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Abstract

We use a mixture of forcing and inner models techniques to get
some results on the possible behaviours of the Mitchell ordering at a
measurable .

1 Introduction

The Mitchell ordering on normal measures was invented by Mitchell [3] as a
tool in his study of inner models for large cardinals.

Definition 1: Let x be measurable, let Uy and U; be normal measures on
k. Then Uy < Uy if and only if Uy € Ult(V,Uy), the ultrapower of V' by Uj.

The following facts are standard.

< 18 transitive.

< is well-founded.

<] 1s strict.

An ultrafilter has at most 2" ancestors in the ordering <.



Definition 2: o(k) is the height of the well-founded relation <.
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Notice that we must have o(k) < (2%).

Much is known about the possible behaviours of <. For example

e Mitchell has shown [3] that in a highly structured inner model we can

have GCH holding and o(x) = x*", with < being a linear ordering.

e Baldwin has shown [6] that from suitable hypotheses we can have mod-

els in which < is a given prewellordering of cardinality less than k.

e If k is the critical point of j : V' — M such that V, o C M, then we

may show that every element of V5 is in Ult(V,U) for some U on k.
In particular any 2" measures on s will have an upper bound in the
ordering <. What is more, for any particular U there will only be 2*
elements of V5 in Ult(V,U), so that there must be 22" measures on
k. If it happens that 22" > (2%)" then < cannot be linear, and it is not
clear what the structure of <1 will be.

This question is addressed in [1].

In this paper we will produce a model in which x is measurable, and all
measures on k£ may be divided into “blocks” in the following way:

1.

2.

For each a < o(k) and 3 € (a, 0(k)) U oo there is a block M («, 3).
All the measures in M (c«, 3) have height « in the Mitchell ordering.

M(w, B) has cardinality ™ if 3 € (a,0(k)), and cardinality £** if
b = 0.

For U € M(«,8) and V€ M(v,6), U < V iff § < v (with the
convention that oo is bigger than any ordinal).

Preliminaries

In this paper we will use large cardinals and forcing to produce some models
where the Mitchell ordering is rather complex. In the interests of clarity and
self-containedness we have collected various key facts in this section, facts



which we will use repeatedly in the sequel. None of them are due to us; in
many cases we are unsure to whom they should be attributed.

We start with a remark about Cohen forcing. The forcing for adding
a single Cohen subset to a regular cardinal x can be regarded as having
conditions which are functions p : @« — & for @ < k (rather than the more
standard functions from o < k to {0,1}). In this form we can consider the
forcing as adding a generic function from x to .

We will be interested in elementary embeddings £ : M — N between
inner models of ZFC. In general it will not be the case that k is a class of M
or that N C M (notice that the former implies the latter, as N = U, k(V.M)).

If a model M believes that U (with U € M) is a measure on x, we will
denote the natural embedding from M into Ult(M,U) by j¥.

Lemma 1: Let j : V — M be an elementary embedding with j a class of V,
k = crit(j), such that every element of M is j(F)(x) for some function F' € V.
Then j is the ultrapower by the normal measure U = { X | k € j(X) }.

Proof: Factor j through the ultrapower of V' by U,

My

by defining & : [f] — j(f)(k). k is a surjection, and M, is the transitive
collapse of the range of k, so My = M and j, = j.
¢

Lemma 1 will prove useful in identifying certain embeddings as ultrapow-
ers.

Lemma 2: Let M and N be inner models of ZFC such that



e M CN.
e NEFM C M.

e M E U is a normal measure on k.
Then U is a normal measure in N and 5y | M = j}.

Proof: It follows immediately from the closure of M that U is a normal
measure in N. Let z € M. ji¥(z) is the transitive collapse of the structure
(F, Eyy) where

F={f:k—uaz|feN},
and
fEug <= {a]| fla)egla) } €U
By the closure of M inside N we have
F={f:k—za|feM}

which is the set of functions whose collapse is j¥ (x), so by the absoluteness
of the collapsing construction j5 (z) = j¥ (z).

¢

Lemma 2 will be useful in understanding restrictions of ultrapower maps,
as for example in the proof of the following lemma.

