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� � is strict.� An ultra�lter has at most 2� ancestors in the ordering �.We make the remark that there are certain limitations on the partialordering �; there can be at most 22� normal measures on �, and the orderingcan have height at most (2�)+.If � is supercompact then it is shown in [9] that these maximal values areachieved; in fact a much weaker hypothesis on � will su�ce [10].Theorem 1 (Solovay): Let j : V �! M be an elementary embeddingwhere � = crit(j) and V�+2 � M , �M � M . Then for every X 2 V�+2 thereis a normal measure U on � such that X 2 Ult(V; U).Proof: An easy adaptation of the proof in [9]. �A P2�-hypermeasurable cardinal is one which satis�es the hypothesis ofthis theorem.We spell out the consequences for the Mitchell ordering.1. Observe that jV�+2 \ Ult(V; U)j = 2�, since any element of V�+2 inUlt(V; U) is represented by a function from � to V�. Since 22� > 2�,there must be 22� normal measures U .2. Any 2� measures may be coded by an element of V�+2. So any family of2� measures has a upper bound in the Mitchell ordering. In particularthe height of the ordering has its maximal value, namely (2�)+.Using inner model theory (of which more anon) we may get models whereGCH holds, and the Mitchell ordering at � is linear of ordertype �++. Onthe other hand if � is a P2�-hypermeasurable cardinal) and 22� > (2�)+ thenthe ordering is necessarily non-linear; in this paper we explore the orderingin a particular model where these circumstances prevail, and prove a result(theorem 13) which goes some way towards characterising it.We have taken a fairly digressive approach to the proof. Some argumentsneeded here are so similar to those of [3] that we have just sketched themhere. 2



2 Inner model theoryWe sketch what we need from the theory of inner models for large cardinalsbelow a strong cardinal. The reader is referred to [8] and [5] for more details.The theory is due to Mitchell, Jensen, Dodd and Koepke.De�nition 2: ~E is a (coherent, non-overlapping) extender sequence if ~E isa function with dom( ~E) � On� On such that1. There is some function o : On �! On such that o(�) � �+ 1 anddom( ~E) = f (�; �) j � < � < o(�) g:2. If (�; �) 2 dom( ~E) then ~E(�; �) is a (�; �)-extender.3. (coherence) Let � be the lexicographic order on On� On, so that(�0; �0) � (�1; �1) () (�0 < �1) _ (�0 = �1 ^ �0 < �1):If (�; �) 2 dom( ~E) and E = ~E(�; �) then� jE(o)(�) = �, jE(o) � � = o � �.� If (�; �) � (�; �) then ~E(�; �) = jE( ~E)(�; �).4. (non-overlap) If �0 < �1 and o(�1) > �1 + 1 then o(�0) < �1.The ideology of inner model theory is roughly this; if � is a large cardinalin V , then we can build ~E re
ecting this, and L[ ~E] is a well-behaved \L-like" model in which � is still large. As a more concrete example, let � beP2�-hypermeasurable. Then it may be shown that1. There is an extender sequence ~E such that o(�) > �++.2. In L[ ~E], the embedding associated with the extender ~E(�; �++) wit-nesses that � is P2�-hypermeasurable.3. L[ ~E] is a model of GCH, has a �13 wellorder of the reals, and has areasonable �ne-structure theory.3



The key to the good properties of L[ ~E] is the Comparison Lemma.Lemma 1 (Comparison): If (M; ~F ) and (N; ~G) are such thatM � ~F is an extender sequenceN � ~G is an extender sequenceand M and N are su�ciently iterable, then we may compare the modelsMand N . That is, we may iterate M by ~F and N by ~G so as to get (M�; ~F �)and (N�; ~G�), such that one of the sequences F �, G� is an initial segment ofthe other as far as sets in M� \N� are concerned.For the bene�t of the reader, we collect some information about L[ ~E],with (very sketchy) proofs. The theory of L[ ~E] was worked out by Mitchellin [8], using the language of \hypermeasures"; here we just translate into thelanguage of extenders. Assume till the end of this section that V = L[ ~E],where ~E is an arbitrary extender sequence whose domain is a set.Lemma 2 (Uniqueness): ~E(�; �) is the only (�; �)-extender which has the\coherence" properties demanded in clause 3 of de�nition 2.Proof:[Sketch] Let ~E be a minimal counterexample, in the sense that noproper initial segment of ~E falsi�es the lemma. Let (�; �) be the �rst placeon ~E where the lemma is false.Let F be an extender di�ering from ~E(�; �), but having the same coher-ence property. Compare the ultrapowers Ult(V; F ) and Ult(V; ~E(�; �)), and
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argue as in [7] that they iterate to a common model N and that the diagramN
Ult(V; ~E(�; �))����������3k Ult(V; F )QQQQQQQQQQk l

