Strong ultrapowers and long core models

James Cummings, MIT

February 25, 1998

In his paper [4] Steel asked whether there can exist a normal measure U on a cardinal κ such that

 $\mathcal{P}\kappa^+ \subseteq Ult(V,U).$

In part one we use Reverse Easton forcing to show that this is consistent from a $\mathcal{P}_{2\kappa}$ -hypermeasure; in part two we show that the result of part one is sharp, using the core model for non-overlapping coherent extender sequences.

The proof in part one uses forcing technology due to Woodin.

1 Strong ultrapowers

It is a standard fact that if κ is $\mathcal{P}_2\kappa$ -hypermeasurable then there exists \vec{E} a coherent non-overlapping sequence of extenders such that

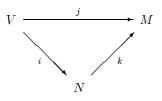
 $L[\vec{E}] \models \text{GCH} + \text{there exists a } (\kappa, \kappa^{++})\text{-extender } E \text{ with } V_{\kappa+2} \subset Ult(V, E).$

We will take advantage of this added structure in the proof.

Theorem 1: If in V GCH holds and there is a (κ, κ^{++}) -extender E such that $V_{\kappa+2} \subset Ult(V, E)$, then there is a generic extension \overline{V} of V in which κ carries a normal measure U such that

$$\mathcal{P}\kappa^+ \subseteq Ult(\bar{V}, U).$$

Proof: Let j be the ultrapower map $j: V \longrightarrow Ult(V, E)$. We factor j through the ultrapower by $\{X \mid \kappa \in j(X)\}$ to get a commutative triangle



Let $\lambda = \operatorname{crit}(k)$. Then by GCH and standard facts about ultrapowers

$$\lambda = (\kappa^{++})_N < i(\kappa) < i(\kappa^{++}) = \kappa^{++} = (\kappa^{++})_M < j(\kappa)$$

Moreover we may describe the relation between M, N and V in the following terms;

$$M = \{ j(F)(a) \mid F \in V, a \in [\kappa^{++}]^{<\omega}, \operatorname{dom}(F) = [\kappa]^{|a|} \}$$

= $\{ k(G)(a) \mid G \in N, a \in [\kappa^{++}]^{<\omega}, \operatorname{dom}(G) = [\lambda]^{|a|} \}.$

This last fact will enable us to transfer generics for sufficiently dense forcings along maps extending k (see [2] for detailed proofs of the necessary facts).

The construction will be in two steps, with the first step providing a generic object for use in the second step; each step is a "Reverse Easton" iteration of length $\kappa + 1$. For a treatment of this style of forcing see Baumgartner's paper [1], from which we will quote facts about Reverse Easton forcing as we need them.

The first step

Our aim in this step is to force so as to produce a model V^* with the following properties.

- 1. GCH holds in V^* .
- 2. In V^* there is a (κ, κ^{++}) -extender such that if $j^* : V^* \longrightarrow M^*$ is the ultrapower by that extender then $V^*_{\kappa+2} \subseteq M^*$.
- 3. If $i^* : V^* \longrightarrow N^*$ is the ultrapower of V^* by the canonical normal measure $\{X \mid \kappa \in j^*(X)\}$, and Q is the Cohen forcing $Add(\kappa, \kappa^{++})$ as computed in V^* , then there is $F \in V^*$ which is $i^*(Q)$ -generic over N^* .

We iterate the Cohen forcing $Add(\alpha^+, \alpha^{++})$ at inaccessible $\alpha \leq \kappa$ in a Reverse Easton fashion. That is to say we define by induction

- 1. $P_0 = 0.$
- 2. $P_{\alpha+1} = P_{\alpha} * \dot{Q}_{\alpha}$, where \dot{Q}_{α} names $Add(\alpha^+, \alpha^{++})_{V[G_{\alpha}]}$ if α is inaccessible and 0 otherwise.
- 3. For limit λ the forcing P_{λ} is the direct limit of $\langle P_{\alpha} : \alpha < \lambda \rangle$ if λ is inaccessible, and the inverse limit of that sequence otherwise.

