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1 Introdution and PreliminariesThe fat that the notion of strong ompatness is a singularity in the largeardinal hierarhy is well-known. There is, of ourse, the fundamental workof Magidor [19℄, showing that the least strongly ompat ardinal � an beeither the least superompat ardinal or the least measurable ardinal (inwhih ase � isn't even 2� superompat). A generalization of this work byKimhi and Magidor [16℄ shows that the (possibly proper) lasses of super-ompat and strongly ompat ardinals an oinide exept at measurablelimit points, where a result of Menas [21℄ shows they an't. Magidor hasalso shown (in unpublished work that doesn't even appear in [16℄) that it isonsistent, relative to n 2 ! superompat ardinals, for the �rst n stronglyompat ardinals to be the �rst n measurable ardinals.Although Magidor's work was groundbreaking and established the general�eld of \identity risis studies", there has been additional, extensive researhdone in this area. We mention three suh results along these lines. One isthe work of [7℄, in whih, roughly speaking, a model with a level by levelorrespondene between degrees of strong ompatness and superompat-ness is provided. Another is the work of [6℄, where, using the just mentionedunpublished tehniques of Magidor and tehniques from [8℄, relative to n 2 !superompat ardinals, a model in whih the �rst n measurable ardinals�1; : : : ; �n are both the �rst n strongly ompat ardinals and are so thateah �i is �+i superompat is onstruted. In the model of [6℄, 2�i = �++i2



for i = 1; : : : ; n. A third is the work of [2℄, in whih it is shown, roughlyspeaking, that the superompat and non-superompat strongly ompatardinals an in a generi extension onform to any pattern presribed by a�xed ground model funtion.The purpose of this paper is to add to the litany of onfusion by showing,again using among other tehniques the aforementioned unpublished ideas ofMagidor, that the lass of strongly ompat ardinals an assume yet anotheridentity. Spei�ally, we prove the following.Theorem 1 Con(ZFC + There is a proper lass of superompat ardinals)=) Con(ZFC + There is a proper lass of strongly ompat ardinals +No strongly ompat ardinal � is 2� = �+ superompat + 8�[� is stronglyompat i� � is strong℄.Unlike Magidor's result that the �rst n (for n 2 !) strongly ompatardinals an be the �rst n measurable ardinals and the result of [6℄, thereis no barrier to proving Theorem 1 for more than �nitely many stronglyompat ardinals. In fat, while these results require severe restritions onthe large ardinal struture of the ground model, the large ardinal struturefor the ground model of Theorem 1, modulo a proper lass of superompatardinals, an otherwise be ompletely arbitrary. We will omment on thismore at the end of Setion 2.The struture of this paper is as follows. Setion 1 ontains our introdu-tory omments and preliminary remarks onerning notation, terminology,3



et. Setion 2 ontains a proof of Theorem 1 for one ardinal, i.e., a on-strution of a model, relative to a superompat ardinal, in whih the leaststrongly ompat ardinal � is the least strong ardinal and isn't 2� = �+superompat. Setion 3 ontains a proof of Theorem 1 in the general ase.Setion 4 disusses some possible generalizations of Theorem 1 and ontainsour onluding remarks.Before giving the proof of Theorem 1, we briey mention some preliminaryinformation. Essentially, our notation and terminology are standard, andwhen this is not the ase, this will be learly noted. For � < � ordinals,[�; �℄; [�; �); (�; �℄, and (�; �) are as in standard interval notation.When foring, q � p will mean that q is stronger than p. If G is V -generiover P, we will use both V [G℄ and V P to indiate the universe obtained byforing with P. If we also have that � is inaessible and P = hhP�; _Q�i : � <�i is an Easton support iteration of length � so that at stage �, a non-trivialforing is done based on the ordinal Æ�, then we will say that Æ� is in the �eldof P. If x 2 V [G℄, then _x will be a term in V for x. We may, from time totime, onfuse terms with the sets they denote and write x when we atuallymean _x, espeially when x is some variant of the generi set G, or x is in theground model V .If � < � are regular ardinals, then Add(�; �) is the standard partialordering for adding � Cohen subsets to �. If � is a regular ardinal andP is a partial ordering, P is �-losed if for every sequene hp� : � < �i ofelements of P so that � <  < � implies p� � p (an inreasing hain of4