VQQQQQQQQQQk j~E(�;�) ����������3jF
commutes, where k and l are the maps from the comparison iteration.Since F has the coherence property, the least point of disagreement be-tween the extender sequences of the two ultrapowers is greater than �, sothat k and l have critical points greater than �. Using this, we may arguethat in fact F = ~E(�; �). �Lemma 3 (Condensation): For � some large regular cardinal, let X � H�be a structure with V�+1 � X and ~E 2 X. Let X collapse to M and let ~Ecollapse to ~F . Then for all � < o~F (�) we have ~F (�; �) = ~E(�; �).Proof: V and M agree to rank � + 1, and below critical point � theirsequences agree. Use this to argue (by induction on �) that ~F (�; �) is anextender with the same coherence properties as ~E(�; �), so that by uniquenessthe two are equal. �Lemma 4: GCH holds. 5



Proof: By induction on the cardinal �. Suppose we have established GCHfor cardinals less than �, and notice that jH�j = �. Now there are two cases.1. For all � < � we have o(�) < �+.Then any subset of � can be built into an iterableM � H� of cardinality�, whose extender sequence agrees with ~E at critical points less than�. If two such models M and N are compared then the iterations oneach side �x the powerset of �, hence one of P� \M and P� \N is asubset of the other. So the powerset of � is the union of a chain of setseach of cardinality �, so 2� = �+.2. For some � < � we have o(�) � �+.We claim that if A � �, then A 2 Ult(V; ~E(�; �)) for some � < �+.To see this, let us build A into X � � (� large and regular) such thatH� � X, ~E 2 X, jXj = �. Collapsing we get an iterable M = L�[~F ]where ~F agrees with ~E at critical points below �, and (by condensation)~F is an initial segment of ~E at critical point �. Let � = o~F (�), then� < � < �+.Now compare M and Ult(V; ~E(�; �)). Let the iteration maps bei : M �!M�j : Ult(V; ~E(�; �)) �! NBoth have critical points greater than �. It may be argued that M�is an initial segment of N , for otherwise we could iterate M� to getindiscernibles for N , and hence for V . M can be recovered from M� soM 2 N , then by agreement M 2 Ult(V; ~E(�; �)).This proves the claim. Now we are done, because in Ult(V; ~E(�; �))there are at worst 2�:� = � subsets of �. �The claim in case 2 of the last proof is also the key to the hypermeasur-ability of � in L[ ~E]. 6



Lemma 5: Let o(�) > �++. Let E = ~E(�; �++). Let jE : V �! M be theultrapower by E. Then V�+2 �M .Proof: By GCH, it is enough to show P�+ �M . If A � �+, the claim fromthe last lemma shows that for some � < �++ we have A 2 Ult(V; ~E(�; �)).By coherence ~E(�; �) = j( ~E)(�; �), and we also have that Ult(V; ~E(�; �))and Ult(M; ~E(�; �)) agree to a high rank. So A 2 Ult(M; ~E(�; �)) �M . �3 Core modelsWe look brie
y at the theory of (non-overlapping) core models, which wasdeveloped in tandem with the inner model theory of the last chapter by thesame authors (Mitchell, Jensen, Dodd, Koepke). The reader is referred to[5] for details. Our goal is to show that if V = L[ ~E] then the constructionof the core model and maximal sequence as in [5] will recover V and ~E.Combined with some facts about core models, this will let us do an analysis ofelementary embeddings (in particular ultrapower maps) de�nable in certaingeneric extensions of L[ ~E].The reader who is prepared to take our use of core models on trust shouldskip ahead to the results at the end of the section, which are all that will beused subsequently.Claim 1: If V = L[ ~E], then there is no inner model of a strong cardinal.Proof: [Sketch] If there is such an inner model, then there is an inner modelof the form L[~F ], where ~F is a sequence with similar properties to those inde�nition 2, but such that for some � we have o~F (�) =1. That is to say, �is the largest critical point on ~F and ~F has (�; �)-extenders for � arbitrarilylarge.It can be shown that the comparison of this model with V will terminate.This must lead to a situation in which an iterate M of V is a proper initialsegment of an iterate N of L[~F ], because the extender sequence ~E doesnot have unboundedly large extenders on any critical point. But were this7



