform the construction of the canonical
maximal sequence F' and core model K[F| as in [5] then F = F and K = V.

Proof:
It is enough to show that F' = FE, for then

VOK=K[F]DL[F|=V.

We will proceed by induction. Suppose that (k,v) € dom(E) and we
have established that

—

E| (k,v)=F | (k,v).
Claim 2: Px C K[F | (k,v)).

To see this let X C k. Then X € Ult(V, E(k,v)), and this shows that
X is in the lower part of an iterable premouse over F | (k,v) = F | (k,v).
Hence X € K[F | (k,v)] as claimed.

—

The model K[F | (k,v)] agrees with V' to rank x + 1, their extender
sequences are the same, so by the Uniqueness Lemma we are forced to choose

— —

F(k,v) = E(k,v).

To complete an inductive proof that F = E we need to show that the con-
struction of F' cannot go wrong in either of the following ways; by putting an
extender at (k, 0" (k)), or by putting an extender on a critical point between
% and the next A with o®()\) > A + 1.

Claim 3: If v = o() then there is no (k, v)-extender in L[E] which coheres
E | (k,v).

The proof of the claim is very similar to that of the Uniqueness Lemma. If
it fails, let E' be a minimal counterexample. Let E be the first (k, v) extender



providing a counterexample, and compare the models V' and Ult(V, E). We
get a diagram

N

v Ult(V, E)

which commutes exactly as in the Uniqueness Lemma. But this cannot be
because V' and Ult(V, FE) agree to such an extent that the comparison maps
have critical point larger than x, while the map from V to Ult(V, E) has
critical point k.

It follows from this that ' cannot put an extender at (k,0%(x)). The
point is that V agrees with K[F | (k, oﬁ(n))] to rank k + 1, the extender
sequences agree, so that such an extender would be a counterexample to the
previous claim.

The last ingredient in the proof that F = E is the following claim.

—

Claim 4: If v = 0%(k) then there does not exist an extender E € L[E]
which coheres E | (k,v) and has critical point between x and the next A
with of(\) > X + 1.

The proof is very similar to that of the last claim. Assume that E is
a minimal counterexample, with F the first extender witnessing this. Co-
iterate as in the previous lemma, to get a commutative triangle exactly as
before. Again there is a problem with critical points.

The proof is now routine, an induction on dom(E) shows that we have
dom(F') = dom(F) and F = E. Hence V = L[E] = K[F] and we are done.

¢

We now recall some results about the non-overlapping core model, which
are true under the assumption there is no inner model of a strong cardinal.



Fact 1: Let F be the canonical maximal sequence, and K[ﬁ] the associated
core model.

1. If 7 : K[F] — W is an elementary embedding into a transitive class
W then W is a normal iteration of K[F| by F.

2. If G is set-generic, then F' and K[F] as defined in V[G] coincide with
F and K[F] as defined in V.

Putting everything together, we can finally get the result that we need to
analyse measures in generic extensions of L[E].

Theorem 3: Let V = L[E], where E is an extender sequence. Let G be set-
generic over V and let U € V[G] be some normal measure on some cardinal
k. If ju : VIG] — Ult(V[G],U) is the ultrapower map associated with U,
then jy [V : V — jy(V) is a normal iteration of V' by E.

Proof: The core of V[G] equals the core of V equals V.

4 The model

Theorem 4: Let GCH hold, and let j : V' — M be such that V,,3 C M,
where k = crit(j). Suppose ! that j is generated by a (k, K™+ T)-extender.
Let P be the Reverse Easton iteration of length k41 in which we force with
Add(a, at)x Add(a™, a™*T) (as defined in V[G,]) at each strong inaccessible
a < k. Let G be P-generic over V.
Then in the generic extension k is Pyk-hypermeasurable, and we have
2% = it and 28 = kT

Proof: We will use a number of forcing tricks without much explanation;
the reader is referred to [2] for the details, and to [1] for general information
about Reverse Easton forcing. Several similar arguments may also be found
in [3] and [4].

'If such a j exists, then there is such a j which arises from such an extender.