length �), there is some p 2 P (an upper bound to this hain) so that p� � pfor all � < �. P is < �-losed if P is Æ-losed for all ardinals Æ < �. P is �-direted losed if for every ardinal Æ < � and every direted set hp� : � < Æiof elements of P (where hp� : � < Æi is direted if for every two distintelements p�; p� 2 hp� : � < Æi, p� and p� have a ommon upper bound ofthe form p�) there is an upper bound p 2 P. P is �-strategially losed if inthe two person game in whih the players onstrut an inreasing sequenehp� : � � �i, where player I plays odd stages and player II plays even andlimit stages (hoosing the trivial ondition at stage 0), then player II has astrategy whih ensures the game an always be ontinued. Note that if P is�-strategially losed and f : � ! V is a funtion in V P, then f 2 V . P is< �-strategially losed if P is Æ-strategially losed for all ardinals Æ < �.P is � �-strategially losed if in the two person game in whih the playersonstrut an inreasing sequene hp� : � < �i, where player I plays oddstages and player II plays even and limit stages, then player II has a strategywhih ensures the game an always be ontinued. Note that trivially, if P is< �-losed, then P is < �-strategially losed and � �-strategially losed.The onverse of both of these fats is false.Suppose as in the preeding paragraph that � < � are regular ardinals.A partial ordering P that will be used throughout the ourse of this paperis the partial ordering for adding a non-reeting stationary set of ordinalsof o�nality � to �. Spei�ally, P is de�ned as fp : For some � < �,p : �! f0; 1g is a harateristi funtion of Sp, a subset of � not stationary5



at its supremum nor having any initial segment whih is stationary at itssupremum, so that � 2 Sp implies � > � and of(�) = �g, ordered by q � pi� q � p and Sp = Sq \ sup(Sp), i.e., Sq is an end extension of Sp. It is well-known that forG V -generi over P (see [9℄ or [16℄), in V [G℄, if we assume GCHholds in V , a non-reeting stationary set S = S[G℄ = [fSp : p 2 Gg � �of ordinals of o�nality � has been introdued, the bounded subsets of �are the same as those in V , and ardinals, o�nalities, and GCH have beenpreserved. It is also virtually immediate that P is �-direted losed, and itan be shown (see [9℄ or [16℄) that P is � �-strategially losed.We mention that we are assuming familiarity with the large ardinalnotions of measurability, strongness, superstrongness, strong ompatness,and superompatness. We will also at the end of this paper refer to thelarge ardinal notions of Woodinness and Shelahness. Interested readersmay onsult [15℄, [20℄, or [22℄ for further details. We mention only thatunlike [15℄, we will say that the ardinal � is � strong for � > � if thereis j : V ! M an elementary embedding having ritial point � so thatj(�) > � and V� � M . As always, � is strong if � is � strong for every� > �. We will also say the ardinal � is superstrong with target � if there isj : V !M an elementary embedding having ritial point � so that j(�) = �and V� � M . If j0 : V ! M witnesses that � is superstrong with target� and j1 : M ! N witnesses the measurability of � in M , then it is easilyveri�ed that j1 Æ j0 : V ! N witnesses that � is � strong.We mention that we are also assuming some familiarity with the basis of6



extender tehnology and the transferene of generi objets via elementaryembeddings. The setion on bakground material of [10℄ is extremely usefulin this regard. We will freely, partiularly in the proofs of Lemmas 2.4 and2.5, use notation, de�nitions, and terminology found here. Readers may alsoonsult [20℄ for additional details onerning extenders.Finally, both authors wish to express their gratitude to Menahem Magi-dor for his explanations to them given at the January 7-13, 1996 meeting inSet Theory held at the Mathematis Researh Institute, Oberwolfah, Ger-many on his method of foring to make the �rst n measurable and stronglyompat ardinals oinide, for any �nite n.2 The Proof of Theorem 1 for One CardinalIn this setion, we will onstrut, starting with a superompat ardinal, amodel in whih the least strongly ompat ardinal � is the same as theleast strong ardinal and � isn't 2� = �+ superompat. We begin with thefollowing lemma, whih also appears as Lemma 3.1 of [5℄.Lemma 2.1 Let � be at least 2� superompat and strong. Assume j : V !M is an elementary embedding witnessing at least the 2� superompatness of�, and let � be the normal measure over � assoiated with j. Then fÆ < � : Æis a strong ardinalg 2 �.Proof: We �rst show, for j and � as in the statement of Lemma 2.1, thatfÆ < � : Æ is � strongg 2 �. (See also the proof of Proposition 26.11 of [15℄.)7