situation to arise, we could iterateN to generate indiscernibles forM , so thatV would be able to compute a set of indiscernibles for V . Contradiction. �Theorem 2: Let V = L[ ~E]. If we perform the construction of the canonicalmaximal sequence ~F and core model K[~F ] as in [5] then ~F = ~E and K = V .Proof:It is enough to show that ~F = ~E, for thenV � K = K[~F ] � L[~F ] = V:We will proceed by induction. Suppose that (�; �) 2 dom( ~E) and wehave established that~E � (�; �) = ~F � (�; �):Claim 2: P� � K[~F � (�; �)].To see this let X � �. Then X 2 Ult(V; ~E(�; �)), and this shows thatX is in the lower part of an iterable premouse over ~E � (�; �) = ~F � (�; �).Hence X 2 K[~F � (�; �)] as claimed.The model K[~F � (�; �)] agrees with V to rank � + 1, their extendersequences are the same, so by the Uniqueness Lemma we are forced to choose~F (�; �) = ~E(�; �).To complete an inductive proof that ~F = ~E we need to show that the con-struction of ~F cannot go wrong in either of the following ways; by putting anextender at (�; o ~E(�)), or by putting an extender on a critical point between� and the next � with o ~E(�) > �+ 1.Claim 3: If � = o(�) then there is no (�; �)-extender in L[ ~E] which coheresE � (�; �).The proof of the claim is very similar to that of the Uniqueness Lemma. Ifit fails, let ~E be a minimal counterexample. Let E be the �rst (�; �) extender8



providing a counterexample, and compare the models V and Ult(V;E). Weget a diagram N
V �������

���
Ult(V;E)@@@@@@@

@@I
-which commutes exactly as in the Uniqueness Lemma. But this cannot bebecause V and Ult(V;E) agree to such an extent that the comparison mapshave critical point larger than �, while the map from V to Ult(V;E) hascritical point �.It follows from this that ~F cannot put an extender at (�; o ~E(�)). Thepoint is that V agrees with K[~F � (�; o ~E(�))] to rank � + 1, the extendersequences agree, so that such an extender would be a counterexample to theprevious claim.The last ingredient in the proof that ~F = ~E is the following claim.Claim 4: If � = o ~E(�) then there does not exist an extender E 2 L[ ~E]which coheres ~E � (�; �) and has critical point between � and the next �with o ~E(�) > �+ 1.The proof is very similar to that of the last claim. Assume that ~E isa minimal counterexample, with E the �rst extender witnessing this. Co-iterate as in the previous lemma, to get a commutative triangle exactly asbefore. Again there is a problem with critical points.The proof is now routine, an induction on dom( ~E) shows that we havedom(~F ) = dom( ~E) and ~F = ~E. Hence V = L[ ~E] = K[~F ] and we are done.�We now recall some results about the non-overlapping core model, whichare true under the assumption there is no inner model of a strong cardinal.9



Fact 1: Let ~F be the canonical maximal sequence, and K[~F ] the associatedcore model.1. If � : K[~F ] �! W is an elementary embedding into a transitive classW then W is a normal iteration of K[~F ] by ~F .2. If G is set-generic, then ~F and K[~F ] as de�ned in V [G] coincide with~F and K[~F ] as de�ned in V .Putting everything together, we can �nally get the result that we need toanalyse measures in generic extensions of L[ ~E].Theorem 3: Let V = L[ ~E], where ~E is an extender sequence. Let G be set-generic over V and let U 2 V [G] be some normal measure on some cardinal�. If jU : V [G] �! Ult(V [G]; U) is the ultrapower map associated with U ,then jU � V : V �! jU(V ) is a normal iteration of V by ~E.Proof: The core of V [G] equals the core of V equals V . �4 The modelTheorem 4: Let GCH hold, and let j : V �! M be such that V�+3 � M ,where � = crit(j). Suppose 1 that j is generated by a (�; �+++)-extender.Let P be the Reverse Easton iteration of length �+1 in which we force withAdd(�; �+)�Add(�+; �+++) (as de�ned in V [G�]) at each strong inaccessible� � �. Let G be P-generic over V .Then in the generic extension � is P2�-hypermeasurable, and we have2� = �+ and 2�+ = �+++.Proof: We will use a number of forcing tricks without much explanation;the reader is referred to [2] for the details, and to [1] for general informationabout Reverse Easton forcing. Several similar arguments may also be foundin [3] and [4].1If such a j exists, then there is such a j which arises from such an extender.10