This inductive definition gives us finally a poset $P_{\kappa+1}$. From the results in [1] it follows that $P_{\kappa+1}$ is κ^{++} -c.c. and preserves cardinals and the GCH. We observe also that $P_{\kappa+1} \subseteq H_{\kappa^{++}}$.

Let G_{κ} denote a P_{κ} -generic over V, let P be $Add(\kappa^+, \kappa^{++})$ as computed in $V[G_{\kappa}]$, and let g be P-generic over $V[G_{\kappa}]$. Factor P as

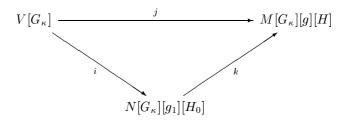
$$P_1 \times P_2 = Add(\kappa^+, \lambda) \times Add(\kappa^+, \kappa^{++} \setminus \lambda)$$

and split up g as $g_1 \times g_2$ accordingly. It may easily be argued that k can be extended to a new map (which we also call k to avoid a plague of sub- and super-scripts)

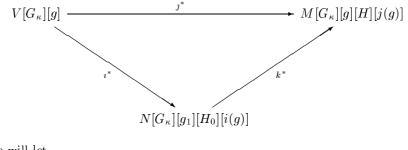
$$N[G_{\kappa}][g_1] \xrightarrow{k} M[G_{\kappa}][g]$$

In the model $N[G_{\kappa}][g_1]$ define a forcing $R = i(P_{\kappa})/G_{\kappa} * g_1$. Using results in [1] again we have that in $N[G_{\kappa}][g_1]$ the forcing R is λ^+ -closed, is of cardinality $i(\kappa)$, and has the $i(\kappa)$ -c.c. In particular that model believes R to have $i(\kappa)$ maximal antichains.

Now $V[G_{\kappa}][g_1] \models {}^{\kappa}N[G_{\kappa}][g_1] \subseteq N[G_{\kappa}][g_1]$ and by GCH the V-cardinality of $i(\kappa)$ is κ^+ , so that in $V[G_{\kappa}][g_1]$ we may construct H_0 which is R-generic over $N[G_{\kappa}][g_1]$. By the closure of R in $N[G_{\kappa}][g_1]$ we may transfer H_0 along k to get $H \in V[G_{\kappa}][g]$ which is R-generic over $M[G_{\kappa}][g]$, and maps



Transferring g successively along i, k we can build in $V[G_{\kappa}][g]$ a commutative triangle



We will let

$$V^* = V[G_{\kappa}][g], M^* = M[G_{\kappa}][g][H][j(g)], N^* = N[G_{\kappa}][g_1][H_0][i(g)]$$

We need to check that M^* is the ultrapower of V^* by a (κ, κ^{++}) -extender, that $V_{\kappa+2}^* \subseteq M^*$, and that $i^* : V^* \longrightarrow N^*$ is in fact the ultrapower of V^* by $\{X \mid \kappa \in j^*(X)\}.$

The first and third of these points are immediate by results in [2]. For the second it suffices to remark that

$$V \models [\kappa^+ \times P_{\kappa+1}]^{\kappa^+} \subseteq M,$$

that elements of $V_{\kappa+2}^*$ may be coded by subsets of κ^+ in V^* , and that $P_{\kappa+1}$ has the κ^{++} -c.c. For this shows that every subset of κ^+ in $V[G_{\kappa}][g]$ has a canonical name in $[\kappa^+ \times P_{\kappa+1}]^{\kappa^+}$, so lies in $M[G_{\kappa}][g]$ which is a submodel of M^* .

