Possible behaviours for the Mitchell ordering

James Cummings Math and CS Department Dartmouth College Hanover NH 03755

January 23, 1998

Abstract

We use a mixture of forcing and inner models techniques to get some results on the possible behaviours of the Mitchell ordering at a measurable κ .

1 Introduction

The Mitchell ordering on normal measures was invented by Mitchell [3] as a tool in his study of inner models for large cardinals.

Definition 1: Let κ be measurable, let U_0 and U_1 be normal measures on κ . Then $U_0 \triangleleft U_1$ if and only if $U_0 \in Ult(V, U_1)$, the ultrapower of V by U_1 .

The following facts are standard.

- \triangleleft is transitive.
- \triangleleft is well-founded.
- \triangleleft is strict.
- An ultrafilter has at most 2^{κ} ancestors in the ordering \triangleleft .

Definition 2: $o(\kappa)$ is the height of the well-founded relation \triangleleft .

Notice that we must have $o(\kappa) \leq (2^{\kappa})^+$. Much is known about the possible behaviours of \triangleleft . For example

- Mitchell has shown [3] that in a highly structured inner model we can have GCH holding and $o(\kappa) = \kappa^{++}$, with \triangleleft being a linear ordering.
- Baldwin has shown [6] that from suitable hypotheses we can have models in which \triangleleft is a given prewellordering of cardinality less than κ .
- If κ is the critical point of $j: V \longrightarrow M$ such that $V_{\kappa+2} \subseteq M$, then we may show that every element of $V_{\kappa+2}$ is in Ult(V, U) for some U on κ . In particular any 2^{κ} measures on κ will have an upper bound in the ordering \triangleleft . What is more, for any particular U there will only be 2^{κ} elements of $V_{\kappa+2}$ in Ult(V, U), so that there must be $2^{2^{\kappa}}$ measures on κ . If it happens that $2^{2^{\kappa}} > (2^{\kappa})^+$ then \triangleleft cannot be linear, and it is not clear what the structure of \triangleleft will be.

This question is addressed in [1].

In this paper we will produce a model in which κ is measurable, and all measures on κ may be divided into "blocks" in the following way:

- 1. For each $\alpha < o(\kappa)$ and $\beta \in (\alpha, o(\kappa)) \cup \infty$ there is a block $M(\alpha, \beta)$.
- 2. All the measures in $M(\alpha, \beta)$ have height α in the Mitchell ordering.
- 3. $M(\alpha, \beta)$ has cardinality κ^+ if $\beta \in (\alpha, o(\kappa))$, and cardinality κ^{++} if $\beta = \infty$.
- 4. For $U \in M(\alpha, \beta)$ and $V \in M(\gamma, \delta)$, $U \triangleleft V$ iff $\beta \leq \gamma$ (with the convention that ∞ is bigger than any ordinal).

2 Preliminaries

In this paper we will use large cardinals and forcing to produce some models where the Mitchell ordering is rather complex. In the interests of clarity and self-containedness we have collected various key facts in this section, facts which we will use repeatedly in the sequel. None of them are due to us; in many cases we are unsure to whom they should be attributed.

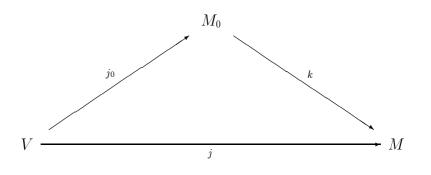
We start with a remark about Cohen forcing. The forcing for adding a single Cohen subset to a regular cardinal κ can be regarded as having conditions which are functions $p: \alpha \longrightarrow \kappa$ for $\alpha < \kappa$ (rather than the more standard functions from $\alpha < \kappa$ to $\{0, 1\}$). In this form we can consider the forcing as adding a generic function from κ to κ .

We will be interested in elementary embeddings $k : M \longrightarrow N$ between inner models of ZFC. In general it will not be the case that k is a class of M or that $N \subseteq M$ (notice that the former implies the latter, as $N = \bigcup_{\alpha} k(V_{\alpha}^{M})$).

If a model M believes that U (with $U \in M$) is a measure on κ , we will denote the natural embedding from M into Ult(M, U) by j_U^M .

Lemma 1: Let $j : V \longrightarrow M$ be an elementary embedding with j a class of V, $\kappa = \operatorname{crit}(j)$, such that every element of M is $j(F)(\kappa)$ for some function $F \in V$. Then j is the ultrapower by the normal measure $U = \{X \mid \kappa \in j(X)\}$.

Proof: Factor j through the ultrapower of V by U,



by defining $k : [f] \mapsto j(f)(\kappa)$. k is a surjection, and M_0 is the transitive collapse of the range of k, so $M_0 = M$ and $j_0 = j$.

Lemma 1 will prove useful in identifying certain embeddings as ultrapowers.

Lemma 2: Let M and N be inner models of ZFC such that

- $M \subseteq N$.
- $N \models {}^{\kappa}M \subseteq M$.
- $M \vDash U$ is a normal measure on κ .

Then U is a normal measure in N and $j_U^N \upharpoonright M = j_U^M$.

Proof: It follows immediately from the closure of M that U is a normal measure in N. Let $x \in M$. $j_U^N(x)$ is the transitive collapse of the structure (F, E_U) where

 $F = \{ f : \kappa \longrightarrow x \mid f \in N \},\$

and

$$fE_Ug \iff \{ \alpha \mid f(\alpha) \in g(\alpha) \} \in U.$$

By the closure of M inside N we have

 $F = \{ f : \kappa \longrightarrow x \mid f \in M \},\$

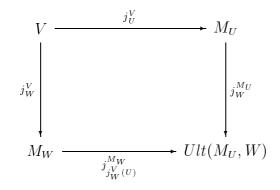
which is the set of functions whose collapse is $j_U^M(x)$, so by the absoluteness of the collapsing construction $j_U^N(x) = j_U^M(x)$.

Lemma 2 will be useful in understanding restrictions of ultrapower maps, as for example in the proof of the following lemma.