10



We follow the standard strategy of building in V'[G] an embedding which
extends j, and which witnesses that x has the desired property in V[G].

We shall adopt the convention that Add(c, 3) adds  generic functions
from a to a. Often we think of the generic object as a single function from
a x 3 to a.

We let GG, denote the generic object for the forcing up to stage a, and
go the generic for the forcing at stage a. We break up g, as g2 x gl
where ¢2 is generic for Add(a,a™) and gl is generic for Add(a™,a™tT).
So G=G.*g.=G*xg°xgl.

As an aid to constructing generic objects, we factor j through the ultra-
power by a normal measure in the standard way. This gives a diagram

j

V M

where as usual U = { X C k| k € j(X) }, i is the ultrapower map from V/
to My =Ult(V,U), and k : [Fly — j(F) (k).
Let A = (k7). We note for later use that
M = {j(F)(a)|F € V.dom(F) =[x]*,a €[]}
= {k(G)b) | G € My, dom(G) = [\]™,a € ["77]™ }

As usual, in V[G,] the models M[G,] and My[G,] are closed under x-
sequences. As a corollary we may use g, as the generic at stage x in the
iteration j(P). In i(P) we may use

gr = g2 x (g [ KT x A).

11



In My[G,] we define a certain term poset. The terms are names in the
forcing Add(k, k") x Add(k™, \) for elements of the forcing

Rn+1,i(n) * Add(Z(H)J Z('L{F)))

By the standard chain condition and closure arguments we may find X € V[G,]
generic for this term forcing. k£ : My — M extends easily to a map
k: My|Gx] — M[G], and we may transfer X along k to get a generic X+

for the term forcing whose elements are names in Add(x, k™) x Add(k™, k™1T)
for elements of Ry1 j(x) * Add(j(k),j(kT))).
Now we interpret this term generic using g.. This leaves us with

H xa € V[G][gx]

which is generic over M[G|[gx] for R.i1 ) * Add(j(k),j(k))). It is now
easy to build a map

j VI[Gs] — M[Gy][g][H].

Now we alter a to get a new generic a* such that j“¢° C a*. This works
because M[G][gx] is closed under k-sequences inside V[G,][gx], and we only
need alter any one condition at x many places.

This enables us to build

7 VIGilge] — M[G\]lge][H][a"].

Now we may finish by transferring g! along j, which is legitimate because g}
is generic over V[G,][gY] for k™-dense forcing. This gives an embedding

VG — M[j(G)]

defined in VI]G].

As the cardinal arithmetic claim is trivial, we need only verify that this
embedding witnesses Pyr-hypermeasurability. As 2° = k7 it suffices to check
that

PrtNVIG] € M[j(G)].

But Pkt N V[G] € MI|G] by a standard chain condition argument, and
M[G] € M[j(G)] by construction.

12



5 Building measures

In this section we show how to construct measures in the generic extension.
The methods used here are very similar to those of [3].

Theorem 5: Let i : V' — N be an elementary embedding such that
1. Kk = crit(q).
2. i(kT) < kKT,
3. N ={i(f)(a) | f €V, dom(f) =[r]* a € [i(r)]~ }.
4. *N C N.

Let P be the forcing iteration defined in the last section, and let G be P-
generic.

Then in V[G] there are x™** ultrafilters U with the property that the
ultrapower map jy : V[G] — Ult(V[G],U) is an extension of i.

Proof:

Let G, 9a, g be as in the proof of theorem 4. The iterations P and
i(P) agree up to k, and V[G.] F *N[G,] C N[G.]. At k, the iteration i(P)
requires a generic over N[G,] for

Q = Add(k, k") x Add(k™,n)

where n = (k1) y, and by closure we can see ) as an initial segment of the
forcing which P does at k.

Claim 5: In V[G] there are exactly k™1 generics h for @ over N[G,] with
the property that

VIG] E "N[G,][h] € N{G,][h].