To see this, note that sine M2� � M , j � V�+1 2 M . Thus, as in [3℄, page203, there is E 2M a (�; j(�)) extender and k : M ! Ult(M; E) so that � isthe ritial point of k and M and Ult(M; E) agree through rank j(�). Thismeans M � \� is superstrong with target j(�)", so by reetion, fÆ < � : Æis superstrong with target �g 2 �. By our remarks in Setion 1, fÆ < � : Æ is� strongg 2 �.Fix now Æ < � so that V � \Æ is � strong". We show that if � > �is arbitrary, V � \Æ is � strong". Let �0 > � be so that any extender Ewitnessing the � strongness of Æ is suh that E 2 V�0 . By the strongness of�, let j� : V !M� be an embedding having ritial point � witnessing that� is �0 strong. Sine V � \Æ is � strong", M� � \j�(Æ) = Æ is j�(�) > �0 > �strong". As V�0 � M� and M� � \Æ is � strong", V � \Æ is � strong". Thisproves Lemma 2.1. �We observe that in the above proof, it will atually be the ase thatM � \� is a strong limit of strong ardinals". This is sine M � \� is j(�)strong and j(�) is strong", so by the seond paragraph of the above proof,M � \� is strong". Further, if Æ < � is so that V � \Æ is strong", thenM � \j(Æ) = Æ is strong". Thus, by reetion, we have the more powerfulfat that fÆ < � : Æ is a strong limit of strong ardinalsg 2 �.We turn now to the proof of Theorem 1.Proof: Let V � \ZFC + � is superompat". Without loss of generality,by �rst doing a preliminary foring if neessary, we may also assume that8



V � GCH.By Lemma 2.1, let A = hÆ� : � < �i be an enumeration of the strongardinals below �. The partial ordering P� we use in the proof of Theorem1 given in this setion is the Easton support iteration hhP��; _Q��i : � < �i,where P�0 is the partial ordering Add(!; 1) and P�� \ _Q�� adds a non-reetingstationary set of ordinals of o�nality ! to Æ�".Lemma 2.2 V P� � \No ardinal Æ < � is strong".Proof: Let Æ < � be so that V � \Æ is strong". It must therefore be thease that Æ = Æ� for some � < �. This allows us to write P� = P�� � _Q�� � _R =P��+1 � _R .By the de�nition of P� and the fat that any stationary subset of ameasurable (or weakly ompat) ardinal must reet, V P��+1 � \Æ isn'tmeasurable (and hene isn't strong) sine there is S � Æ whih is a non-reeting stationary set of ordinals of o�nality !". Sine by the de�nitionof P�, P��+1 \ _R is Æ0-strategially losed for Æ0 the least inaessible aboveÆ", V P��+1 = V P� � \S � Æ is a non-reeting stationary set of ordinals ofo�nality !, so Æ isn't measurable". Thus, V P� � \No V -strong ardinalÆ < � is measurable". The proof of Lemma 2.2 will therefore be ompleteone we have shown there is no ardinal Æ < � so that V P� � \Æ is strong".Write P� as P�0 � _Q . By the de�nition of P, jP�0 j = ! and P�0 \ _Q is�1-strategially losed". Therefore, using Hamkins' terminology of [12℄, [13℄,and [14℄, P� is a \gap foring admitting a very low gap", so by the results9