Lemma 3: Let U be a measure on κ , W a measure on $\lambda \leq \kappa$ and suppose that $W \in Ult(V, U)$. Let M_U be the ultrapower of V by U, M_W the ultrapower of V by W. Then

 $Ult(M_U, W) = Ult(M_W, j_W^V(U))$

and the following diagram commutes.



Proof: Let $x \in V$.

$$j_{j_{W}^{V}(U)}^{M_{W}}(j_{W}^{V}(x)) = j_{W}^{V}(j_{U}^{V}(x)),$$

by elementarity. $W \in M_U$ and (as $\lambda \leq \kappa$) $^{\lambda}M_U \subseteq M_U$, so that

$$j_W^V \upharpoonright M_U = j_W^{M_U}$$

In particular

$$j_W^V(j_U^V(x)) = j_W^{M_U}(j_U^V(x)).$$

From this we can deduce that the two ultrapowers are equal (let $x = V_{\alpha}$), and that the diagram commutes.

٠

We will use lemma 3 to analyse restrictions of iterated ultrapowers.

Lemma 4: Let $k : M \longrightarrow N$ be an elementary embedding between inner models of ZFC. Let $\mathbb{P} \in M$ be a forcing notion, let G be \mathbb{P} -generic over M and let H be $k(\mathbb{P})$ -generic over N. Suppose that

 $p \in G \Longrightarrow k(p) \in H.$

Then

- 1. There is a unique extension of k to a map $k^* : M[G] \longrightarrow N[H]$ such that $k^* : G \longmapsto H$.
- 2. If Λ is a set of ordinals such that

$$N = \{ k(F)(a) \mid F \in M, a \in [\Lambda]^{<\omega} \},\$$

then

$$N[H] = \{ k^*(F)(a) \mid F \in M[G], a \in [\Lambda]^{<\omega} \}.$$

Proof: For the first claim, it is clear that if k^* exists it must be given by

 $k^*: \dot{\tau}^G \longmapsto k(\dot{\tau})^H,$

where $\dot{\tau}^{G}$ denotes the interpretation of the term τ by the generic G.

We check that this is well-defined. Let $\dot{\tau}^G = \dot{\sigma}^G$, then there is $p \in G$ such that $p \Vdash_{\mathbb{P}}^M \dot{\tau} = \dot{\sigma}$. By elementarity $k(p) \Vdash_{k(\mathbb{P})}^N k(\dot{\tau}) = k(\dot{\sigma})$. By assumption $k(p) \in H$, so that $k(\dot{\tau})^H = k(\dot{\sigma})^H$. The proof that k^* is elementary is entirely similar.

For the second claim, let $\dot{\tau}^H \in N[H]$. Then $\dot{\tau} = k(F)(a)$ for some $F \in M$ and $a \in [\Lambda]^{<\omega}$, and we may take it that for all x in the domain F(x) is a \mathbb{P} -term. In M[G] we may define a function $F_1: x \mapsto F(x)^G$, and then

$$k^*(F_1)(a) = k(F)(a)^{k^*(G)} = \dot{\tau}^H$$

Lemma 4 will be used to take elementary embeddings (usually finitely iterated ultrapowers) and extend them onto certain generic extensions of V. The second claim will play a key rôle in understanding the nature of the extended embedding. The next lemmas goes into more detail about the extensions that we will make. We start with a technical result about equivalence between generics.

Lemma 5: Let \mathbb{P} be the forcing notion given by a Reverse Easton iteration of length $\kappa + 1$, in which one Cohen subset of α is added at each strong inaccessible $\alpha \leq \kappa$. Let G_1 and G_2 be \mathbb{P} -generics over V, with the property that $V[G_1] = V[G_2]$. Then for any model V^* agreeing with V to rank $\kappa + 1$, G_1 and G_2 are \mathbb{P} -generic over V^* and $V^*[G_1] = V^*[G_2]$.

Proof: By the agreement $\mathbb{P} \in V^*$ and (since $|\mathbb{P}| = \kappa$) both models compute the same maximal antichains, so G_1 and G_2 are generic over V^* for \mathbb{P} . G_1 is the interpretation under G_2 of some term $\dot{\tau}$, and by the agreement again we may take it that $\dot{\tau} \in V^*$. So $G_1 \in V^*[G_2]$ and vice versa, so that $V^*[G_1] = V^*[G_2]$.

Next we give the lemma that will be used to generate measures.

Lemma 6: Let GCH hold, and let $j : V \longrightarrow M$ be an embedding which is a class in V, such that $\kappa = \operatorname{crit}(j)$ and ${}^{\kappa}M \subseteq M$. Suppose also that the ordinal $j(\kappa^+)$ has cardinality κ^+ in V. Let \mathbb{P} be as in lemma 5, and observe that \mathbb{P} can be factored as \mathbb{P}_{κ} followed by $Add(\kappa, 1)$ as computed by $V^{\mathbb{P}_{\kappa}}$.

Let $G = G_{\kappa} * g$ be \mathbb{P} -generic, and suppose that there is $G_1 = G_{\kappa} * g_1$ with $V[G] = V[G_1]$.

Then in V[G] there are κ^{++} many H such that $G_1 * H$ is $j(\mathbb{P})$ -generic over M and j extends to $j^* : V[G] \longrightarrow M[G_1][H]$.

Proof: By lemma 5 $M[G] = M[G_1]$. In $M[G_1]$ the factor iteration $j(\mathbb{P})/G_1$ is highly-closed and has $j(\kappa^+)$ many antichains. As \mathbb{P} has the κ^+ -chain condition and $M[G] = M[G_1]$ we have $V[G] \models {}^{\kappa}M[G_1] \subseteq M[G_1]$. Hence in V[G] the forcing $j(\mathbb{P})/G_1$ is κ^+ -closed, and the set of its maximal antichains which lie in $M[G_1]$ has cardinality κ^+ .