Lemma 3: Let U be a measure on x, W a measure on A\ < x and sup-
pose that W € Ult(V,U). Let My be the ultrapower of V' by U, My, the
ultrapower of V' by W. Then

Ult(My, W) = Ult( My, 55.(U))

and the following diagram commutes.

i

Vv My
jI‘/[// jMU
My g Ult(My, W)
Iy @)



Proof: Let z € V.
33 G () = g (G (),

by elementarity. W € My and (as A < k) *My C My, so that
Jw | My = jw".

In particular
g (G (@) = jw” (i ().

From this we can deduce that the two ultrapowers are equal (let z = V},),
and that the diagram commutes.

¢

We will use lemma 3 to analyse restrictions of iterated ultrapowers.

Lemma 4: Let £k : M — N be an elementary embedding between inner
models of ZFC. Let P € M be a forcing notion, let G' be P-generic over M
and let H be k(P)-generic over N. Suppose that

peG=k(p) € H.
Then

1. There is a unique extension of k to a map k* : M[G] — N[H] such
that k* : G — H.

2. If A is a set of ordinals such that
N ={k(F)(a)| FeM,uac[A]*},
then

N[H] = { k*(F)(a) | F' € M[G],a € [A]* }.



Proof: For the first claim, it is clear that if £* exists it must be given by
kY —s k()T

where 7¢ denotes the interpretation of the term 7 by the generic G.

We check that this is well-defined. Let 7¢ = &%, then there is p € G such
that p I-§' 7 = 6. By elementarity k(p) I-{p) k(7) = k(¢). By assumption
k(p) € H, so that k(7)" = k(&)". The proof that k* is elementary is entirely
similar.

For the second claim, let 7 € N[H]. Then 7 = k(F)(a) for some F € M
and a € [A]<¥, and we may take it that for all  in the domain F(z) is a

P-term. In M[G] we may define a function F; : x — F(2)%, and then

k*(Fy)(a) = k(F)(a)¥"(@ =+,

¢

Lemma 4 will be used to take elementary embeddings (usually finitely
iterated ultrapowers) and extend them onto certain generic extensions of
V. The second claim will play a key role in understanding the nature of
the extended embedding. The next lemmas goes into more detail about
the extensions that we will make. We start with a technical result about
equivalence between generics.

Lemma 5: Let P be the forcing notion given by a Reverse Easton iteration
of length x + 1, in which one Cohen subset of « is added at each strong
inaccessible o < k. Let GG; and G5 be P-generics over V', with the property
that V[G,] = V[Gs]. Then for any model V* agreeing with V to rank x + 1,
G1 and G5 are P-generic over V* and V*[G] = V*[Gy).

Proof: By the agreement P € V* and (since |P| = k) both models compute
the same maximal antichains, so G; and G4 are generic over V* for P. GG
is the interpretation under G5 of some term 7, and by the agreement again
we may take it that 7 € V*. So G; € V*[G] and wvice versa, so that
VG = V7[Gal.

¢

Next we give the lemma that will be used to generate measures.
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Lemma 6: Let GCH hold, and let j : V' — M be an embedding which
is a class in V, such that x = crit(j) and *M C M. Suppose also that the
ordinal j(k%) has cardinality x* in V. Let P be as in lemma 5, and observe
that P can be factored as P, followed by Add(k, 1) as computed by VFr.

Let G = G, * g be P-generic, and suppose that there is G; = G, * g; with
VIG] = VI[Gy].

Then in V[G] there are k™™ many H such that Gy * H is j(P)-generic
over M and j extends to j* : V[G] — M[G4][H].

Proof: By lemma 5 M[G]| = M[G,]. In M[G,] the factor iteration j(P)/G,
is highly-closed and has j(k*) many antichains. As P has the x*-chain
condition and M[G] = M[G,] we have V[G] E *M[G1] C M[G,]. Hence in
V[G] the forcing j(P)/G, is k*-closed, and the set of its maximal antichains
which lie in M[G4] has cardinality <.