We follow the standard strategy of building in V [G] an embedding whichextends j, and which witnesses that � has the desired property in V [G].We shall adopt the convention that Add(�; �) adds � generic functionsfrom � to �. Often we think of the generic object as a single function from�� � to �.We let G� denote the generic object for the forcing up to stage �, andg� the generic for the forcing at stage �. We break up g� as g0� � g1�where g0� is generic for Add(�; �+) and g1� is generic for Add(�+; �+++).So G = G� � g� = G� � g0� � g1�.As an aid to constructing generic objects, we factor j through the ultra-power by a normal measure in the standard way. This gives a diagramV @@@@@@Ri M-j
M0 �����

��k
where as usual U = f X � � j � 2 j(X) g, i is the ultrapower map from Vto M0 = Ult(V; U), and k : [F ]U 7�! j(F )(�).Let � = (�+++)M0 . We note for later use thatM = f j(F )(a) j F 2 V; dom(F ) = [�]<!; a 2 [�+++]<! g= f k(G)(b) j G 2M0; dom(G) = [�]<!; a 2 [�+++]<! gAs usual, in V [G�] the models M [G�] and M0[G�] are closed under �-sequences. As a corollary we may use g� as the generic at stage � in theiteration j(P ). In i(P ) we may useg�� = g0� � (g1� � �+ � �): 11



In M0[G�] we de�ne a certain term poset. The terms are names in theforcing Add(�; �+)� Add(�+; �) for elements of the forcingR�+1;i(�) � Add(i(�); i(�+))):By the standard chain condition and closure arguments we may �ndX 2 V [G�]generic for this term forcing. k : M0 �! M extends easily to a mapk : M0[G�] �! M [G�], and we may transfer X along k to get a generic X+for the term forcing whose elements are names in Add(�; �+)�Add(�+; �+++)for elements of R�+1;j(�) � Add(j(�); j(�+))).Now we interpret this term generic using g�. This leaves us withH � a 2 V [G�][g�]which is generic over M [G�][g�] for R�+1;j(�) � Add(j(�); j(�+))). It is noweasy to build a mapj : V [G�] �!M [G�][g�][H]:Now we alter a to get a new generic a� such that j\g0� � a�. This worksbecause M [G�][g�] is closed under �-sequences inside V [G�][g�], and we onlyneed alter any one condition at � many places.This enables us to buildj : V [G�][g0�] �!M [G�][g�][H][a�]:Now we may �nish by transferring g1� along j, which is legitimate because g1�is generic over V [G�][g0�] for �+-dense forcing. This gives an embeddingj : V [G] �!M [j(G)]de�ned in V [G].As the cardinal arithmetic claim is trivial, we need only verify that thisembedding witnesses P2�-hypermeasurability. As 2� = �+ it su�ces to checkthat P�+ \ V [G] �M [j(G)]:But P�+ \ V [G] � M [G] by a standard chain condition argument, andM [G] �M [j(G)] by construction. �12



5 Building measuresIn this section we show how to construct measures in the generic extension.The methods used here are very similar to those of [3].Theorem 5: Let i : V �! N be an elementary embedding such that1. � = crit(i).2. i(�+) < �++.3. N = f i(f)(a) j f 2 V; dom(f) = [�]<!; a 2 [i(�)]<! g.4. �N � N .Let P be the forcing iteration de�ned in the last section, and let G be P-generic.Then in V [G] there are �+++ ultra�lters U with the property that theultrapower map jU : V [G] �! Ult(V [G]; U) is an extension of i.Proof:Let G�, g�, gi� be as in the proof of theorem 4. The iterations P andi(P) agree up to �, and V [G�] � �N [G�] � N [G�]. At �, the iteration i(P)requires a generic over N [G�] forQ = Add(�; �+)� Add(�+; �)where � = (�+++)N , and by closure we can see Q as an initial segment of theforcing which P does at �.Claim 5: In V [G] there are exactly �+++ generics h for Q over N [G�] withthe property thatV [G] � �N [G�][h] � N [G�][h]:Proof: Q has cardinality �+ and 2�+ = �+++ in V [G], so there are at most�+++ such generics. We know that (in ordinal arithmetic) �+++ = �:�+++,so we can break up g1� into blocks of length �; let h1� be the �'th block. It iseasily checked that h = g0� � h1� is generic (by Easton's lemma) and has thedesired property (as all �-sequences from V [G] are actually in V [g�][g0�]).13