We wish to build generics which are compatible with G. Working in $M[G_1]$, define a function q with domain the M-inaccessibles η such that $\kappa < \eta \leq j(\kappa)$, by $q(\eta) = \emptyset$ for $\eta < j(\kappa)$ and $q(j(\kappa)) = g$. q is a condition in $j(\mathbb{P})/G_1$. We build in V[G] a binary tree of height κ^+ such that

- The top node is q.
- Any path is a descending sequence in $j(\mathbb{P})/G_1$, meeting each antichain in $M[G_1]$.
- Every element has incompatible immediate successors.

The construction proceeds for the requisite κ^+ steps, because $j(\mathbb{P})/G_1$ is κ^+ -closed in V[G]. This construction will give us κ^{++} distinct generic filters H, each with the property that $j^*G \subseteq G_1 * H$. We can use these to build extensions j^* of j such that $j^*(G) = G_1 * H$.

This last construction was a "master condition" argument a la Silver; notice that any extension of q in $j(\mathbb{P})/G$ would have done equally well as the top node of the tree.

We will make heavy use of Mitchell's theory of core models for sequences of measures; nowadays this should be seen as a special case of the core model theory for non-overlapping extenders (due to Mitchell, Dodd, Jensen and Koepke) in which every extender happens to be equivalent to a measure. The reader is referred to Mitchell's paper [4] for proofs.

Definition 3: \vec{U} is a *coherent sequence of measures* if and only if

- \vec{U} is a function, with dom $(\vec{U}) \subseteq On \times On$.
- For some function $o^{\vec{U}}: On \longrightarrow On$,

dom
$$(\vec{U}) = \{ (\kappa, \eta) \mid 0 \le \eta < o^{\vec{U}}(\kappa) \}.$$

- If $(\kappa, \eta) \in \operatorname{dom}(\vec{U})$ then $\vec{U}(\kappa, \eta)$ is a normal measure on κ .
- If $(\kappa, \eta) \in \operatorname{dom}(\vec{U})$, and $j : V \longrightarrow M$ is the ultrapower of V by the measure $\vec{U}(\kappa, \eta)$ then
 - For all $\alpha \leq \kappa$, $(\alpha, \beta) \in \text{dom}(j(\vec{U}))$ if and only if $\alpha \leq \kappa$ or $\alpha = \kappa$ and $\beta < \eta$.

- If
$$\alpha \leq \kappa$$
 and $(\alpha, \beta) \in \operatorname{dom}(j(\vec{U}))$ then

$$j(\vec{U})(\alpha,\beta) = \vec{U}(\alpha,\beta).$$

Definition 4: Let M be an inner model of ZFC, let

 $M \vDash \vec{U}$ is a coherent sequence of measures.

A normal iteration of M by \vec{U} , of length η is a pair

 $(\langle M_{\alpha} : \alpha < \eta \rangle, \langle j_{\alpha\beta} : \alpha \le \beta < \eta \rangle)$

where

- $M_0 = M$.
- M_{α} is an inner model of ZFC for each $\alpha < \eta$.
- For $\alpha \leq \beta < \eta$, $j_{\alpha\beta} : M_{\alpha} \longrightarrow M_{\beta}$ is an elementary embedding.
- $j_{\alpha\alpha} = id$, and for $\alpha \leq \beta \leq \gamma$, $j_{\alpha\gamma} = j_{\beta\gamma} \circ j_{\alpha\beta}$.

- $M_{\alpha+1} = Ult(M_{\alpha}, j_{0\alpha}(\vec{U})(\kappa_{\alpha}, \eta_{\alpha}))$, and $j_{\alpha\alpha+1} : M_{\alpha} \longrightarrow M_{\alpha+1}$ is the associated ultrapower map, if $\alpha + 1 < \eta$.
- If $\lambda < \eta$, λ is limit, then M_{λ} and $j_{\alpha\lambda}$ are had by taking a direct limit in the natural way.
- The sequence $\langle \kappa_{\alpha} : \alpha + 1 < \eta \rangle$ is strictly increasing.

The following structural fact is easy, by induction on $\alpha < \eta$.

Lemma 7: If (\vec{M}, \vec{j}) is a normal iteration of M by \vec{U} in length η then for every $\alpha < \eta$

$$M_{\alpha} = \{ j_{0\alpha}(F)(a) \mid F \in M, a \in [\Lambda]^{<\omega} \},\$$

where $\Lambda = \{ \kappa_{\nu} \mid \nu < \alpha \}.$

We will denote by K Mitchell's core model $K[\vec{U}_{max}]$, which exists under the assumption that there is no inner model in which $\exists \kappa \ o(\kappa) = \kappa^{++}$. We will use the following facts about K (see section 2 of [5]).

Lemma 8 (Mitchell): Suppose that $\neg \exists \kappa \ o(\kappa) = \kappa^{++}$ in any inner model of ZFC. Then

- K is a uniformly definable inner model of ZFC+GCH.
- $K \models V = K$.
- $K \vDash \vec{U}_{max}$ is a coherent sequence of measures.
- K is invariant under set forcing.
- If $i: K \longrightarrow M$ is an elementary embedding into an inner model M then i arises from a normal iteration of K by \vec{U}_{max} .

It is worth making the following easy observations about K and \vec{U}_{max} .

Lemma 9: If K, \vec{U}_{max} are as above then

• All measures in K appear on the sequence U_{max} .

- If $\alpha < \beta < o^{\vec{U}_{max}}(\kappa)$ then $\vec{U}_{max}(\kappa, \alpha) \neq \vec{U}_{max}(\kappa, \beta)$.
- $K \vDash \vec{U}_{max}(\kappa, \alpha) \lhd \vec{U}_{max}(\kappa, \beta)$ iff $\alpha < \beta$.

We will be particularly interested in finite normal iterations of K, in the case when there is a largest measurable on \vec{U}_{max} .