To show that we can find F, return to that stage of the construction where we had defined a map in $V[G_{\kappa}][g_1]$

$$V[G_{\kappa}] \xrightarrow{i} N[G_{\kappa}][g_1][H_0]$$

Observe that we may transfer g_1 along *i* to get an **internal** ultrapower of $V[G_{\kappa}][g_1]$

$$V[G_{\kappa}][g_1] \xrightarrow{\imath^{\dagger}} N[G_{\kappa}][g_1][H_0][\imath^{\dagger}(g_1)]$$

Let Q be $Add(\kappa, \kappa^{++})$ as computed in $V[G_{\kappa}][g_1]$. A result of Woodin (see [2] for the proof) tells us that, since $V[G_{\kappa}][g_1]$ is a model with $2^{\kappa} = \kappa^+$, there is an isomorphism in $V[G_{\kappa}][g_1]$ between $Add(\kappa^+, \kappa^{++})$ as defined in that model and $i^{\dagger}(Q)$. Hence we may rearrange g_2 as F which is $i^{\dagger}(Q)$ -generic over $N[G_{\kappa}][g_1][H_0][i^{\dagger}(g_1)]$.

Finally, observe that Q is the $Add(\kappa, \kappa^{++})$ of V^* , that $i^{\dagger}(Q) = i^*(Q)$, and that F is still generic over N^* because N^* is had from $N[G_{\kappa}][g_1][H_0][i^{\dagger}(g_1)]$ by adding a generic (namely $i(g_2)$) for forcing so closed that it adds no new antichains in $i^*(Q)$.

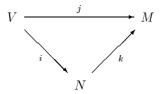
We have found V^\ast and F as desired, so the first step of the construction is complete.

The second step

To avoid having unwanted asterisks decorating every model and embedding we re-initialise our notation; our new starting assumptions are

- 1. GCH holds in V.
- 2. There is a (κ, κ^{++}) -extender such that if $j : V \longrightarrow M$ is the ultrapower by that extender then $V_{\kappa+2} \subseteq M$.
- 3. If $i: V \longrightarrow N$ is the ultrapower of V by the normal measure on κ defined as $\{X \mid \kappa \in j(X)\}$, and Q is the Cohen forcing $Add(\kappa, \kappa^{++})$, then there is $F \in V$ which is i(Q)-generic over N.

Exactly as before we have a triangle



 λ is still the critical point of k and

$$\lambda = (\kappa^{++})_N < i(\kappa) < i(\kappa^{++}) = \kappa^{++} = (\kappa^{++})_M < j(\kappa).$$

We now iterate $Add(\alpha, \alpha^{++})$ at every inaccessible $\alpha \leq \kappa$. Arguing as in step one $P_{\kappa+1}$ is κ^+ -c.c. and preserves cardinals, also $P_{\kappa+1} \subset H_{\kappa^{++}}$. $P_{\kappa+1}$ adds κ^{++} generic subsets of κ .

Let G_{κ} be P_{κ} -generic over V, let P be $Add(\kappa, \kappa^{++})$ as computed in $V[G_{\kappa}]$, let g be P-generic over $V[G_{\kappa}]$. Factor P as

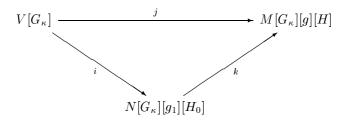
$$P_1 \times P_2 = Add(\kappa^+, \lambda) \times Add(\kappa, \kappa^{++} \setminus \lambda)$$

and split up g as $g_1 \times g_2$.

Just as in the first step we can easily extend k to get

$$N[G_{\kappa}][g_1] \xrightarrow{k} M[G_{\kappa}][g]$$

If we let $R = i(P_{\kappa})/G_{\kappa} * g_1$, then as in step one we may build $H_0 \in V[G_{\kappa}][g_1]$ which is *R*-generic over $N[G_{\kappa}][g_1]$ and transfer it along *k*. We then have in $V[G_{\kappa}][g]$ a triangle



It is at this point that we need to do something new, as P is not closed enough to permit transfer of g along j, i. What saves us is the generic object $F \in V$ for the forcing i(Q), where $Q = Add(\kappa, \kappa^{++})_V$.