The claim is proved �Now �x a generic h as above. Using the closure of N [G�][h] in V [G], wemay prove by the standard methods the following claim.Claim 6: In V [G] there are exactly �+++ generics H for the forcing R�+1;i(�)over the model N [G�][h].The key point here is that i(�) has cardinality �+, so that we may enumer-ate the dense sets we must meet in order type �+; the closure hypothesis thenenables us to meet them, and we have so much latitude in the constructionthat we may do it in 2�+ = �+++ di�erent ways.Fix such an H. It is easy to extend i to an embeddingi : V [G�] �! N [G�][h][H]:Notice also that V [G] � �N [G�][h][H] � N [G�][h][H].Claim 7: In V [G] there are exactly �+++ generics a for the notion of forcingAdd(i(�); i(�+)) over the model N [G�][h][H], with the following properties.1. i\g0� � a.2. Let i : V [G�][g0�] �! N [G�][h][H][a] be the natural extension of i.Then for each � < i(�) there is g : � �! � in V [G�][g0�] such thati(g)(�) = �.Proof: Just as in the construction of H above, we may use closure to buildmany generics a, using the fact that i(�+) < �++. We shall now describehow to alter such a generic a so as to get the properties demanded.Fix an enumeration of i(�) in order type �, say hf(�) : � < �+i. Nowde�ne a� by altering a on the set (�+ 1)� i\�+, while leaving it unchangedelsewhere. For all � < �+ leta�(�; i(�)) = g0�(�; �)if � < �, anda�(�; i(�)) = f(�): 14



a� gives rise to a generic �lter; the key points are that each condition needonly be altered at � many places, and that the forcing is so highly closed thatsmall perturbations do not kill genericity. We identify a� with the associated�lter.It is clear from the construction that i\g0� � a�, so that as usual we maybuild i : V [G�][g0�] �! N [G�][h][H][a�]:To see that a� has the other property demanded of it, de�ne g� 2 V [G�][g0�]by g�(�) = g0�(�; �). Now i(g�)(�) = a�(�; i(�)) = f(�).It is easy to check that we may do this construction in �+++ many ways.The claim is proved. �Fix a as in the previous claim. It is now routine to transfer g1� along i, toget at last a mapi : V [G] �! N [G�][h][H][a][i(g1�)]:We will be done once we have the following claim.Claim 8: The map i : V [G] �! N [G�][h][H][a][i(g1�)] arises as the ultra-power map associated with an ultra�lter U . Moreover, di�erent ultra�ltersarise from di�erent choices for (h;H; a).Proof: It is easy to see thatN [G�][h][H][a][i(g1�)] = f i(f)(a) j f 2 V [G]; a 2 [i(�)]<! g:Each � < i(�) has form i(g)(�) for some g 2 V [G], so actuallyN [G�][h][H][a][i(g1�)] = f i(f)(�) j f 2 V [G]; dom(f) = � g:It follows that i arises from an ultra�lter U . For the other claim, simplynotice that we can rebuild (h;H; a) from U in V [G] becauseG� � h �H � a = jU(G� � g0�): �15



The theorem is proved. �For our later convenience, we introduce some notation for the ultra�ltersthat arise in this way. Let V and G be as in the last result.De�nition 3: In V [G], suppose that1. i : V �! N is an embedding with crit(i) = �.2. h is a generic over V [G�] for Q, and V [G] � �N [G�][h] � N [G�][h].3. H is generic over N [G�][h] for R.4. a is generic over N [G�][h][H] for Add(i(�; �++)) and i\g0� � a.5. The unique mapi : V [G] �! N [G�][h][H][a][i(g1�)]extending i : V �! N and having i(G) = G� � h �H � a � i(g1�) is theultrapower by a normal measure.Then U(i; h;H � a) is the normal measure alluded to in the last clause.6 ClosureIn the construction of theorem 5 for generating ultra�lters, it was crucialthat the target model of the embedding i be closed under �-sequences, where� = crit(i). In this section we prove some results about the closure of thetarget model of an elementary embedding. We then prove a theorem whichsays essentially that we need not worry about embeddings with bad closure,when we come to classifying the measures on � in our �nal model.Theorem 6: Let V = L[ ~E], where ~E is an extender sequence. Suppose � issuch that (�; �++) 2 dom( ~E). Then there are many � < �++ such that theultrapower of V by ~E(�; �) is not closed under !-sequences.16