Proof: Q has cardinality xt and 2°7 = k™ in V]G], so there are at most
kT*T such generics. We know that (in ordinal arithmetic) k**+ = .ttt
so we can break up ¢! into blocks of length 7; let hl be the o’th block. It is
easily checked that h = ¢° x hl is generic (by Easton’s lemma) and has the
desired property (as all s-sequences from V[G] are actually in V[g,][g°]).

13



The claim is proved

¢

Now fix a generic h as above. Using the closure of N[G,][h] in V[G], we
may prove by the standard methods the following claim.

Claim 6: In V[G] there are exactly ™+ generics H for the forcing R, 1 ;(x)
over the model N[G,][h].

The key point here is that i(x) has cardinality ™, so that we may enumer-
ate the dense sets we must meet in order type «*; the closure hypothesis then
enables us to meet them, and we have so much latitude in the construction
that we may do it in 2¢7 = x+++ different ways.

Fix such an H. It is easy to extend 7 to an embedding

i : V]G] — N[G,][h][H).
Notice also that V[G] E “N[G,][h][H] C N[G,][h][H].

Claim 7: In V|G| there are exactly k1 generics a for the notion of forcing
Add(i(k),i(k™)) over the model N|[G,][h][H], with the following properties.

1. i“g? Ca.

2. Let 1 : V[G.][¢°] — NJ[G,][h][H][a] be the natural extension of i.
Then for each 8 < i(k) there is g : kK — & in V[G,][¢°] such that

i(g)(r) = 5.

Proof: Just as in the construction of H above, we may use closure to build
many generics a, using the fact that i(k™) < k**. We shall now describe
how to alter such a generic a so as to get the properties demanded.

Fix an enumeration of i(x) in order type [, say (f(5): 3 < k™). Now
define a* by altering a on the set (k + 1) x i“<™, while leaving it unchanged
elsewhere. For all 3 < k™ let

a* (e, i(B)) = gg(a, B)

if a < K, and
a*(k,i(B)) = f(B).

14



a* gives rise to a generic filter; the key points are that each condition need
only be altered at x many places, and that the forcing is so highly closed that
small perturbations do not kill genericity. We identify a* with the associated
filter.

It is clear from the construction that i“g? C a*, so that as usual we may
build

i : VIGllge] — NIG][h[H][a"].

To see that a* has the other property demanded of it, define g5 € V[G,][¢°]
by gs(ar) = gl(e, B). Now i(gs)(r) = a*(k,i(8)) = f(B).

It is easy to check that we may do this construction in x™** many ways.
The claim is proved.

¢

Fix a as in the previous claim. It is now routine to transfer g along i, to
get at last a map

i : V]G] — NI[G.][h][H][d][i(g,)]-
We will be done once we have the following claim.

Claim 8: The map i : V[G] — NI[G,][h]|[H][a][i(gl)] arises as the ultra-
power map associated with an ultrafilter U. Moreover, different ultrafilters
arise from different choices for (h, H, a).

Proof: It is easy to see that
NG Jn[H]alli(g,)] = { i(f)(a) | f € VIG],a € [i(r)]** }.
Each 8 < i(x) has form i(g)(x) for some g € V]G], so actually
N(G.Jn[H]alli(gx)] = { i(f)(x) | f € V[G],dom(f) = & }.

It follows that ¢ arises from an ultrafilter U. For the other claim, simply
notice that we can rebuild (h, H, a) from U in V[G] because

Gn*h*H*a:jU(GK*gg).

15



The theorem is proved.

¢

For our later convenience, we introduce some notation for the ultrafilters
that arise in this way. Let V and G be as in the last result.

Definition 3: In V[G], suppose that
1. i: V — N is an embedding with crit(:) = &.
2. his a generic over V[G,] for @, and V[G] E "N[G][h] C N|[G,][h].
3. H is generic over N|[G,][h] for R.
4. a is generic over N[G,|[h][H] for Add(i(k, k")) and i“g? C a.

5. The unique map
i : VIG] — NI[G.][h][H]a]li(g})]

extending i : V' — N and having i(G) = G, * h * H x a x i(g}) is the
ultrapower by a normal measure.

Then U (i, h, H * a) is the normal measure alluded to in the last clause.