We wish to build generics which are compatible with G. Working in
M|[G], define a function ¢ with domain the M-inaccessibles 1 such that
k <n<jk),byqn) =0 forn<j(k) and ¢(j(x)) = g. ¢ is a condition in
j(P)/G1. We build in V]G] a binary tree of height x* such that

e The top node is q.

e Any path is a descending sequence in j(P)/G1, meeting each antichain
in M[Gl]

e Every element has incompatible immediate successors.

The construction proceeds for the requisite k* steps, because j(P)/G is
kT-closed in V[G]. This construction will give us k™" distinct generic filters
H, each with the property that j“G C G; * H. We can use these to build
extensions j* of j such that 7*(G) = G; x H.

¢

This last construction was a “master condition” argument a la Silver;
notice that any extension of ¢ in j(P)/G would have done equally well as the
top node of the tree.

We will make heavy use of Mitchell’s theory of core models for sequences
of measures; nowadays this should be seen as a special case of the core model



theory for non-overlapping extenders (due to Mitchell, Dodd, Jensen and
Koepke) in which every extender happens to be equivalent to a measure.
The reader is referred to Mitchell’s paper [4] for proofs.

Definition 3: U is a coherent sequence of measures if and only if

e U is a function, with dom (/) € On x On.

For some function oV : On — On,

dom(U) = { (w,) [0 <n < o”(x) }.

If (k,n) € dom(T/) then U(k,n) is a normal measure on .

—

If (k,n) € dom(U), and j : V. — M is the ultrapower of V' by the
measure U(k,n) then

— For all a < &, (o, 8) € dom(j(U)) if and only if @ < k or @ = &
and 3 < n.

— If a < k and («, 8) € dom(j(U)) then
i) (e, 8) = U(a, §).

Definition 4: Let M be an inner model of ZFC, let
M E U is a coherent sequence of measures.
A normal iteration of M by ﬁ, of length n is a pair
(Mot <), (Jap : 0 < B <))
where
o My= M.
e M, is an inner model of ZFC for each o < 7.
e For a < 3 <n, jap : My — Mp is an elementary embedding.

i jaa = ida and for a < ﬁ <7, ja’y = jﬁ'y Ojaﬁ-
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i at+l — Ult(MOnjUOé(ﬁ)(’%mnOé))a and jaa-i—l My, — Ma+1 is the
associated ultrapower map, if « +1 < 7.

o If A <, Ais limit, then M, and j,, are had by taking a direct limit
in the natural way.

e The sequence (k, : a+ 1 < n) is strictly increasing.
The following structural fact is easy, by induction on a < 7.

Lemma 7: If (M,j) is a normal iteration of M by U in length n then for
every a < n

M, ={ jou(F)(a) | F € M,a € [A]*“ },

where A ={k, |v<a}.

We will denote by K Mitchell’s core model K[ﬁmam], which exists under
the assumption that there is no inner model in which 3k o(k) = . We
will use the following facts about K (see section 2 of [5]).

Lemma 8 (Mitchell): Suppose that =3k o(k) = ™t in any inner model
of ZFC. Then

e K is a uniformly definable inner model of ZFC+GCH.
e KFV =K.

o K F U‘mam is a coherent sequence of measures.

e K is invariant under set forcing.

e [f1: K — M is an elementary embedding into an inner model M
then ¢ arises from a normal iteration of K by U,,q..

It is worth making the following easy observations about K and U'mm.

Lemma 9: If K, U'mm are as above then

—

e All measures in K appear on the sequence U,,q,.
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e lfa<f< oﬁm”(/ﬁ) then Uppag (K, @) % Upaa (K, B).
o K F ﬁmm(l{, a) < ﬁmam(/ﬁ,ﬁ) iff o < 3.

We will be particularly interested in finite normal iterations of K, in the
case when there is a largest measurable on U,,q,.

Lemma 10: Suppose that x is the largest ordinal with oﬁm”(/ﬁ) > 0. Let
n+1 < w,let (M,7) be a normal iteration of K by Uy, of length n + 1,
with jo; the ultrapower of K by Uz (r,n) for some 7. Then

1. M, CK,and K "M, C M,,.

2. For each i < n, k; < jon(K).

3. In My, the ordinal jo,(x") has cardinality "
Proof:

1. The critical points are increasing and each model is closed inside the
previous one.

2. k; < joi(k), as k is the largest measurable on Uppas. 1 K < Joi (k) then
we are done as jo, (k) = jin(Joi(k)) > Joi(k); if ki = joi(k) then this is
the critical point of j;, s0 k; < jin(joi(K)) = jon (k).