Proof: Let E = ~E(�; �++). Since V�+2 � Ult(V;E) and GCH holds, wehave that for every � < �++E � [�]<! 2 Ult(V;E):Fix some large �. We build a chain hX� : � < �++i of elementary sub-structures X� � H� with the properties1. ~E; �; �++ 2 X0.2. V�+1 � X0.3. X� � X�+1 for all �, X� = S�<�X� for limit �.4. jX�j = �+ for all �.5. X� \ �++ 2 �++.6. X� \ �++ < X�+1 \ �++, for all �.Now let �� = X� \ �++. If X� is collapsed to a transitive structure M�,then �++ collapses to �� = (�++)M�. What is more the Condensation Lemmaimplies that E collapses to E� = ~E(�; ��).By elementarity,M� � 8� < �� E� � [�]<! 2 Ult(M�; E�):As V�+1 �M� this implies that in fact8� < �� E� � [�]<! 2 Ult(V;E�):Now let � be any ordinal in �++ of co�nality !. By construction thesequence ~� is continuous, so �� has co�nality !. We claim that Ult(V;E�) isnot closed under !-sequences. For were it so, we would have E� 2 Ult(V;E�);but this cannot be, as an extender can never be in its own ultrapower [6]. �Next we prove a result providing target models which are closed under�-sequences. We need a preliminary lemma.17



Lemma 6: Let E be a (�; �) extender, let M = Ult(V;E). Then �M � Mif and only if �� �M .Proof: One direction is trivial. For the other, suppose that �� � M . LethjE(F�)(a�) : � < �i be some �-sequence of elements of M , where for each� < � we have dom(F�) = [�]<! and a� 2 [�]<!. Let F (�; x) = F�(x), andobserve that jE(F ) 2M and by hypothesis ha� : � < �i 2M . Now if � < �jE(F )(�; a�) = jE(F�)(a�);so that the �-sequence hjE(F�)(a�) : � < �i is a member of M . �We notice some useful corollaries.Corollary 1: If V = L[ ~E] where ~E is an extender sequence, � < � < o(�),then V and Ult(V; ~E(�; �)) agree as to whether the ultrapower by ~E(�; �) isclosed under �-sequences.Proof: Ult(V; ~E(�; �)) and Ult(Ult(V; ~E(�; �)); ~E(�; �)) agree to rank �+1,so one model contains �� exactly when the other model does. �Corollary 2: If i is a normal iteration of V , E is a (�; �)-extender whichis the �rst extender applied in i, and the target model of i is closed under�-sequences, then Ult(V;E) is closed under �-sequences.Proof: If not, then �� is not contained in Ult(V;E). But Ult(V;E) and thetarget model of i agree to rank � + 1, so this is absurd. �Theorem 7: Let V = L[ ~E], where ~E is an extender sequence. Suppose � issuch that (�; �++) 2 dom( ~E). Then there are co�nally many � < �++ suchthat the ultrapower of V by ~E(�; �) is closed under �-sequences.18



Proof: Let X�, M�, E� be as in the proof of the last theorem, with theadditional proviso that �X� � X� for successor ordinals �. Let � < �+ be apoint of co�nality �+. It is easy to see that ��� �M�. By elementarityM� � ��� � Ult(M�; E�);so by the same argument as was used in the last theorem ��� � Ult(V;E�).So �Ult(V;E�) � Ult(V;E�). �The next result will be used to show that we need not be concerned withthese non-closed ultrapowers when it comes to classifying the measures inour �nal model.Theorem 8: Let � be some measurable cardinal, let P be the forcing itera-tion of section 4.Let j : V �! M be an embedding into an inner model M , and suppose� = crit(j). Suppose that G is P-generic, and in V [G] there is a measure Uon � such that jV [G]U � V = j.Then V � �M �M .Proof: If f 2 V , f : � �! �, then f = j(f) � � so that f 2M .Now �x g 2 V , g : � �! ON . g 2 V [G], so by the standard closurefacts about ultrapowers g 2 Ult(V [G]; U). Ult(V [G]; U) is M [H], where His generic for j(P). By the usual arguments g 2 M [h], where h is the initialsegment of H generic for a �+-c.c. initial segment of j(P) (consisting of thepart which adds subsets to � for � � �).Now using the chain condition in the standard way, we may �nd in M afunction G : �� � �! ON such that8� 9� g(�) = G(�; �):As g 2 V and M � V we may �nd in V a function f : � �! � such thatg(�) = G(�; f(�)) for all �. By the remark at the beginning of the prooff 2M , and hence g 2 M . �19