6 Closure

In the construction of theorem 5 for generating ultrafilters, it was crucial
that the target model of the embedding 7 be closed under k-sequences, where
k = crit(z). In this section we prove some results about the closure of the
target model of an elementary embedding. We then prove a theorem which
says essentially that we need not worry about embeddings with bad closure,
when we come to classifying the measures on x in our final model.

—

Theorem 6: Let V = L[E], where E is an extender sequence. Suppose & is
such that (k, k%) € dom(FE). Then there are many n < k** such that the
ultrapower of V' by E(k,n) is not closed under w-sequences.

16



Proof: Let E = E(k,x™"). Since V4o C Ult(V,E) and GCH holds, we
have that for every § < k™"

E | [8]% € Ul(V, B).

Fix some large . We build a chain (X, : @ < k™) of elementary sub-
structures X, < Hy with the properties

1. Bk, k7" € X,.

2. Vi1 € X,

3. Xo € Xy for all a, Xy = Ugep X for limit A
4. | X,| = kT for all a.

5. X, NkTt e gt

6. XoNK™t < Xopr Nt for all a.

Now let n, = X, N k™", If X, is collapsed to a transitive structure M,,
then k™ collapses to 17, = (k77)ar, . What is more the Condensation Lemma
implies that E collapses to By = E(k, 17,).

By elementarity,

M, EVYSB <n, E, | [B]%Y € Ult(M,, E,,).
As Vi1 € M, this implies that in fact
VB <1 Eo I [B]™ € Ult(V, Ey).

Now let o be any ordinal in k% of cofinality w. By construction the
sequence 7] is continuous, so 7, has cofinality w. We claim that Ult(V, E,) is
not closed under w-sequences. For were it so, we would have E, € Ult(V, E,);
but this cannot be, as an extender can never be in its own ultrapower [6].

¢

Next we prove a result providing target models which are closed under
k-sequences. We need a preliminary lemma.

17



Lemma 6: Let F be a (k,n) extender, let M = Ult(V, E). Then "M C M
if and only if *n C M.

Proof: One direction is trivial. For the other, suppose that “n C M. Let
(Je(Fa)(as) : @ < k) be some k-sequence of elements of M, where for each
a < k we have dom(F,) = [k]<¥ and a, € [n]<¥. Let F(a,z) = F,(x), and
observe that jg(F) € M and by hypothesis (a, : @« < k) € M. Now if @ < K

Je(F)(a; aa) = ju(Fa)(aa),

so that the k-sequence (jr(F,)(aqs) : a < k) is a member of M.

We notice some useful corollaries.

Corollary 1: If V = L[E] where E is an extender sequence, o < § < o(k),
then V' and Ult(V, E(k, 5)) agree as to whether the ultrapower by E(k, ) is
closed under k-sequences.

Proof: Ult(V, E(k,a)) and Ult(UIt(V, E(k, 3)), E(k, ) agree to rank a+1,
so one model contains "« exactly when the other model does.

¢

Corollary 2: If 7 is a normal iteration of V, E is a (k,n)-extender which
is the first extender applied in ¢, and the target model of 7 is closed under
k-sequences, then Ult(V, E) is closed under k-sequences.

Proof: If not, then *7 is not contained in Ult(V, E). But Ult(V, F) and the
target model of 7 agree to rank n + 1, so this is absurd.

¢

Theorem 7: Let V = L[ﬁ], where E is an extender sequence. Suppose k is
such that (k,x™") € dom(E). Then there are cofinally many n < ™t such
that the ultrapower of V' by E(k,n) is closed under k-sequences.
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Proof: Let X,, M,, E, be as in the proof of the last theorem, with the
additional proviso that *X, C X, for successor ordinals .. Let o < k* be a
point of cofinality x*. It is easy to see that *n, C M,. By elementarity

Mo F "1 C Ult(Ma, Ea),

so by the same argument as was used in the last theorem *n, C Ult(V, E,).
So *UIH(V, E,) C Ult(V, E,).
¢

The next result will be used to show that we need not be concerned with
these non-closed ultrapowers when it comes to classifying the measures in
our final model.