Lemma 10: Suppose that κ is the largest ordinal with $o^{\vec{U}_{max}}(\kappa) > 0$. Let $n + 1 < \omega$, let (\vec{M}, \vec{j}) be a normal iteration of K by \vec{U}_{max} of length n + 1, with j_{01} the ultrapower of K by $\vec{U}_{max}(\kappa, \eta)$ for some η . Then

- 1. $M_n \subseteq K$, and $K \models {}^{\kappa}M_n \subseteq M_n$.
- 2. For each $i < n, \kappa_i < j_{0n}(\kappa)$.
- 3. In M_0 , the ordinal $j_{0n}(\kappa^+)$ has cardinality κ^+

Proof:

- 1. The critical points are increasing and each model is closed inside the previous one.
- 2. $\kappa_i \leq j_{0i}(\kappa)$, as κ is the largest measurable on \vec{U}_{max} . If $\kappa_i < j_{0i}(\kappa)$ then we are done as $j_{0n}(\kappa) = j_{in}(j_{0i}(\kappa)) \geq j_{0i}(\kappa)$; if $\kappa_i = j_{0i}(\kappa)$ then this is the critical point of j_{in} so $\kappa_i < j_{in}(j_{0i}(\kappa)) = j_{0n}(\kappa)$.
- 3. The ordinals less than $j_{0n}(\kappa^+)$ all have the form

 $j_{0n}(F)(\kappa_0,\ldots,\kappa_{n-1}),$

where $F : [\kappa]^n \longrightarrow \kappa^+$. By GCH there are κ^+ such functions F.

The next result puts some limits on the possible closure of the models in a normal iteration of infinite length. **Lemma 11:** If (\vec{M}, \vec{j}) is a normal iteration of M by \vec{U} , of length $\eta \geq \omega$, then the sequence of ordinals $\vec{\kappa} = \langle \kappa_n : n < \omega \rangle$ is not a member of M_{α} for $\omega \leq \alpha < \eta$.

Proof: The model M_{α} agrees with M_{ω} to rank $\kappa_{\omega} + 1$, so it is enough to show that $\vec{\kappa} \notin M_{\omega}$. M_{ω} was constructed as a direct limit, so if $\vec{\kappa} \in M_{\omega}$ then $\vec{\kappa} = j_{n\omega}(\vec{\lambda})$ for some $\vec{\lambda} \in M_n$; in particular $\kappa_n = j_{n\omega}(\lambda_n)$. But $\operatorname{crit}(j_{n\omega}) = \kappa_n$ as we are in a normal iteration, so that $\kappa_n \notin \operatorname{rge}(j_{n\omega})$.

This completes the preliminaries. We make the remark that in what follows we assume that the ground model is of form $K[\vec{U}_{max}]$, but could have taken it in the form $L[\vec{U}]$ because for suitable \vec{U} we have $L[\vec{U}] \vDash V = K[\vec{U}_{max}]$.

3 Classifying measures

In this section we will take the core model $K[\vec{U}_{max}]$ discussed in the last section, in the case when there is a largest measurable on \vec{U}_{max} , and force over it with an iteration \mathbb{P} as in lemma 6. We will then classify completely the measures on κ in K[G], and will describe the Mitchell ordering on these measures.

For the rest of this section let V = K, and suppose that there is κ maximal with $o^{\vec{U}_{max}}(\kappa) > 0$. Fix G which is \mathbb{P} -generic over K, where \mathbb{P} is the Reverse Easton iteration in which a Cohen subset is added to each inaccessible $\alpha \leq \kappa$, as computed in K. As in lemma 6 we may factor \mathbb{P} as $\mathbb{P}_{\kappa} * Add(\kappa, 1)$, and correspondingly we may factor G as $G_{\kappa} * g$.

Lemma 12: Let U be a measure on κ in the model K[G]. Let

 $i: K[G] \longrightarrow N$

be the ultrapower of K[G] by U. Let

 $j: K \longrightarrow K^* = i(K)$

be the restriction of i to K. Then

1. $i(G) = G_{\kappa} * g_1 * H$, where g_1 is $Add(\kappa, 1)$ -generic over $K^*[G_{\kappa}]$ and H is $j(\mathbb{P})/G_{\kappa} * g_1$ -generic over $K^*[G_{\kappa}][g_1]$.

- 2. If $G_1 = G_{\kappa} * g_1$ then $K[G_1] = K[G]$.
- 3. $N = K^*[i(G)].$
- 4. j " $G \subseteq i(G)$.
- 5. $j: K \longrightarrow K^*$ is a finite normal iteration of K by \vec{U}_{max} , with the first step being an ultrapower map with critical point κ .

Proof:

By elementarity $N = K^*[i(G)]$, where K^* is $K[\vec{U}_{max}]$ as computed in the sense of N. i(G) is generic over K^* for $i(\mathbb{P})$, which equals $j(\mathbb{P})$ since $\mathbb{P} \in K$.

 $j: K \longrightarrow K^*$ must be a normal iteration with first step an ultrapower by a measure on κ , because K is still $K[\vec{U}_{max}]$ in K[G]. In particular K and K^* agree to rank $\kappa + 1$.

 $i(G) = G_{\kappa} * g_1 * H$, where g_1 is generic for $Add(\kappa, 1)$ as computed in $K^*[G_{\kappa}]$ and H is generic for $j(\mathbb{P})/G_{\kappa} * g_1$. $K[G_{\kappa}]$ and $K^*[G_{\kappa}]$ agree to rank $\kappa + 1$, so g_1 is actually $K[G_{\kappa}]$ generic for $Add(\kappa, 1)$. Also $K[G_1]$ and $K^*[G_1]$ agree to rank $\kappa + 1$.

As N is an ultrapower, $K[G] \models {}^{\kappa}N \subseteq N$. As H is generic for highly closed forcing, $K[G] \models {}^{\kappa}K^*[G_1] \subseteq K^*[G_1]$. In particular $g \in K^*[G_1]$, so that by the last paragraph $g \in K[G_1]$. Hence $K[G] = K[G_1]$.

If j is not a finite iteration, then lemma 11 implies that there is an ω sequence of ordinals $\vec{\kappa} \in K[G]$ such that $\vec{\kappa} \notin K^*$. But \mathbb{P} is ω_1 -closed, and
so $\vec{\kappa} \notin K^*[G]$, in contradiction to what we just proved about the closure of $K^*[G]$.