7 Classi�cation and analysis of measuresWith the machinery of the preceding sections in place, we are �nally readyto classify the normal measures on � and the Mitchell ordering between themin a certain model where � is P2�-hypermeasurable and 22� > (2�)+.Theorem 9: Let V = L[ ~E], where for some � we have (�; �++) 2 dom( ~E).Let P be the forcing iteration of length �+ 1 de�ned in section 4, and let Gbe P-generic over V .Then in the model V [G]1. � is P2�-hypermeasurable.2. 2� = �+, 2�+ = �+++.3. Every normal measure on � has form U(i; h;H � a), where i : V �! Nis a �nite normal iteration of V by ~E, V � �N � N , and i(�) < �++.Proof: This is mostly a summary of results already proved. The third claimis the only one with any novelty.Let U 2 V [G] be a measure on � in V [G], giving rise to an embeddingjU : V [G] �! Ult(V [G]; U). Let i = j � V , and letjU(G) = G� � h �H � a � jU (g1�):As V = L[ ~E], the results from the section on core model theory show that iis an iteration of V by ~E.Claim 9: i is a �nite iteration.Proof: If not, then it is easy to see that the sequence ~x consisting of the�rst ! critical points is not a member of the target model N . By closureof the forcing, ~x cannot be in N [G�][h]. But i is de�ned in V [G] andV [G] � �N [G�][h] � N [G�][h], so this is absurd and the claim is proved.�
20



It now follows from the section on closure of models that V � �N � N .jU is an ultrapower map so i(�) = jU (�) < �++. jU is an extension of i andjU(G) = G� � h �H � a, so it must be the case that U = U(i; h;H � a). �Notice that whenever i is an iteration as above and (h;H; a) are appro-priate generics then U(i; h;H � a) is a normal measure in V [G]. So we havea complete classi�cation of the measures in V [G].It remains to analyse the ordering � on these measures. Unfortunatelythe analysis here is not as complete as was achieved in [3]We start with a general analysis of subsets of �+ in V [G]. Observe that� An ultra�lter on � in V [G] may be coded as a subset of �+, since2� = �+ in V [G].� � is P2�-hypermeasurable in V [G], so we should expect that each subsetof �+ should appear in the ultrapower of V [G] by some normal measureon �.If x � �+ with x 2 V [G], then by the usual chain condition argumentsx 2 V [G�][g0�][h], where h is Add(�+; 1)-generic and for some � < �+++ wehave h 2 V [G�][g0�][g1� � � � �]. What is more x = _�G��g0��h, where _� can beconstrued as a subset of �+.By the analysis we did in section 2, _� is in Ult(V; ~E(�; �)) for all su�-ciently large � < �++. From the results in section 6, we may as well take itthat _� 2 N = Ult(V; ~E(�; �)) where V � �N � N . That is x 2 N [G�][g0�][h].We may now use the methods of of section 5 to expand this model to oneof the form Ult(V [G]; U) for some measure U .This analysis leaves some questions open:1. Given � < �++, is there some x which only appears in extensions ofUlt(V; ~E(�; �)) as above for � > �?2. if x appears in some such extension, what can we say about the set ofextensions in which it appears?
21