Theorem 8: Let x be some measurable cardinal, let P be the forcing itera-
tion of section 4.
Let j : V — M be an embedding into an inner model M, and suppose
k = crit(j). Suppose that G is P-generic, and in V[G] there is a measure U
V(G .
on x such that j;," " [V = j.
Then VE*M C M.

Proof: If f €V, f:kx — k, then f = j(f) | kK so that f € M.

Now fix g € V, g: Kk — ON. g € V[G], so by the standard closure
facts about ultrapowers g € Ult(V[G],U). Ult(V[G],U) is M[H], where H
is generic for j(P). By the usual arguments g € M[h], where h is the initial
segment of H generic for a k*-c.c. initial segment of j(P) (consisting of the
part which adds subsets to « for a < k).

Now using the chain condition in the standard way, we may find in M a
function G : kK X K — ON such that

Va 3 g(a) = G(a, §).

As g € V. and M C V we may find in V a function f : K — & such that

g(a) = G(a, f(a)) for all . By the remark at the beginning of the proof
f € M, and hence g € M.
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7 Classification and analysis of measures

With the machinery of the preceding sections in place, we are finally ready
to classify the normal measures on x and the Mitchell ordering between them
in a certain model where r is Pyk-hypermeasurable and 22" > (2%)*.

Theorem 9: Let V = L[E], where for some & we have (k, ) € dom(E).
Let P be the forcing iteration of length x + 1 defined in section 4, and let G

be P-generic over V.
Then in the model V[G]

1. K is Pok-hypermeasurable.

+
2. 28 =gt 28 = g,

3. Every normal measure on « has form U(i, h, H xa), where i : V. — N
is a finite normal iteration of V by E, V E*N C N, and i(k) < xT+.

Proof: This is mostly a summary of results already proved. The third claim
is the only one with any novelty.

Let U € V[G] be a measure on £ in V|G|, giving rise to an embedding
ju : VIG] — Ul(V[G],U). Let i = j | V, and let

Ju(G) =Gexh+ H xa *jU(g;).

AsV = L[E], the results from the section on core model theory show that ¢
is an iteration of V by F.

Claim 9: 7 is a finite iteration.

Proof: If not, then it is easy to see that the sequence ¥ consisting of the
first w critical points is not a member of the target model N. By closure
of the forcing, # cannot be in N[G,][h]. But i is defined in V[G] and
VIG] E "N[Gk][h] € N[Gg][h], so this is absurd and the claim is proved.

¢
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It now follows from the section on closure of models that V E *N C N.
Ju is an ultrapower map so i(k) = jy (k) < kT1. jy is an extension of i and
Ju(G) = G, x h % H % a, so it must be the case that U = U(i, h, H x a).

¢

Notice that whenever i is an iteration as above and (h, H, a) are appro-
priate generics then U(i, h, H % a) is a normal measure in V[G]. So we have
a complete classification of the measures in V[G].

It remains to analyse the ordering <1 on these measures. Unfortunately
the analysis here is not as complete as was achieved in [3]
We start with a general analysis of subsets of 1 in V[G]. Observe that

e An ultrafilter on x in V[G] may be coded as a subset of kT, since
2 = kT in V[G].

e k is Pyk-hypermeasurable in V[G], so we should expect that each subset
of k™ should appear in the ultrapower of V[G] by some normal measure
on k.

If x C k* with z € V[G], then by the usual chain condition arguments
z € VI[G,][¢°][h], where h is Add(k™,1)-generic and for some § < k™FF we
have h € V[G,][¢°][g. | 6 x k]. What is more z = 7+*9%*" where 7 can be
construed as a subset of k™.

By the analysis we did in section 2, 7 is in Ult(V, E(k,n)) for all suffi-
ciently large n < k*T. From the results in section 6, we may as well take it
that 7 € N = Ult(V, E(x,n)) where V E*N C N. That is = € N[G,][¢°][h].

We may now use the methods of of section 5 to expand this model to one
of the form Ult(V[G],U) for some measure U.