3. The ordinals less than jg, (k1) all have the form

jUn(F) ('%0; HR h;nfl)a

where F' : [k]" — k. By GCH there are k™ such functions F.

¢

The next result puts some limits on the possible closure of the models in
a normal iteration of infinite length.
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Lemma 11: If (M,7) is a normal iteration of M by U, of length n > w,
then the sequence of ordinals £ = (k, : n < w) is not a member of M, for
w<a<n.

Proof: The model M, agrees with M, to rank k, + 1, so it is enough to
show that & ¢ M,,. M, was constructed as a direct limit, so if # € M, then
R = jnw(X) for some X € M,; in particular k, = jp,(A,). But crit(jpy) = kn
as we are in a normal iteration, so that s, ¢ rge(juw)-

¢

This completes the preliminaries. We make the remark that in what

follows we assume that the ground model is of form K [U,,..], but could have
taken it in the form L[U] because for suitable U we have L[U] E V = K[Uyz)-

3 Classifying measures

In this section we will take the core model K[ﬁmam] discussed in the last
section, in the case when there is a largest measurable on U'mm, and force
over it with an iteration P as in lemma 6. We will then classify completely
the measures on x in K[G], and will describe the Mitchell ordering on these
measures.

For the rest of this section let V' = K, and suppose that there is x maximal
with oY= (k) > 0. Fix G which is P-generic over K, where P is the Reverse
Easton iteration in which a Cohen subset is added to each inaccessible a < k,
as computed in K. As in lemma 6 we may factor P as P, x Add(k, 1), and
correspondingly we may factor G as Gy, * g.

Lemma 12: Let U be a measure on & in the model K[G]. Let
i:K|G]— N
be the ultrapower of K[G] by U. Let
ji K — K* = i(K)
be the restriction of ¢ to K. Then
1. i(G) = G, % g1 * H, where g, is Add(k, 1)-generic over K*[G,| and H
is j(P)/Gy * gi-generic over K*[G,][g1].
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2. If G1 = Gn * g1 then K[Gl] = K[G]
3. N = K*[i(G)].
1. §4G Ci(G).

5. 7 : K — K* is a finite normal iteration of K by U'mm, with the first
step being an ultrapower map with critical point x.

Proof:

By elementarity N = K*[i(G)], where K* is K[Upnqs] as computed in the
sense of N. i(G) is generic over K* for i(P), which equals j(PP) since P € K.

j : K — K* must be a normal iteration with first step an ultrapower
by a measure on k, because K is still K[U,,q,] in K[G]. In particular K and
K* agree to rank x + 1.

i(G) = Gy * g1 * H, where g; is generic for Add(k,1) as computed in
K*[G,] and H is generic for j(P)/G, * ;. K[G,] and K*[G,] agree to rank
k+ 1, s0 g1 is actually K[G] generic for Add(k,1). Also K[G;] and K*[G/]
agree to rank k + 1.

As N is an ultrapower, K[G] £ "N C N. As H is generic for highly
closed forcing, K[G] F "K*[G1] C K*[G1]. In particular g € K*[G1], so that
by the last paragraph g € K[G:]. Hence K[G| = K|[G,].

If j is not a finite iteration, then lemma 11 implies that there is an w-
sequence of ordinals ¥ € K[G] such that £ ¢ K*. But P is w;-closed, and
so & ¢ K*[G], in contradiction to what we just proved about the closure of
K*[G].

Definition 5: U € K[G] is an n-step extension of Upes(k,n) if, when we
define j as in the last lemma, j has length n 41 and the first step in j is the
application of Uz (K, 1) to K.