Let us define in V a partial ordering \dot{P}/P_{κ} . The members of this partial ordering are canonical terms in $V^{P_{\kappa}}$ for members of P, and they are ordered by

$$\dot{\sigma} \leq \dot{\tau} \iff \Vdash_{P_{\kappa}} \dot{\sigma} \leq_{\dot{P}} \dot{\tau}.$$

We refer the reader to [2] for proofs of the following facts.

- 1. \dot{P}/P_{κ} is isomorphic in V to Q.
- 2. If G is P_{κ} -generic over V and H is \dot{P}/P_{κ} -generic over V then

$$H^G = \{ \dot{\sigma}^G \mid \dot{\sigma} \in H \}$$

is P-generic over V[G].

We now apply the elementary embedding i to get a corresponding set of statements true in N. This shows that we may rearrange F as F^* which is $i(\dot{P}/P_{\kappa})$ -generic over N. We may then compute $X_0 = F^{*(G_{\kappa}*g_1*H_0)}$ and conclude that X_0 is i(P)-generic over $N[G_{\kappa}][g_1][H_0]$. Since $\lambda < i(\kappa)$ we may transfer X_0 along k to get $X \in V[G_{\kappa}][g]$ which is j(P)-generic over $M[G_{\kappa}][g][H]$.

The last hurdle to be overcome is that, since X was obtained by these underhand means, there is no guarantee that $j^{"}g \subseteq X$. Hence we may not be able to lift the embedding j to get a map from $V[G_{\kappa}][g]$ to $M[G_{\kappa}][g][H][X]$.

The cure for this is to notice that for each condition $p \in X$

$$|\operatorname{dom}(p) \cap \kappa \times j \, "\kappa^{++}| \le \kappa$$

in $V[G_{\kappa}][g]$. As in [2] this enables us to alter p to conform with j, g using the fact that

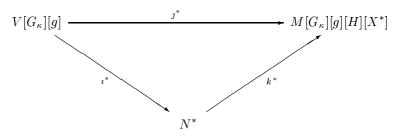
$$V[G_{\kappa}][g] \models {}^{\kappa} M[G_{\kappa}][g][H] \subseteq M[G_{\kappa}][g][H].$$

Each p has fewer than $j(\kappa)$ possible alterations in $M[G_{\kappa}][g][H]$ so it can be argued that the altered generic X^* is still j(P)-generic over the model $M[G_{\kappa}][g][H]$. Using this we may now build in $V[G_{\kappa}][g]$ a map

$$V[G_{\kappa}][g] \xrightarrow{j^*} M[G_{\kappa}][g][H][X^*]$$

It remains only to be seen that in $V[G_{\kappa}][g]$ this map j^* is the ultrapower by $U = \{ X \mid \kappa \in j^*(X) \}$, and that $\mathcal{P}\kappa^+ \subset Ult(V, U)$.

For the first statement factor j^* through the ultrapower by U, to get a triangle



Since the powerset of κ is contained in N^* and has size κ^{++} it is immediate that $\operatorname{crit}(k) > \kappa^{++}$. But j^* arises from a (κ, κ^{++}) -extender so $j^* = i^*$ and $M^* = N^*$.

Finally consider subsets of κ^+ in $V[G_{\kappa}][g]$. As before we know that

$$V \models [\kappa^+ \times P_{\kappa+1}]^{\kappa^+} \subseteq M.$$

This time round we may use this to conclude that (since $P_{\kappa+1}$ has the κ^+ -c.c)

 $V^* \models \mathcal{P}\kappa^+ \subset N^*.$

The proof of theorem 1 is complete.

١

2 Long core models

We use the theory of core models for non-overlapping extender sequences; we refer the reader to [3] for an overview of this theory. We work under the blanket assumption that there is no inner model of a strong cardinal; this is harmless, as we are aiming to get an inner model of a much weaker hypothesis.