This analysis leaves some questions open:

1. Given ¢ < k*T, is there some x which only appears in extensions of
Ult(V, E(k,n)) as above for n > (7

2. if x appears in some such extension, what can we say about the set of
extensions in which it appears?

21



Some information about these questions will come from a more specific
analysis of measures.

In what follows, let ¢+ and j be two finite normal iterations of V' by FE,
with target models closed under s-sequences, and with i(x) and j(k) both
less than k**. Let jo; : V. — N be the first step in the iteration j.

Let

Ug = U(i,hg,Hg*CLO)
Uy = U(j,hl,Hl*Ch)

for appropriate generics (hg, Hy, ap) and (hy, Hy, ay).
Lemma 7: V[G] E Uy < Uy iff Uy € N1 [G,][h1].

Proof: N; and j(V) agree to a high rank, G * hy is generic over j(V') for
small forcing, so it is generic over N; also and the extensions j(V)[G][h1]
and N;[G][h1] agree to a high rank. The usual closure arguments show
that j(V)[G][h1] and Ult(V[G], U;) agree to a high rank, so that the models
Ult(V[G], Uy) and N{[G][h1] agree to a high rank, in particular they contain
the same measures on k.

¢

Theorem 10: If U, < U; then
1. ho, Hy € N1[G][h].

2. 1 [ Ny is an iteration of N; by jm(E).

Proof: Let N* = N;[G,][h1]. We know that Uy € N* and V|G| E "N* C N*,
so that ng[G] | N* =5

For the first claim observe that jy,(Gx) = Gg * ho * Hy, so that N* can
reconstruct hy and Hj.

For the second claim, we know that N is the core of N* and that N* can
define jy, [ N*, so jy, | N; must be an iteration of N;. But N; C V and
Ju, | 'V is 4, s0 % [ Ny is an iteration of Nj.

¢

The following result is proved in [3] in the context of measures, and the
proof works equally well for iterations of extenders in the context of L[E].
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Theorem 11: Let jo; : V' — Nj be the ultrapower map associated with
the extender E(K, (). Let i be a normal iteration with critical point &, in
which ign(E)(Hn,An) is applied to M, = ig,(V) at stage n. Then i [ N;
is an internal iteration of N; if and only if for all n either x, < ig,(k), or
Kn = ion (k) and A, < ig, ().

This answers one of the questions we posed about subsets of k™ earlier
on. If an ultrafilter U arises from an iteration which starts off with E(k, «),
and U <V, then the iteration associated with V' must start with E(k, ) for
8> a.

We can also say something about the measures on x which occur in models
of the form N;[G,][h]

Theorem 12: Suppose N = Ult(V, E(K, n)) for some n < k¥t N C N,
and h is generic over N[G,| for Add(k, k") x Add(k™, kT 1) as computed in
N|G,]. If i is a finite internal iteration of N which has a target closed under
k-sequences, and i(k) < (kT1)y, then there are k™ measures U € N[G,][h]
such that j, [ N = 1.

Proof: The analysis we have done for measures in the model V' works equally
well for the model N. There are x* measures for each i because |} = k*
in V.

¢

We can finally derive some consequences for the structure of the Mitchell
ordering in V[G].

Definition 4: Let U € V|G| be a normal measure on x. Then the level
of U is a, where E(/{, «) is the first extender applied in the iteration of V'
induced by U. The block of U is h, where h is the generic object at  in the
forcing iteration jy (Gy).

Notice that if U has lgvel « and block A, the <-ancestors of U are precisely
the measures in Ult(V, E(k, o)) [Gg][h].

The following theorem is just a summary of what has been proved.

Theorem 13: In the model V[G]
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1. If U <V, the level of U is less than the level of V.

2. U <V, U <aW for all W with the same level and block as V.
3. There are precisely x* measures with a prescribed block and level.
4. There are k™1 possible levels.

5. For each level, there are k™% possible blocks.

6. The ultrafilters of a prescribed level and block have at most k™ ances-
tors.

7. For each U, there is a final segment of levels containing a block which
has U as ancestor.
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