Notice that this is reasonable terminology, as when U is an n-step exten-
sion of Upez (K, 1) we certainly have Uy, (k,17) C U. The one-step extensions
are the easiest ones to understand.
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Lemma 13: Let n < oﬁm”(/ﬁ), and let j, : K — M, be the ultrapower of
K by Upaz(k,n). Then in K[G] the set of H; = g; * H such that (setting
G1 = GH S 91)

e (7, is P-generic over K.

e K[G] = K|[G4].

e H is j,(P)/G-generic over M,[G].
e j,°G CG,xH,.

has cardinality k™", and each one gives rise to a distinct one-step extension
Un, of Upas(K,n).

Proof: There are k generics g; such that K[G] = K[G,][g:1]. Fix one such,
and observe that by lemma 5 M, [G] = M,[G;]. By lemma 6 we may build
k*t* many appropriate generics H, and by cardinality considerations there
can be at most k™t many.

Let H be one such, and consider the unique map

Iy + K[G] — M,[Gh][H]

such that j; extends j, and 7;(G) = Gy * H. By lemma 4,
My[Gh][H] = { 5, (F) (%) | F € K[G] },

so lemma 1 tells us that j; is the ultrapower of K[G] by the measure
Ur={XCr|reyX)}

Distinct generics H; give distinct one-step extensions, because given Ug,
we may recover H; by computing ngEIG](G) =G, * Hy.

¢

This last lemma gives a complete description of the one-step extensions
of measures ﬁmax(f{, n). We need to do a bit more work to produce n-step
extensions; the point will be to guarantee that each critical point we use can
be defined from k in a certain way.
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Lemma 14: Let j : K — K™ be a normal iteration of K by Upnaw Of length
n + 1, with jgi(ﬁmm)(f@i,m) being applied at stage 7 in the iteration, and
ko = k. Then in K[G] there are k™t many H; = g; x H such that (setting
G1=Gexq)

(G, is P-generic over K.

o K[G] = K[G,].

H is j(P)/G;-generic over K*[G].

j“G C G, * Hy.
o If

7" K[G] — K*[G][Hi]
is the unique extension of j with 7*(G) = G, * Hy, then
KGR [Hi] = { 7 (F)(k) | F € K[G] }.

Proof: As before there are k™ appropriate ¢;, and we will fix one. Then we
know that K*[G| = K*[G1].

We will define a “master condition” for j(P)/G1, much as in lemma 6. As
there the condition ¢ will have value () at M-inaccessible n with k < n < j(k),
but ¢(j(k)) will be slightly bigger than in lemma 6. Define ¢(j(x)) by

o dom(g(j(s))) = +n.
* q(j(¥)) I K =g.
e ¢(j(k)+1i) =Ky, fori <n.

Just as in lemma 6 we may build k™" many H with ¢ as a member, and
argue that H is generic and that j“G C Gy x H. It will suffice to show that
for every i < n the ordinal x; has the form 7*(F)(k), as lemma 7 then shows
that every element of K*[G|[H;] may be written in this form. Now fix i < n,
and define a function F'in K[G] by

F(a) =g(a+1).

14



We have

7 (F)(k) = 7" (9)(k + 1) = H(j(r)) (K + i) = q(r) (K + i) = i,

so the lemma is proved.

¢

This result classifies the n-step extensions of measures on « in K. It
remains to determine when the relation <1 holds between two such extension
measures. As one might expect, the situation is simplest when considering
one-step extensions.

Lemma 15: Let U, V be two measures on  in K[G]. Suppose further that
U is a 1-step extension of Uy = ﬁmam(/ﬁ, ), using some generic H}, = gy * Hy,
and that V is a 1l-step extension of Vj = ﬁmax(/{,ﬁ) using some generic
H{ = gy * Hy. Set Gy = Gy * gy, Gy = Gy * gy

Then K[G] F U <V if and only if

e a< f
o H} c Ult(K,Vy)[G].
Proof: Let M = Ult(K,Uy), let N = Ult(K, V}).
e First suppose that K[G] F U < V. This means that
U e Ult(K[G],V) = N[Gy][Hy].