Definition 5: $U \in K[G]$ is an *n*-step extension of $\vec{U}_{max}(\kappa, \eta)$ if, when we define *j* as in the last lemma, *j* has length n + 1 and the first step in *j* is the application of $\vec{U}_{max}(\kappa, \eta)$ to *K*.

Notice that this is reasonable terminology, as when U is an *n*-step extension of $\vec{U}_{max}(\kappa,\eta)$ we certainly have $\vec{U}_{max}(\kappa,\eta) \subseteq U$. The one-step extensions are the easiest ones to understand.

Lemma 13: Let $\eta < o^{\vec{U}_{max}}(\kappa)$, and let $j_{\eta} : K \longrightarrow M_{\eta}$ be the ultrapower of K by $\vec{U}_{max}(\kappa, \eta)$. Then in K[G] the set of $H_1 = g_1 * H$ such that (setting $G_1 = G_{\kappa} * g_1$)

- G_1 is \mathbb{P} -generic over K.
- $K[G] = K[G_1].$
- *H* is $j_{\eta}(P)/G_1$ -generic over $M_{\eta}[G_1]$.
- j_{η} " $G \subseteq G_{\kappa} * H_1$.

has cardinality κ^{++} , and each one gives rise to a distinct one-step extension U_{H_1} of $\vec{U}_{max}(\kappa, \eta)$.

Proof: There are κ^+ generics g_1 such that $K[G] = K[G_{\kappa}][g_1]$. Fix one such, and observe that by lemma 5 $M_{\eta}[G] = M_{\eta}[G_1]$. By lemma 6 we may build κ^{++} many appropriate generics H, and by cardinality considerations there can be at most κ^{++} many.

Let H be one such, and consider the unique map

 $j_{\eta}^*: K[G] \longrightarrow M_{\eta}[G_1][H]$

such that j_{η}^* extends j_{η} and $j_{\eta}^*(G) = G_1 * H$. By lemma 4,

$$M_{\eta}[G_1][H] = \{ j_{\eta}^*(F)(\kappa) \mid F \in K[G] \},\$$

so lemma 1 tells us that j_{η}^* is the ultrapower of K[G] by the measure

 $U_H = \{ X \subseteq \kappa \mid \kappa \in j_n^*(X) \}.$

Distinct generics H_1 give distinct one-step extensions, because given U_{H_1} we may recover H_1 by computing $j_{U_{H_1}}^{K[G]}(G) = G_{\kappa} * H_1$.

This last lemma gives a complete description of the one-step extensions of measures $\vec{U}_{max}(\kappa,\eta)$. We need to do a bit more work to produce *n*-step extensions; the point will be to guarantee that each critical point we use can be defined from κ in a certain way. **Lemma 14:** Let $j: K \longrightarrow K^*$ be a normal iteration of K by \vec{U}_{max} of length n + 1, with $j_{0i}(\vec{U}_{max})(\kappa_i, \eta_i)$ being applied at stage i in the iteration, and $\kappa_0 = \kappa$. Then in K[G] there are κ^{++} many $H_1 = g_1 * H$ such that (setting $G_1 = G_{\kappa} * g_1$)

- G_1 is \mathbb{P} -generic over K.
- $K[G] = K[G_1].$
- H is $j(P)/G_1$ -generic over $K^*[G_1]$.
- $j ``G \subseteq G_{\kappa} * H_1$.
- If

$$j^*: K[G] \longrightarrow K^*[G_\kappa][H_1]$$

is the unique extension of j with $j^*(G) = G_{\kappa} * H_1$, then

$$K^*[G_{\kappa}][H_1] = \{ j^*(F)(\kappa) \mid F \in K[G] \}.$$

Proof: As before there are κ^+ appropriate g_1 , and we will fix one. Then we know that $K^*[G] = K^*[G_1]$.

We will define a "master condition" for $j(P)/G_1$, much as in lemma 6. As there the condition q will have value \emptyset at M-inaccessible η with $\kappa < \eta < j(\kappa)$, but $q(j(\kappa))$ will be slightly bigger than in lemma 6. Define $q(j(\kappa))$ by

- $\operatorname{dom}(q(j(\kappa))) = \kappa + n.$
- $q(j(\kappa)) \upharpoonright \kappa = g.$
- $q(j(\kappa) + i) = \kappa_i$, for i < n.

Just as in lemma 6 we may build κ^{++} many H with q as a member, and argue that H is generic and that $j \ G \subseteq G_1 * H$. It will suffice to show that for every i < n the ordinal κ_i has the form $j^*(F)(\kappa)$, as lemma 7 then shows that every element of $K^*[G_{\kappa}][H_1]$ may be written in this form. Now fix i < n, and define a function F in K[G] by

$$F(\alpha) = g(\alpha + i).$$

We have

$$j^*(F)(\kappa) = j^*(g)(\kappa+i) = H(j(\kappa))(\kappa+i) = q(\kappa)(\kappa+i) = \kappa_i,$$

so the lemma is proved.

This result classifies the *n*-step extensions of measures on κ in K. It remains to determine when the relation \triangleleft holds between two such extension measures. As one might expect, the situation is simplest when considering one-step extensions.

Lemma 15: Let U, V be two measures on κ in K[G]. Suppose further that U is a 1-step extension of $U_0 = \vec{U}_{max}(\kappa, \alpha)$, using some generic $H_U^1 = g_U * H_U$, and that V is a 1-step extension of $V_0 = \vec{U}_{max}(\kappa, \beta)$ using some generic $H_V^1 = g_V * H_V$. Set $G_U = G_\kappa * g_U, G_V = G_\kappa * g_V$.

Then $K[G] \vDash U \lhd V$ if and only if

- $\alpha < \beta$.
- $H^1_U \in Ult(K, V_0)[G].$

Proof: Let $M = Ult(K, U_0)$, let $N = Ult(K, V_0)$.