Some information about these questions will come from a more speci�canalysis of measures.In what follows, let i and j be two �nite normal iterations of V by E,with target models closed under �-sequences, and with i(�) and j(�) bothless than �++. Let j01 : V �! N1 be the �rst step in the iteration j.LetU0 = U(i; h0; H0 � a0)U1 = U(j; h1; H1 � a1)for appropriate generics (h0; H0; a0) and (h1; H1; a1).Lemma 7: V [G] � U0 � U1 i� U0 2 N1[G�][h1].Proof: N1 and j(V ) agree to a high rank, G� � h1 is generic over j(V ) forsmall forcing, so it is generic over N1 also and the extensions j(V )[G�][h1]and N1[G�][h1] agree to a high rank. The usual closure arguments showthat j(V )[G�][h1] and Ult(V [G]; U1) agree to a high rank, so that the modelsUlt(V [G]; U1) and N1[G�][h1] agree to a high rank, in particular they containthe same measures on �. �Theorem 10: If U0 � U1 then1. h0; H0 2 N1[G�][h1].2. i � N1 is an iteration of N1 by j01( ~E).Proof: Let N� = N1[G�][h1]. We know that U0 2 N� and V [G] � �N� � N�,so that jV [G]U0 � N� = jN�U0 .For the �rst claim observe that jU0(G�) = G� � h0 �H0, so that N� canreconstruct h0 and H0.For the second claim, we know that N1 is the core of N� and that N� cande�ne jU0 � N�, so jU0 � N1 must be an iteration of N1. But N1 � V andjU0 � V is i, so i � N1 is an iteration of N1. �The following result is proved in [3] in the context of measures, and theproof works equally well for iterations of extenders in the context of L[ ~E].22



Theorem 11: Let j01 : V �! N1 be the ultrapower map associated withthe extender ~E(�; �). Let i be a normal iteration with critical point �, inwhich i0n( ~E)(�n; �n) is applied to Mn = i0n(V ) at stage n. Then i � N1is an internal iteration of N1 if and only if for all n either �n < i0n(�), or�n = i0n(�) and �n < i0n(�).This answers one of the questions we posed about subsets of �+ earlieron. If an ultra�lter U arises from an iteration which starts o� with E(�; �),and U � V , then the iteration associated with V must start with E(�; �) for� > �.We can also say something about the measures on � which occur in modelsof the form N1[G�][h1]Theorem 12: Suppose N = Ult(V; ~E(�; �)) for some � < �++, �N � N ,and h is generic over N [G�] for Add(�; �+)�Add(�+; �+++) as computed inN [G�]. If i is a �nite internal iteration of N which has a target closed under�-sequences, and i(�) < (�++)N , then there are �+ measures U 2 N [G�][h]such that ju � N = i.Proof: The analysis we have done for measures in the model V works equallywell for the model N . There are �+ measures for each i because j�+++N j = �+in V . �We can �nally derive some consequences for the structure of the Mitchellordering in V [G].De�nition 4: Let U 2 V [G] be a normal measure on �. Then the levelof U is �, where ~E(�; �) is the �rst extender applied in the iteration of Vinduced by U . The block of U is h, where h is the generic object at � in theforcing iteration jU(G�).Notice that if U has level � and block h, the �-ancestors of U are preciselythe measures in Ult(V; ~E(�; �))[G�][h].The following theorem is just a summary of what has been proved.Theorem 13: In the model V [G] 23



1. If U � V , the level of U is less than the level of V .2. If U � V , U � W for all W with the same level and block as V .3. There are precisely �+ measures with a prescribed block and level.4. There are �++ possible levels.5. For each level, there are �+++ possible blocks.6. The ultra�lters of a prescribed level and block have at most �+ ances-tors.7. For each U , there is a �nal segment of levels containing a block whichhas U as ancestor.References[1] J. E. Baumgartner, Iterated forcing. In Surveys in set theory, pp 1{55,Cambridge, 1983. Cambridge University Press.[2] J. Cummings, A model in which GCH holds at successors but fails atlimits. Transactions of the AMS, 329:1{39, 1992.[3] J. Cummings, Possible behaviours for the Mitchell ordering I. To appearin Annals of Pure and Applied Logic.[4] J. Cummings, Strong ultrapowers and long core models. Journal of Sym-bolic Logic 58, 1993.[5] P. Koepke, An introduction to extenders and core models for exten-der sequences. In Logic Colloquium '87, pp 137{182, Amsterdam, 1989.North-Holland.[6] D. Martin and J. Steel, Iteration trees. To appear.[7] W. Mitchell, Sets constructible from sequences of ultra�lters. Journal ofSymbolic Logic, 39:57{66, 1974.[8] W. Mitchell, Hypermeasurable cardinals. In Logic Colloquium '78, pp303{316, Amsterdam, 1979. North-Holland.24



[9] Solovay, Reinhardt and Kanamori, Strong axioms of in�nity and ele-mentary embeddings. Annals of Mathematical Logic, 13:73{116, 1978.[10] Solovay, Berkeley course notes.
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