As K[G] = K|Gy] we know that N[G] = N|Gy]|. Hy is generic
for highly closed forcing, so this will imply that U € N|[G]. Since
K|G] F "N|G] C N[G], K|G] and N[G] agree to rank x + 1, so that

"'to that rank. In particular

there is agreement between jg T and jé,v I
Gu * Hy = i 9/(G) = iy V(G).

so that H}; € N|[G].
To show that o < 3, observe that N C K C K|[G]. Also

i NiG) = i,

15



so that the restriction of jiy [ to N is an embedding definable in N G,
from N to some well-founded model. It must therefore be a normal
iteration of N, since N is the core model of N[G]. But j,[]([G] I K = jf,

so that jg[G] | N = j{fo [ N. It is easy to see that the first step in the
iteration of NV induced by this restriction is to take the ultrapower by

Uy={XCk|XeN,rkejj(X)}
so that Uy € N. Hence Uy < Vp, and o < 5.

For the other direction, suppose that H}; € N[G] and a < (3, that is
KEU,<Vyandso Uy € N.

We will show that N[G] can reconstruct U from H};. K[G] and N|G]
(which equals N[Gy]) agree to rank « + 1, and jf; [ N = jj , what is
more N contains all canonical P-names for subsets of k. So if 7 is such
a name then N[G] can compute

j{]([G}(j_G) _ j[I](O(i_)GU*HU _ j[]]\;(i—)GU*HUa
and hence N|[G] can compute U, so

U € N[Gy] C N[Gy][Hy] = Ult(K[G], V).

Hence K[G] F U <V and we are done.

¢

At this point we are almost ready to describe the ordering <1 of one-
step extensions. What we still need is some idea of how many generics on
ji, (P)/G are constructed by models of the form Ult(K,V;)[G] as Vj runs
through the measures on x with Uy <1 V. The next lemma will provide us
with this information.

Lemma 16: Let o < f < 7 < Oﬁm”(/ﬁ). Let us define U = Upao(, @),
V' = Unpas(k, 8), and finally W = Upeu(k, 7). Then the Ult(K,U)[G]-
generics on ji (P)/G constructed in the model Ult(K,V)[G] form a proper
subset of those constructed in the model Ult(K,W)[G], and the same is true
if we restrict to those generics H such that j; “G C G « H.
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Proof: Let My = Ult(K,U) and define My, My, similarly. K and My, agree
to rank x + 1, so that My and N = Ult(My, V) agree to rank jy (k) +1. As
P is relatively small, My [G] and N[G] also agree to this level, which is much
greater than jy(k). So My |G| and N|[G]| construct the same generics H for
the forcing ji (P)/G.

But now by the same arguments as in lemma 6, My, [G] believes that it
can construct k" many generics, but that the inner model N[G] can only
build ™ many. This proves the lemma.

¢

We use this to get a picture of the ordering on one-step extensions in the
case when oUme= (k) = 3. This is fairly representative of the general case.

Lemma 17: Let oﬁm”(/ﬁ) = 3, with U = Upaa(£,0), V = Upaa(r, 1),
W = ﬁmax(/{, 2). Let My, My, My denote the ultrapowers of K by these
measures. Work in K[G]. Then we may divide the one-step extensions of
these measures into classes

e C): extensions of U via generics in My [G]. |Cy| = kT

e (C): extensions of U via generics in My [G] \ My[G]. |C1] = k™.
e (5 extensions of U via generics in K[G] \ Mw[G]. |Cs| = ™.
e (5: extensions of V' via generics in My [G]. |C1| = k™.

e Cy: extensions of V via generics in K[G] \ My [G]. |Cy| = k1.
e C5: extensions of W. |C5| = k™.

A measure from C; is below a measure from C; in the Mitchell ordering
if and only if

e i=0and je€ {3,4,5} OR
e ;=1and j =5 O0R

e i=3and j=5.

17



The proof is immediate. We give a picture which may make the shape of
the partial ordering clearer.

Cs
Cs Cy
Co Ch Cs

If instead of o(k) = 3 we take o(k) = w, we get an infinite partial ordering
P with an interesting universal property; if () is the four-element poset

then P does not embed (), and P embeds every finite poset which does
not embed (). This was pointed out to me by Andrew Jergens [2].