• First suppose that $K[G] \models U \triangleleft V$. This means that

 $U \in Ult(K[G], V) = N[G_V][H_V].$

As $K[G] = K[G_V]$ we know that $N[G] = N[G_V]$. H_V is generic for highly closed forcing, so this will imply that $U \in N[G]$. Since $K[G] \models {}^{\kappa}N[G] \subseteq N[G], K[G]$ and N[G] agree to rank $\kappa + 1$, so that there is agreement between $j_U^{K[G]}$ and $j_U^{N[G]}$ to that rank. In particular

$$G_U * H_U = j_U^{K[G]}(G) = j_U^{N[G]}(G)$$

so that $H^1_U \in N[G]$.

To show that $\alpha < \beta$, observe that $N \subseteq K \subseteq K[G]$. Also

 $j_U^{K[G]} \upharpoonright N[G] = j_U^{N[G]},$

•

so that the restriction of $j_U^{K[G]}$ to N is an embedding definable in N[G], from N to some well-founded model. It must therefore be a normal iteration of N, since N is the core model of N[G]. But $j_U^{K[G]} \upharpoonright K = j_{U_0}^K$, so that $j_U^{K[G]} \upharpoonright N = j_{U_0}^K \upharpoonright N$. It is easy to see that the first step in the iteration of N induced by this restriction is to take the ultrapower by

$$U_0 = \{ X \subseteq \kappa \mid X \in N, \kappa \in j_{U_0}^K(X) \},\$$

so that $U_0 \in N$. Hence $U_0 \triangleleft V_0$, and $\alpha < \beta$.

• For the other direction, suppose that $H^1_U \in N[G]$ and $\alpha < \beta$, that is $K \models U_0 \triangleleft V_0$ and so $U_0 \in N$.

We will show that N[G] can reconstruct U from H_1^1 . K[G] and N[G](which equals $N[G_V]$) agree to rank $\kappa + 1$, and $j_{U_0}^K \upharpoonright N = j_{U_0}^N$, what is more N contains all canonical P-names for subsets of κ . So if $\dot{\tau}$ is such a name then N[G] can compute

$$j_U^{K[G]}(\dot{\tau}^G) = j_{U_0}^K(\dot{\tau})^{G_U * H_U} = j_{U_0}^N(\dot{\tau})^{G_U * H_U}$$

and hence N[G] can compute U, so

$$U \in N[G_V] \subseteq N[G_V][H_V] = Ult(K[G], V).$$

Hence $K[G] \models U \triangleleft V$ and we are done.

At this point we are almost ready to describe the ordering \triangleleft of onestep extensions. What we still need is some idea of how many generics on $j_{U_0}^V(P)/G$ are constructed by models of the form $Ult(K, V_0)[G]$ as V_0 runs through the measures on κ with $U_0 \triangleleft V_0$. The next lemma will provide us with this information.

Lemma 16: Let $\alpha < \beta < \gamma < o^{\vec{U}_{max}}(\kappa)$. Let us define $U = \vec{U}_{max}(\kappa, \alpha)$, $V = \vec{U}_{max}(\kappa, \beta)$, and finally $W = \vec{U}_{max}(\kappa, \gamma)$. Then the Ult(K, U)[G]-generics on $j_U^K(P)/G$ constructed in the model Ult(K, V)[G] form a proper subset of those constructed in the model Ult(K, W)[G], and the same is true if we restrict to those generics H such that $j_U G \subseteq G * H$.

Proof: Let $M_U = Ult(K, U)$ and define M_V , M_W similarly. K and M_W agree to rank $\kappa + 1$, so that M_V and $N = Ult(M_W, V)$ agree to rank $j_V(\kappa) + 1$. As P is relatively small, $M_V[G]$ and N[G] also agree to this level, which is much greater than $j_U(\kappa)$. So $M_V[G]$ and N[G] construct the same generics H for the forcing $j_U(P)/G$.

But now by the same arguments as in lemma 6, $M_W[G]$ believes that it can construct κ^{++} many generics, but that the inner model N[G] can only build κ^+ many. This proves the lemma.

We use this to get a picture of the ordering on one-step extensions in the case when $o^{\vec{U}_{max}}(\kappa) = 3$. This is fairly representative of the general case.

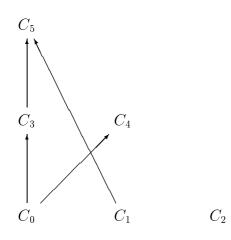
Lemma 17: Let $o^{\vec{U}_{max}}(\kappa) = 3$, with $U = \vec{U}_{max}(\kappa, 0)$, $V = \vec{U}_{max}(\kappa, 1)$, $W = \vec{U}_{max}(\kappa, 2)$. Let M_U , M_V , M_W denote the ultrapowers of K by these measures. Work in K[G]. Then we may divide the one-step extensions of these measures into classes

- C_0 : extensions of U via generics in $M_V[G]$. $|C_0| = \kappa^+$
- C_1 : extensions of U via generics in $M_W[G] \setminus M_V[G]$. $|C_1| = \kappa^+$.
- C_2 : extensions of U via generics in $K[G] \setminus M_W[G]$. $|C_2| = \kappa^{++}$.
- C_3 : extensions of V via generics in $M_W[G]$. $|C_1| = \kappa^+$.
- C_4 : extensions of V via generics in $K[G] \setminus M_W[G]$. $|C_4| = \kappa^{++}$.
- C_5 : extensions of W. $|C_5| = \kappa^{++}$.

A measure from C_i is below a measure from C_j in the Mitchell ordering if and only if

- i = 0 and $j \in \{3, 4, 5\}$ OR
- i = 1 and j = 5 OR
- i = 3 and j = 5.

The proof is immediate. We give a picture which may make the shape of the partial ordering clearer.



If instead of $o(\kappa) = 3$ we take $o(\kappa) = \omega$, we get an infinite partial ordering P with an interesting universal property; if Q is the four-element poset

then P does not embed Q, and P embeds every finite poset which does not embed Q. This was pointed out to me by Andrew Jergens [2].