We will use the following facts about inner models and core models. We use "extender sequence" as shorthand for "non-overlapping coherent extender sequence".

Fact 1: If \vec{E} is such that

 $L[\vec{E}] \models \vec{E}$ is a extender sequence and $(\kappa, \kappa^{++}) \in \operatorname{dom}(\vec{E})$

then

 $L[\vec{E}] \vDash \kappa$ is $\mathcal{P}_2 \kappa$ -hypermeasurable.

Recall from [3] that a predicate \vec{E} is strong if

 $K[\vec{E}] \models \vec{E}$ is a extender sequence.

Fact 2: If \vec{E} is strong then

 $L[\vec{E}] \models \vec{E}$ is a extender sequence.

Fact 3: There is a class \vec{F}_{can} such that

- 1. \vec{F}_{can} is strong.
- 2. If $\pi: K[\vec{F}_{can}] \longrightarrow W$ is an elementary embedding into a transitive class W then W is a normal iteration of $K[\vec{F}_{can}]$.
- 3. If $\lambda = cf(\lambda) > \omega$ then $\vec{F}_{can} \cap H_{\lambda}$ and $K[\vec{F}_{can}] \cap H_{\lambda}$ are uniformly definable over H_{λ} .

Theorem 2: Let κ be measurable, with U a normal measure on κ such that

$$\mathcal{P}\kappa^+ \subseteq Ult(V,U).$$

Then there is an inner model in which κ is $\mathcal{P}_2\kappa$ -hypermeasurable.

Proof: Let $i: V \longrightarrow N = Ult(V, U)$ be the ultrapower by U. Certainly $2^{\kappa} > \kappa^+$ in V. By forcing to add a Cohen subset of κ^{++} we change nothing essential, so may assume that in V we have

$$2^{\kappa} = 2^{\kappa^+} = \kappa^{++}.$$

Notice also that $\kappa^{++} = (\kappa^{++})_N$, and that $H_{\kappa^{++}} \subset N$. Let $\vec{F} = \vec{F}_{can}$. Define \vec{G} by

$$\vec{G} = i(\vec{F}) = (\vec{F}_{can})_N.$$

By the agreement between V and N we know that

$$K[\vec{F}] \cap H_{\kappa^{++}} = K^N[\vec{G}] \cap H_{\kappa^{++}}.$$

Also we know that we have an elementary embedding

$$i \upharpoonright K[\vec{F}] : K[\vec{F}] \longrightarrow K^N[\vec{G}].$$

Claim 1: $(\kappa, \kappa^{++}) \in \operatorname{dom}(\vec{F}).$

Proof: We know that $i \upharpoonright K[\vec{F}]$ is a normal iteration of $K[\vec{F}]$. The first extender to be applied in that iteration must have critical point κ because $\kappa = \operatorname{crit}(i)$. Suppose that the first extender applied is $\vec{F}(\kappa, \eta)$, and suppose towards a contradiction that $\eta < \kappa^{++}$. The coherence property gives us that

$$(\kappa, \eta) \notin \operatorname{dom}(\vec{G})$$

which contradicts the agreement between $K[\vec{F}]$ and $K^N[\vec{G}]$. Hence $\eta \ge \kappa^{++}$, so $(\kappa, \kappa^{++}) \in \operatorname{dom}(\vec{G})$.

It follows from this and the facts we quoted above that the cardinal κ is $\mathcal{P}_{2}\kappa$ -hypermeasurable in the model $L[\vec{F}]$.

The author would like to thank Alessandro Andretta for drawing this problem to his attention.

٠

References

- [1] James E. Baumgartner. Iterated forcing. Surveys in set theory, ed. Mathias.
- [2] James Cummings. A model in which GCH holds at successors but fails at limits. To appear in Transactions of the AMS.
- [3] Peter Koepke. An introduction to extenders and core models for extender sequences. Logic Colloquium '87.
- [4] John Steel. The wellfoundedness of the Mitchell order. To appear.