of [12℄, [13℄ and [14℄, V P� � \Any strong ardinal was already strong in V ".This means V P� � \No ardinal Æ < � is strong". This proves Lemma 2.2.�Lemma 2.3 V P� � \No ardinal Æ < � is strongly ompat".Proof: By Lemmas 2.1 and 2.2, V P� � \There are unboundedly in � manyardinals Æ < � ontaining a non-reeting stationary set of ordinals of o�-nality !". It is a theorem of [22℄ that if a ardinal  ontains a non-reetingstationary set of ordinals of o�nality �, then there are no strongly ompatardinals in the interval (�; ℄. Thus, V P� � \No ardinal Æ < � is stronglyompat". This proves Lemma 2.3. �Lemma 2.4 V P� � \� is strongly ompat".Proof: The proof of Lemma 2.4 uses the unpublished ideas of Magidorreferred to at the beginning of this paper. (See also the proof of Lemma 4of [6℄.) Let � > 2� = �+ be an arbitrary suessor of a regular ardinal, andlet k1 : V !M be an embedding witnessing the � superompatness of � sothat M � \� is < � superompat but � isn't � superompat". � has beenhosen large enough so that we may assume by hoosing a normal ultra�lterof Mithell order 0 over � that k2 : M ! N is an embedding witnessingthe measurability of � de�nable in M so that N � \� isn't measurable".10



It is the ase that if k : V ! N is an elementary embedding with ritialpoint � and for any x � N with jxj � �, there is some y 2 N so thatx � y and N � \jyj < j(�)", then k witnesses the � strong ompatness of�. Using this fat, it is easily veri�able that j = k2 Æ k1 is an elementaryembedding witnessing the � strong ompatness of �. We show that j extendsto j : V P� ! N j(P�). Sine this extended embedding witnesses the � strongompatness of � in V P�, this proves Lemma 2.4.To do this, write j(P�) as P�� _Q�� _R� , where _Q� is a term for the portion ofj(P�) between � and k2(�) and _R� is a term for the rest of j(P�), i.e., the partabove k2(�). Note that sine N � \� isn't measurable", � 62 �eld( _Q�). Also,sine Lemma 2.1 and the sueeding paragraph imply thatM � \� is strong",by elementarity, N � \k2(�) is strong". Thus, the �eld of _Q� is omposedof all N -strong ardinals in the interval (�; k2(�)℄ (so k2(�) 2 �eld( _Q�)),and the �eld of _R� is omposed of all N -strong ardinals in the interval(k2(�); k2(k1(�))).Let G0 be V -generi over P�. We onstrut in V [G0℄ an N [G0℄-generiobjet G1 over Q� and an N [G0℄[G1℄-generi objet G2 over R� . Sine P� isan Easton support iteration of length �, a diret limit is taken at stage �, andno foring is done at stage �, the onstrution of G1 and G2 automatiallyguarantees that j 00G0 � G0 �G1 �G2. This means that j : V ! N extendsto j : V [G0℄! N [G0℄[G1℄[G2℄.To build G1, note that sine k2 an be assumed to be generated byan ultra�lter U over � and sine in both V and M , 2� = �+, jk2(�+)j =11



jk2(2�)j = jff : f : � ! �+ is a funtiongj = j[�+℄�j = �+. Thus, asN [G0℄ � \j}(Q�)j = k2(2�)", we an let hD� : � < �+i enumerate in V [G0℄the dense open subsets of Q� present in N [G0℄. Sine the � losure of Nwith respet to either M or V implies the least element of the �eld of Q� is> �+, the de�nition of Q� as the Easton support iteration whih adds a non-reeting stationary set of ordinals of o�nality ! to eah N [G0℄-strong ar-dinal in the interval (�; k2(�)℄ implies that N [G0℄ � \Q� is � �+-strategiallylosed". By the fat the standard arguments show that foring with the �-.: partial ordering P� preserves that N [G0℄ remains �-losed with respetto either M [G0℄ or V [G0℄, Q� is � �+-strategially losed in both M [G0℄ andV [G0℄.We an now onstrut G1 in either M [G0℄ or V [G0℄ as follows. PlayerI piks p� 2 D� extending sup(hq� : � < �i) (initially, q�1 is the emptyondition) and player II responds by piking q� � p� (so q� 2 D�). Bythe � �+-strategi losure of Q� in both M [G0℄ and V [G0℄, player II has awinning strategy for this game, so hq� : � < �+i an be taken as an inreasingsequene of onditions with q� 2 D� for � < �+. Clearly, G1 = fp 2 Q� :9� < �+[q� � p℄g is our N [G0℄-generi objet over Q� .It remains to onstrut in V [G0℄ the desired N [G0℄[G1℄-generi objet G2over R� . To do this, we �rst note that as M � \� is strong", we an writek1(P�) as P� � _S� � _T�, where P� \ _S� adds a non-reeting stationary set ofordinals of o�nality ! to �", and _T� is a term for the rest of k1(P�).
12