Baldwin speculated that the methods of [6] might extend to all wellfounded posets which embed neither Q nor the poset R given by

We observe that P does embed R.

Now we consider the general case of the Mitchell ordering between *n*-step extensions. This problem is not quite as hard as one might expect, largely because the question whether $U \triangleleft V$ is controlled by the first step in the iteration associated with V.

Theorem 1: Let U be an m + 1-step extension of U_0 , via a generic object $H_U^1 = g_U * H_U$ and an iteration (\vec{M}, \vec{j}) of length m + 1, with the ultrafilter $j_{0i}(\vec{U}_{max})(\kappa_i, \lambda_i)$ being applied to M_i at stage i. Let V be an n + 1-step extension of V_0 , via a generic $H_V^1 = g_V * H_V$ and an iteration (\vec{N}, \vec{k}) of length n + 1, with the ultrafilter $k_{0i}(\vec{U}_{max})(\mu_i, \nu_i)$ being applied to N_i at stage i.

Then $K[G] \models U \lhd V$ if and only if

- $H_U \in Ult(K, V_0)[G].$
- $j_{0m} \upharpoonright Ult(K, V_0)$ is a finite normal iteration of $Ult(K, V_0)$ by $k_{01}(\vec{U}_{max})$.

Proof: Notice that $N_1 = Ult(K, V_0)$. As before we let $G_U = G_{\kappa} * g_U$ and $G_V = G_{\kappa} * g_V$.

• Suppose that $K[G] \vDash U \lhd V$. Then

$$U \in Ult(K[G], V) = N_n[G_V][H_V],$$

so as in lemma 15 $U \in N_n[G]$. N_1 and N_n agree to rank $\kappa_1 + 1$, so by an easy chain condition argument the models $N_1[G]$ and $N_n[G]$ also agree to this rank, hence $U \in N_1[G]$.

As in lemma 15 $N_1[G]$ can reconstruct H_U^1 , so that $H_U^1 \in N_1[G]$.

For the second part just observe that $j_U^{K[G]} \upharpoonright N_1[G] = j_U^{N_1[G]}$, so that $j_U^{K[G]} \upharpoonright N_1$ must give rise to a normal iteration of N_1 by its version of \vec{U}_{max} , which is $k_{01}(\vec{U}_{max})$. But $N_1 \subseteq K$ and $j_U^{K[G]} \upharpoonright K = j_{0m}$, so this amounts to saying that $j_{0m} \upharpoonright N_1$ is a normal iteration of N_1 by $k_{01}(\vec{U}_{max})$.

This iteration must be finite, as usual, because otherwise the first ω critical points will give a sequence which is in $N_1[G]$ but not in $Ult(N_1[G], U)$.

Suppose that H¹_U ∈ N₁[G], and that j_{0m} ↾ N₁ can be written as an iteration (N^{*}, j^{*}) of length s + 1, so that N^{*}_s = j_{0m}(N₁) and j_{0m} ↾ N₁ = j^{*}_{0s}. We will show that N₁[G] can compute U; the proof is precisely parallel to that in lemma 15. K[G] and N₁[G] agree to rank κ + 1, K and N₁ agree on the set of canonical names for subsets of κ. If τ is such a name then (since j^{*}_{0s} is a class in N₁)) N₁[G] can compute

$$j_U^{K[G]}(\dot{\tau}^G) = j_{0m}(\dot{\tau})^{G_U * H_U} = j_{0s}^*(\dot{\tau})^{G_U * H_U}$$

Just as in lemma 15 this gives $U \in N_1[G]$, and by the same arguments as we used in the first part of the proof this implies that $U \in N_n[G]$, hence that $K[G] \models U \lhd V$.

Our next task is to explore the circumstances under which an iterated ultrapower of K restricted to a one-step ultrapower N gives rise to a map which is an iterated ultrapower of N.

The following lemma resolves the question about the restriction of a finite iteration to a one-step ultrapower model.

Lemma 18: Let M be a model of ZFC, and assume

 $M \vDash \vec{U}$ is a coherent sequence.

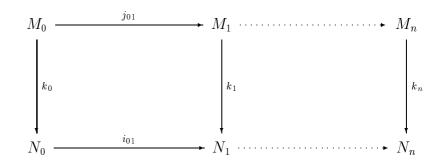
Let κ be the largest critical point on \vec{U} . Let j be a finite normal iteration of M, in which a measure

 $U_m = j_{0m}(\vec{U})(\kappa_m, \mu_m)$

is applied to M_m to get $j_{mm+1} : M_m \longrightarrow M_{m+1}$ for each m < n. Let $\kappa_0 = \kappa, \mu_0 = \alpha$. Let $N = Ult(M, \vec{U}(\kappa, \beta))$ for some β , and suppose that $i = j \upharpoonright N : N \longrightarrow j(N)$ is a finite normal iteration of N. Then

1. For each $m < n, U_m \in N_m$.

- 2. *i* has length *n*, and step *m* in the iteration *i* is the application of U_m to N_m .
- 3. The diagram

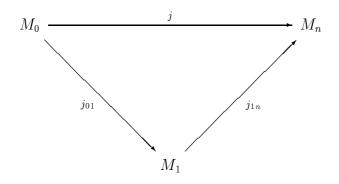


commutes, where $k_i : M_i \longrightarrow N_i$ is the ultrapower map arising from the measure $j_{0i}(\vec{U}(\kappa,\beta))$.

Proof: M_0 can recover U_0 by computing

 $U_0 = \{ X \in \mathcal{P}\kappa \cap M_0 \mid \kappa \in j(X) \}.$

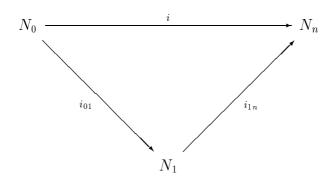
We can then build a commutative triangle



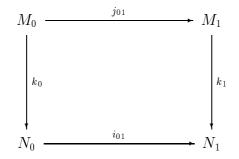
Since $\mathcal{P}\kappa \cap M_0 = \mathcal{P}\kappa \cap N_0$ and $i = j \upharpoonright N$ we have

 $U_0 = \{ X \in \mathcal{P}\kappa \cap N_0 \mid \kappa \in i(X) \},\$

and a commutative triangle



So $U_0 \in N_0$. We make the easy observation that $\alpha < \beta$, because N_0 is the ultrapower of M_0 by the measure $\vec{U}(\kappa,\beta)$ on the coherent sequence \vec{U} . Applying lemma 3 the square



commutes.