Baldwin speculated that the methods of [6] might extend to all well-
founded posets which embed neither ) nor the poset R given by

We observe that P does embed R.

18



Now we consider the general case of the Mitchell ordering between n-step
extensions. This problem is not quite as hard as one might expect, largely
because the question whether U < V' is controlled by the first step in the
iteration associated with V.

Theorem 1: Let U be an m + 1-step extension of Uy, via a generic object
H} = gy * Hy and an iteration (M, }) of length m + 1, with the ultrafilter
jgi(ﬁmm)(/{i,)\i) being applied to M; at stage i. Let V be an n + 1-step
extension of 1}, via a generic }{‘1, — gy * Hy and an iteration (IV, k) of length

n + 1, with the ultrafilter ko;(Upnaz ) (i, ;) being applied to N; at stage i.
Then K[G] EU <V if and only if

o Hy € Ult(K, Vy)[G].
e jom | Ult(K,Vp) is a finite normal iteration of Ult(K, V) by kUl(ﬁmam)-

Proof: Notice that Ny = Ult(K,Vy). As before we let Gy = G, * gy and
Gy =Gy * gy.

e Suppose that K[G]F U < V. Then
U € Ult(K[G],V) = N,[Gv][Hy],

so as in lemma 15 U € N,[G]. N; and N,, agree to rank s; + 1, so
by an easy chain condition argument the models N,[G] and N,,[G] also
agree to this rank, hence U € N;[G].

As in lemma 15 N;[G] can reconstruct H;, so that H}; € Ni[G].

For the second part just observe that j{]([G} I V(G = j,jjvl[G], so that
K[G]

Ju I N1 must give rise to a normal iteration of Ny by its version
of ﬁmax, which is k()l(ﬁmax)- But N; C K and jg[G} ' K = jom, SO
this amounts to saying that jo,, [ N is a normal iteration of N; by
kot (Unmaz)-

This iteration must be finite, as usual, because otherwise the first

w critical points will give a sequence which is in N;[G] but not in
Ult(M[G], U).
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e Suppose that H; € Ni[G], and that jo,, | N; can be written as an iter-
ation (N*, 7%) of length s+1, so that N* = jo,,(N1) and jom [ N1 = 75,-
We will show that Ni[G] can compute U; the proof is precisely parallel
to that in lemma 15. K[G] and N[G] agree to rank £ + 1, K and Ny

agree on the set of canonical names for subsets of x. If 7 is such a name
then (since 75, is a class in Ny)) N;[G] can compute

j(IJ([G}(f'G) — jOm(j_)GU*HU — sz(i—)GU*HU'

Just as in lemma 15 this gives U € N;[G], and by the same arguments
as we used in the first part of the proof this implies that U € N, [G],
hence that K[G]F U < V.

¢

Our next task is to explore the circumstances under which an iterated
ultrapower of K restricted to a one-step ultrapower N gives rise to a map
which is an iterated ultrapower of N.

The following lemma resolves the question about the restriction of a finite
iteration to a one-step ultrapower model.

Lemma 18: Let M be a model of ZFC, and assume
M E U is a coherent sequence.

Let x be the largest critical point on U. Let 7 be a finite normal iteration of
M, in which a measure

Um = ij(ﬁ) (h}ma ljfm)

is applied to M,, to get jpmms1 @ My, —> M, for each m < n. Let
Ko = K, jlp = . Let N = Ult(M,U'(;-c, (3)) for some (3, and suppose that
i=jN:N— j(N)is a finite normal iteration of N.

Then

1. For each m < n, U, € N,,.
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2. 1 has length n, and step m in the iteration z is the application of U,
to N,,.

3. The diagram

Jo1

M, My v - M,
ko k1 kn
N, ‘o1 Ny oo - N,

commutes, where k; : M; — N, is the ultrapower map arising from
the measure jo;(U(k, 3)).