Note now thatM � \No ardinal Æ 2 (�; �℄ is strong". To see this, assumeto the ontrary Æ 2 (�; �℄ is so that M � \Æ is strong". If ` : M ! M� isan elementary embedding witnessing the �0 strongness of Æ for some ardinal�0 > � � Æ > �, then as M � \� is < � superompat", M� � \`(�) = �is < `(�) superompat". Sine `(Æ) an be made arbitrarily high in theuniverse by inreasing the amount of strongness ` witnesses, `(�) an bemade arbitrarily high in the universe also, so by hoosing �0 large enough,the fat M� � \� is < `(�) superompat" is suÆient to dedue that � is� superompat in M . As this ontradits the hoie of M , we must havethat M � \Æ isn't strong". Thus, the �eld of _T� is omposed of all M -strongardinals in the interval (�; k1(�)), whih implies that in M , P�� _S� \ _T�is � �+-strategially losed". Further, sine V � GCH and � is regular,j[�℄<�j = � and 2� = �+. Therefore, as k1 an be assumed to be generatedby an ultra�lter U over P�(�), jk1(�+)j = jk1(2�)j = j2k1(�)j = jff : f :P�(�)! �+ is a funtiongj = j[�+℄�j = �+.Work until otherwise spei�ed in M . Consider the \term foring" partialordering T� (see [10℄, Setion 1.2.5, page 8) assoiated with _T�, i.e., � 2 T� i�� is a term in the foring language with respet to P�� _S� and P�� _S� \� 2 _T�",ordered by � � � i� P�� _S� \� � �". Clearly, T� 2M . Also, sine P�� _S� \ _T�is � �+-strategially losed", it an easily be veri�ed that T� itself is � �+-strategially losed in M and, sine M� � M , in V as well. Therefore,as P�� _S� \j _T�j = k1(�) and 2k1(�) = (k1(�))+ = k1(�+)", we an assumewithout loss of generality that in M , jT�j = k1(�). This means we an let13



hD� : � < �+i enumerate in V the dense open subsets of T� present in Mand argue as before to onstrut in V an M -generi objet H2 over T�.Note now that sine N an be assumed to be given by an ultrapower ofMvia a normal ultra�lter U 2M over �, Fat 2 of Setion 1.2.2 of [10℄ tells usthat k002H2 generates an N -generi objet G�2 over k2(T�). By elementariness,k2(T�) is the term foring in N de�ned with respet to k2(k1(P�)�+1) =P� � _Q� . Therefore, sine j(P�) = k2(k1(P�)) = P� � _Q� � _R� , G�2 is N -generiover k2(T�), and G0 �G1 is k2(P� � _S�)-generi over N , Fat 1 of Setion 1.2.5of [10℄ tells us that for G2 = fiG0�G1(�) : � 2 G�2g, G2 is N [G0℄[G1℄-generiover R� . Thus, in V [G0℄, j : V ! N extends to j : V [G0℄ ! N [G0℄[G1℄[G2℄.This proves Lemma 2.4. �Lemma 2.5 V P� � \� is strong".Proof: We use for the proof of this lemma notation and terminology fromthe introdutory setion of [10℄. Fix � > �+, � a ardinal so that � = ��.Let j : V !M be an elementary embedding witnessing the � strongness of �generated by a (�; �)-extender of width � so thatM � \� isn't � strong", andlet i : V ! N be the elementary embedding witnessing the measurability of� generated by the normal ultra�lter U = fx � � : � 2 j(x)g. We then havethe ommutative diagram
14