We now attempt to argue that i_{1n} and j_{1n} resemble each other. Let $\lambda_1 = j_{01}(\kappa)$.

Claim 1: In the situation described above

- 1. $\lambda_1 = i_{01}(\kappa)$.
- 2. $V_{\lambda_1+1}^{M_1} = V_{\lambda_1+1}^{N_1}$.
- 3. $j_{1n} \upharpoonright V_{\lambda_1+1}^{M_1} = i_{1n} \upharpoonright V_{\lambda_1+1}^{N_1}$.

Proof: M_0 and N_0 agree to rank $\kappa + 1$, so by standard arguments

$$i_{01} \upharpoonright V_{\kappa+1}^{N_0} = j_{01} \upharpoonright V_{\kappa+1}^{M_0}$$

and

$$V_{\lambda_1+1}^{M_1} = i_{01}(V_{\kappa+1}^{M_0}) = j_{01}(V_{\kappa+1}^{N_0}) = V_{\lambda_1+1}^{N_1}.$$

The key point is that both models compute the same set of functions from κ to $V_{\kappa+1}$.

If $x \in V_{\lambda_1+1}^{M_1}$ then $x = j_{01}(F)(\kappa) = i_{01}(F)(\kappa)$ for some such function, and so

$$j_{1n}(x) = j(F)(\kappa) = i(F)(\kappa) = i_{1n}(x)$$

by the normality of the iterations.

Since κ is the largest measurable on \vec{U} , λ_1 is the largest on $j_{01}(\vec{U})$ and hence $\kappa_1 \leq \lambda_1$. We know that $\kappa_1 = \operatorname{crit}(j_{1n})$, so also $\kappa_1 = \operatorname{crit}(i_{1n})$. What is more

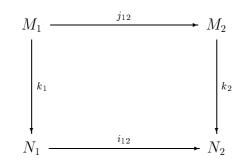
$$U_1 = \{ X \in \mathcal{P}\kappa_1 \cap M_1 \mid \kappa_1 \in j_{1n}(X) \}$$

= $\{ X \in \mathcal{P}\kappa_1 \cap N_1 \mid \kappa_1 \in i_{1n}(X) \}.$

Hence U_1 is in N_1 and i_{12} is the ultrapower of N_1 by U_1 .

At this point we observe that since N_1 is the ultrapower of M_1 by the measure $j_{01}(\vec{U}(\kappa,\beta))$, there is a certain agreement between the measure sequences in these models: namely these sequences agree below λ_1 , and at λ_1 the model N_1 has the same measures as M_1 up to the point $j_{01}(\beta)$.

As a consequence we see that either $\kappa_1 < \lambda_1$ or $\kappa_1 = \lambda_1$ and $\mu_1 < j_{01}(\beta)$. By lemma 3, we see that the diagram



commutes.

To finish the proof we just repeat these arguments, showing step by step that the diagrams commute and the models N_n construct the measures U_n .

The following corollary can be derived by a close inspection of the proof of the preceding lemma.

Corollary 1: Given an iteration j of M and a model N as described above, it is necessary and sufficient for $j \upharpoonright N$ to be an iteration of N that for all m < n either $\kappa_m < j_{0m}(\kappa)$ or $\kappa_m = j_{0m}(\kappa)$ and $\mu_m < j_{0m}(\beta)$.

We observe that as a consequence, if j_{0n} induces an internal iteration of $Ult(K, \vec{U}_{max}(\kappa, \beta))$, then it induces such an iteration of $Ult(K, \vec{U}_{max}(\kappa, \gamma))$ for any $\gamma > \beta$.

We can finally undertake the general analysis of the ordering between n-step extensions in K[G].

Definition 6: Let $\alpha < o(\kappa)$, and let $\beta \in (\alpha, o(\kappa)) \cup \{\infty\}$.

For $\beta \in (\alpha, o(\kappa))$ let $M(\alpha, \beta)$ be the set of extensions U of $\vec{U}_{max}(\kappa, \alpha)$ such that β is the least γ with the following two properties:

1. The constructing generic H_U is in $Ult(K, \vec{U}_{max}(\kappa, \gamma))[G]$.

2. $j_U^{K[G]}$ induces an internal iteration of $Ult(K, \vec{U}_{max}(\kappa, \gamma))$.

For $\beta = \infty$ let $M(\alpha, \beta)$ be the set of those U such that no γ as described above exists.

The description of the ordering is given by the following result, whose proof follows immediately from the work above.

Theorem 2: Every measure on κ in K[G] is in a unique $M(\alpha, \beta)$. $M(\alpha, \beta)$ has cardinality κ^+ if $\beta \in (\alpha, o(\kappa))$ and cardinality κ^{++} if $\beta = \infty$. If $U \in M(\alpha, \beta)$ and $V \in M(\gamma, \delta)$, then $U \triangleleft V$ if and only if $\beta \leq \gamma$.

•

References

- [1] J. Cummings, Possible behaviours for the Mitchell ordering II. In preparation.
- [2] A. Jergens, Private communication.
- [3] W. Mitchell, Sets constructible from sequences of ultrafilters. Journal of Symbolic Logic **39** (1974) 57–66.
- [4] W. Mitchell, The core model for sequences of measures. I. Math. Proc. Camb. Phil. Soc. 95 (1984) 229–260.
- [5] W. Mitchell, Indiscernibles, skies and ideals. In Contemporary Mathematics **31** (1984) 161–182.
- [6] S. Baldwin, The ⊲-ordering on normal ultrafilters. Journal of Symbolic Logic 51 (1985) 936–952.