Proof: M, can recover Uy by computing
Uy={X ePcnNMy|kejX)}

We can then build a commutative triangle

M, / M,
M,y

Since Pk N My =Pr N Ny and i = 5 [ N we have

Up={ X €PN Ny | & ei(X)},

and a commutative triangle
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N, ‘ N,
\ /
N,

So Uy € Ny. We make the easy observation that a < 3, because Ng is
the ultrapower of My by the measure U(f-c 3) on the coherent sequence U.
Applying lemma 3 the square

joi

MO Ml
ko kl
No o Ny

commutes.
We now attempt to argue that ¢y, and ji,, resemble each other. Let

AL = j01(/<6)-
Claim 1: In the situation described above
1. A\ =i (k).
V/\1+1 V/\1+1
3. jin [ Varky = ian [ Vil
Proof: M, and N, agree to rank x + 1, so by standard arguments

. NO o MO
io1 | Vn-}-l = jo1 | VH+1
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and
VAAf[Jlrl = 2'01(Vn]\4{01) = jOl(Vn]«vrol) - V/\]:]}Fl'

The key point is that both models compute the same set of functions from
K to Viiq.

If x € V/\]‘l/[}rl then x = jo1 (F)(k) = i1 (F)(k) for some such function, and
SO

Jin(x) = §(F) (k) = i(F) (k) = i1n(7)

by the normality of the iterations.

¢

Since k is the largest measurable on U, A1 is the largest on jm((j) and
hence k1 < A;. We know that x; = crit(ji,), so also k1 = crit(i,). What is
more

U1 = {XGPH1QM1|H1€].1“(X)}
= {XGPHIF\IN1|I€1€Z.17L(X)}.

Hence Uy is in Ny and 715 is the ultrapower of N; by Uj.

At this point we observe that since Ny is the ultrapower of M; by the
measure jm([j(/ﬁ, B3)), there is a certain agreement between the measure se-
quences in these models: namely these sequences agree below A\;, and at \;
the model N; has the same measures as M; up to the point jo;(05).

As a consequence we see that either k1 < A or k1 = Ay and g < jo1 ().

By lemma 3, we see that the diagram

Ji2

M, M,
k 1 k2
N N,

commutes.
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To finish the proof we just repeat these arguments, showing step by step
that the diagrams commute and the models N,, construct the measures U,,.

¢

The following corollary can be derived by a close inspection of the proof
of the preceding lemma.

Corollary 1: Given an iteration j of M and a model N as described above,
it is necessary and sufficient for j [ N to be an iteration of N that for all
m < n either £, < jom(K) or Ky = jom (k) and fy, < jom(5)-

We observe that as a consequence, if jg, induces an internal iteration of
Ult(K, Upas (5, B)), then it induces such an iteration of Ult(K, Upes(k,7))
for any v > (3.

We can finally undertake the general analysis of the ordering between
n-step extensions in K|[G].

Definition 6: Let a < o(k), and let 3 € (o, 0(k)) U {o0}.
For € («a,0(k)) let M(a, 3) be the set of extensions U of Uyge(k, o)
such that 3 is the least v with the following two properties:

1. The constructing generic Hy is in Ult(K, Upaz (1, 7))[G]-
2. jg[G} induces an internal iteration of Ult(K, Upas (K, 7).

For = oo let M(a, 3) be the set of those U such that no v as described
above exists.

The description of the ordering is given by the following result, whose
proof follows immediately from the work above.

Theorem 2: Every measure on x in K[G] is in a unique M («, ). M(«, [3)
has cardinality k' if 3 € (o, 0(k)) and cardinality k™ if § = oc.
IfU € M(a,3) and V € M(,0), then U < V if and only if 5 < 7.

24



References

[1] J. Cummings, Possible behaviours for the Mitchell ordering II. In prepa-
ration.

2] A. Jergens, Private communication.

(3] W. Mitchell, Sets constructible from sequences of ultrafilters. Journal of
Symbolic Logic 39 (1974) 57-66.

[4] W. Mitchell, The core model for sequences of measures. I. Math. Proc.
Camb. Phil. Soc. 95 (1984) 229-260.

[5] W. Mitchell, Indiscernibles, skies and ideals. In Contemporary Mathe-
matics 31 (1984) 161-182.

(6] S. Baldwin, The <-ordering on normal ultrafilters. Journal of Symbolic
Logic 51 (1985) 936-952.

25