V ���������Ri M-j
N �������

���k
where j = k Æ i and the ritial point of k is above �.Observe thatM � \No ardinal � 2 (�; �℄ is strong", for if this were false,then sine V� � M , M � \� is < � strong". By the argument in the seondparagraph of the proof of Lemma 2.1, M � \� is strong", ontraditing thehoie of M . This means that in M , the least strong ardinal Æ > � is sothat Æ > �.For any ordinal �, de�ne �� as the least ordinal > � so that � isn't ��strong if suh an ordinal exists, and �� = 0 otherwise. De�ne f : � ! �as f(�) = The least inaessible ardinal > ��. By our hoie of � andthe preeding paragraph, � < � < j(f)(�) < Æ, where Æ is the least strongardinal in M � �, i.e., the least element of the �eld of j(P�)� �.Note now that M = fj(g)(a) : a 2 [�℄<!, dom(g) = [�℄jaj, g : [�℄jaj !V g = fk(i(g))(a) : a 2 [�℄<!, dom(g) = [�℄jaj, g : [�℄jaj ! V g. By de�ning = i(f)(�), we have k() = k(i(f)(�)) = j(f)(�) > �. This means j(g)(a) =k(i(g))(a) = k(i(g) � [℄jaj)(a), i.e., M = fk(h)(a) : a 2 [�℄<!, h 2 N ,dom(h) = [℄jaj, h : [℄jaj ! Ng. By elementariness, we must have N � \�isn't strong and � <  = i(f)(�) < Æ0 = The least strong ardinal inN � � =15



The least element of the �eld of i(P�)��", sine M � \k(�) = � isn't strongand k(�) = � < k() = k(i(f)(�)) = j(f)(�) < k(Æ0) = Æ". Therefore, k anbe assumed to be generated by an N -extender of width  2 (�; Æ0).Write i(P�) = P� � _Q 0 , where _Q 0 is a term for the portion of i(P�) whose�eld is omposed of ordinals in the interval [�; i(�)). Sine N � \� isn'ta strong ardinal", the �eld of _Q 0 is atually omposed of ordinals in theinterval (�; i(�)), or more preisely, of ordinals in the interval [Æ0; i(�)). Thismeans that if G0 is one again V -generi over P�, the argument from Lemma2.4 for the onstrution of the generi objet G1 an be applied here as wellto onstrut in V [G0℄ an N [G0℄-generi objet G�1 over Q 0 . Sine i00G0 �G0 � G�1, i extends to i : V [G0℄ ! N [G0℄[G�1℄, and sine k00G0 = G0 andk(�) = �, k extends to k : N [G0℄ ! M [G0℄. By Fat 3 of Setion 1.2.2 of[10℄, k : N [G0℄!M [G0℄ an also be assumed to be generated by an extenderof width  2 (�; Æ0).In analogy to the preeding paragraph, write j(P�) = P� � _Q 1 . By thelast sentene of the preeding paragraph and the fat Æ0 is the least ordinalin the �eld of _Q 0 , we an use Fat 2 of Setion 1.2.2 of [10℄ to infer thatH = fp 2 Q 1 : 9q 2 k00G�1[q � p℄g is M [G0℄-generi over k(Q 1). Thus, kextends to k : N [G0℄[G�1℄ ! M [G0℄[H℄, and we get the new ommutativediagram
16



V [G0℄���������Ri M [G0℄[H℄-j
N [G0℄[G�1℄�����

�����k
Sine M � \No ardinal � 2 [�; �℄ is strong", the �eld of _Q 1 is omposedof ordinals in the interval (�; j(�)). Therefore, as V� � M , V�[G0℄ �M [G0℄,and as the �eld of Q 1 is omposed of ordinals in the interval (�; j(�)), V�[G0℄is the set of all sets of rank < � in M [G0℄[H℄. Hene, j is a � strongembedding. Sine � was arbitrary, this proves Lemma 2.5. �Lemma 2.6 V P� � \� isn't 2� = �+ superompat".Proof: By Lemmas 2.2 and 2.5, V P� � \� is a strong ardinal so thatno ardinal Æ < � is strong". Thus, by Lemma 2.1, V P� � \� isn't 2�superompat". Sine jP�j = � and V � \2� = �+", V P� � \2� = �+". Thisproves Lemma 2.6. �Lemmas 2.1 - 2.6 omplete the proof of Theorem 1 for one ardinal. �17



We remark that the use of non-reeting stationary subsets of ordinals ofo�nality ! in the preeding proof was ompletely arbitrary. We ould just aseasily have added non-reeting stationary subsets of ordinals of o�nality ,where for Æ0 < � the least strong ardinal,  2 (!; Æ0) is an arbitrary regularardinal.We onlude this setion by noting that the large ardinal struture above� in V an be ompletely arbitrary by the proof just given. This is quitedi�erent from the situation in Magidor's original proof of the onsistenyof the �rst n 2 ! strongly ompat ardinals being the �rst n measurableardinals and the situation in [6℄, in whih severe limitations are of neessityplaed on the large ardinal struture of the ground model. The reason forthis is that strongness, unlike measurability, is not a loal property, so inthe proofs of Lemmas 2.4 and 2.5, we don't have to worry about unwantedardinals having a non-reeting stationary set of ordinals added to them.The fat that these limitations don't exist will allow us in the next setionto prove Theorem 1 for a proper lass of ardinals.3 The Proof of Theorem 1 in the GeneralCaseWe turn now to the proof of Theorem 1 for a proper lass of ardinals.Proof: Let V � \ZFC + h�� : � 2 Ordi is the proper lass of superompatardinals". Without loss of generality, we assume in addition that V � GCHand that by \utting o�" the universe if neessary at the least inaessible18



limit of superompat ardinals, for 0 = ! and � = [�<��� for � > 0, � <�� is singular if � is a limit ordinal. Further, by the methods of either [4℄ or [1℄(both of whih generalize Laver's result of [17℄), we an also assume withoutloss of generality that for R = Add(!; 1) � _R� , V1 = V R � \GCH + Thesuperompatness of eah �� is indestrutible under foring with ��-diretedlosed set or lass partial orderings not destroying GCH". Sine it will bethe ase that Add(!;1) \ _R� is �1-strategially losed" and jAdd(!; 1)j = !,R is a gap foring admitting a very low gap. Thus, one again by Hamkins'results of [12℄, [13℄, and [14℄, V1 � \Any ardinal whih is superompat orstrong must have been superompat or strong in V ".Work in V1. For eah ordinal �, let hÆ�� : � < ��i be an enumeration of theV -strong ardinals in the interval (�; ��), and let P�� = hhP��� ; _Q��� i : � <��i be the Easton support iteration where P��0 = f;g and P��� \ _Q��� addsa non-reeting stationary set of ordinals of o�nality +� to Æ��". We de�neP as the Easton support produt Q�2Ord P�� . Sine eah P�� is +� -diretedlosed, the standard Easton arguments show V P1 � ZFC.For eah ordinal �, write P = P<� � P�� � P>�, where P<� = Q�<� P��and P>� is the remainder of P. By the de�nition of P and the fat the super-ompatness of �� is indestrutible under set or lass foring not destroyingGCH, V P>�1 � \GCH + �� is superompat". Further, sine R�( _P>�� _P��) =Add(!; 1) � ( _R� � ( _P>� � _P��)) is so that Add(!;1) \ _R� � ( _P>� � P��) is�1-strategially losed", the results of [12℄, [13℄, and [14℄ one more applyto show that any ardinal whih is strong in V P>��P��1 must have been19



strong in V . Thus, we an apply the results of Setion 2 to show thatV P>��P�� � \�� is both strongly ompat and strong, there are no stronglyompat or strong ardinals in the interval (�; ��), and �� isn't 2�� = �+�superompat". Sine V1 � \jP<�j < 2+� ", the L�evy-Solovay results [18℄show that V P>��P���P<�1 = V P1 � \�� is both strongly ompat and strong,there are no strongly ompat or strong ardinals in the interval (�; ��), and�� isn't 2�� = �+� superompat". Therefore, sine any ardinal Æ whih isstrongly ompat or strong and is not a �� must be so that Æ 2 (�; ��), V P1is our desired model. This proves Theorem 1 for a proper lass of ardinals.�We onlude this setion by noting that a result of Menas from [21℄ showsthat any measurable limit of strongly ompat ardinals is strongly ompat.This has as a onsequene that if we assume large enough ardinals in theuniverse, there an never be a preise oinidene between the notions ofstrongly ompat and strong. This is shown by the following, whose proof isessentially the same as Menas' proof of [21℄ that the least measurable limit� of strongly ompat or superompat ardinals isn't 2� superompat.Fat 3.1 If � is the least measurable limit of ardinals whih are both stronglyompat and strong, then � isn't �+ 2 strong.Proof: Assume to the ontrary that � is �+2 strong, and let j : V !M bean elementary embedding witnessing this fat. Sine M � \� is measurable"and j � � = id, M � \� is a measurable limit of ardinals whih are both20



strongly ompat and strong". This ontradits that M � \j(�) > � isthe least measurable limit of ardinals whih are both strongly ompat andstrong". This proves Fat 3.1. �4 Possible Generalizations and Conluding Re-marksWe observe that by ombining the tehniques of this paper with those of [2℄,it is possible to prove the following.Theorem 2 Let V � \ZFC + 
 is an inaessible limit of measurable limitsof superompat ardinals + f : 
 ! 3 is a funtion". There is then apartial ordering P 2 V so that for V = V P
 , the universe of V P trunatedat 
, V � \ZFC + If f(�) = 0, then the �th ompat ardinal � isn't 2�superompat or � + 2 strong + If f(�) = 1, then the �th ompat ardinal� is superompat + If f(�) = 2, then the �th ompat ardinal � is strongbut isn't 2� superompat".For Theorem 2, we take a ompat ardinal as being one whih is eithersuperompat or non-superompat strongly ompat. Also, sine we willbe able to assume GCH in V , when f(�) = 0 or f(�) = 2, � won't be +�superompat.We will not give a detailed proof here, but we will expliitly desribe theforing onditions P used in the onstrution of V . Readers of this paper21



and [2℄ should then fairly easily be able to ombine the methods of these twopapers to prove Theorem 2.We begin as in the proof of Theorem 1 given in Setion 3 by assumingV � GCH and that by using a partial ordering of the form R = Add(!; 1)� _R�that V R � \GCH + The superompat and strongly ompat ardinals oin-ide exept at measurable limit points + Every superompat ardinal � isindestrutible under �-direted losed foring not destroying GCH". Sine thework of [1℄ and [2℄ tells us R an be presumed to preserve all V -superompatardinals, their measurable limits, and the regularity of 
, we an assumewithout loss of generality that 
 is in V R the least regular limit of measurablelimits of superompat ardinals.Working in V R, we let hÆ� : � < 
i enumerate the measurable limits ofsuperompat ardinals below 
. For an arbitrary � < 
, let h��� : � < Æ�ienumerate the V = V R-superompat ardinals in the interval ([<�Æ; Æ�).De�ne �� = ! when � = 0 and �� = ([<�Æ)+ when � 2 (0;
). If f(�) = 0,take P� as the Easton support iteration of partial orderings whih add a non-reeting stationary set of ordinals of o�nality �� to eah ��� . If f(�) = 1,take P� as the partial ordering whih adds a non-reeting stationary set ofordinals of o�nality ��0 to Æ�. If f(�) = 2, take P� as Q�1 �Q�2 , where Q�1 isthe partial ordering whih adds a non-reeting stationary set of ordinals ofo�nality ��0 to Æ�, and Q�2 is the Easton support iteration of partial orderingswhih add a non-reeting stationary set of ordinals of o�nality �� to eahV -strong ardinal in the interval (��; ��0 ). Let P� be the Easton support22



produt Q�<
 P�. P = R � _P� is our desired partial ordering.We remark that another possible generalization of Theorem 1 that onemight wish to obtain is the onstrution, relative to a proper lass of super-ompat ardinals, of a model in whih not only do the strongly ompatand strong ardinals preisely oinide, but eah strongly ompat ardinal� is �+ superompat. In suh a model, GCH would of neessity have tofail, sine by Lemma 2.1, no strongly ompat ardinal � ould be 2� super-ompat. The tehniques used to build this sort of model would doubtlesslyinvolve a melding of the ideas of [6℄ and [8℄ with the ideas of this paper, alongwith the onstrution of the appropriate kinds of superompat and strongembeddings. Although we feel attaining this result is within reah, we havenot yet been able to ome up with a onrete proof.In onlusion to this paper, we note that it is tempting to want to provean analogue to Theorem 1 for superstrong ardinals, i.e., to want to onstruta model in whih the strongly ompat and superstrong ardinals preiselyoinide. That this an't be, however, is shown by the following.Fat 4.1 Suppose � is both strongly ompat and superstrong. Then � has anormal measure onentrating on strongly ompat ardinals.Proof: Let j : V ! M be an elementary embedding witnessing that � issuperstrong. Sine Vj(�) � M , V � \j(�) is a strong limit ardinal". Thus,Vj(�) � \� is < j(�) strongly ompat", i.e., M � \� is < j(�) stronglyompat". This means, by elementarity, that M � \� is < j(�) strongly23
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