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Abstract
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tain a model in which the proper classes of strongly compact and
strong cardinals precisely coincide. In this model, it is the case that
no strongly compact cardinal x is 2 = k™ supercompact.
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1 Introduction and Preliminaries

The fact that the notion of strong compactness is a singularity in the large
cardinal hierarchy is well-known. There is, of course, the fundamental work
of Magidor [19], showing that the least strongly compact cardinal k£ can be
either the least supercompact cardinal or the least measurable cardinal (in
which case k isn’t even 2% supercompact). A generalization of this work by
Kimchi and Magidor [16] shows that the (possibly proper) classes of super-
compact and strongly compact cardinals can coincide except at measurable
limit points, where a result of Menas [21] shows they can’t. Magidor has
also shown (in unpublished work that doesn’t even appear in [16]) that it is
consistent, relative to n € w supercompact cardinals, for the first n strongly
compact cardinals to be the first n measurable cardinals.

Although Magidor’s work was groundbreaking and established the general
field of “identity crisis studies”, there has been additional, extensive research
done in this area. We mention three such results along these lines. One is
the work of [7], in which, roughly speaking, a model with a level by level
correspondence between degrees of strong compactness and supercompact-
ness is provided. Another is the work of [6], where, using the just mentioned
unpublished techniques of Magidor and techniques from [8], relative to n € w
supercompact cardinals, a model in which the first n measurable cardinals
Ki,...,k, are both the first n strongly compact cardinals and are so that

each r; is K, supercompact is constructed. In the model of [6], 2% = k[



for ¢ = 1,...,n. A third is the work of [2], in which it is shown, roughly
speaking, that the supercompact and non-supercompact strongly compact
cardinals can in a generic extension conform to any pattern prescribed by a
fixed ground model function.

The purpose of this paper is to add to the litany of confusion by showing,
again using among other techniques the aforementioned unpublished ideas of
Magidor, that the class of strongly compact cardinals can assume yet another

identity. Specifically, we prove the following.

Theorem 1 Con(ZFC + There is a proper class of supercompact cardinals)
= Con(ZFC + There is a proper class of strongly compact cardinals +
No strongly compact cardinal k is 25 = k™ supercompact + Vk[k is strongly

compact iff k is strong).

Unlike Magidor’s result that the first n (for n € w) strongly compact
cardinals can be the first n measurable cardinals and the result of [6], there
is no barrier to proving Theorem 1 for more than finitely many strongly
compact cardinals. In fact, while these results require severe restrictions on
the large cardinal structure of the ground model, the large cardinal structure
for the ground model of Theorem 1, modulo a proper class of supercompact
cardinals, can otherwise be completely arbitrary. We will comment on this
more at the end of Section 2.

The structure of this paper is as follows. Section 1 contains our introduc-

tory comments and preliminary remarks concerning notation, terminology,



etc. Section 2 contains a proof of Theorem 1 for one cardinal, i.e., a con-
struction of a model, relative to a supercompact cardinal, in which the least
strongly compact cardinal  is the least strong cardinal and isn’t 2¢F = x*
supercompact. Section 3 contains a proof of Theorem 1 in the general case.
Section 4 discusses some possible generalizations of Theorem 1 and contains
our concluding remarks.

Before giving the proof of Theorem 1, we briefly mention some preliminary
information. Essentially, our notation and terminology are standard, and
when this is not the case, this will be clearly noted. For a < ( ordinals,
[, B], [, B), (c, B], and (a, B) are as in standard interval notation.

When forcing, ¢ > p will mean that ¢ is stronger than p. If G is V-generic
over P, we will use both V[G] and V" to indicate the universe obtained by
forcing with P. If we also have that « is inaccessible and P = ((P,, Q) : o <
k) is an Easton support iteration of length x so that at stage a, a non-trivial
forcing is done based on the ordinal d,, then we will say that d, is in the field
of P. If z € V[G], then & will be a term in V for 2. We may, from time to
time, confuse terms with the sets they denote and write  when we actually
mean &, especially when x is some variant of the generic set GG, or x is in the
ground model V.

If Kk < X are regular cardinals, then Add(k,A) is the standard partial
ordering for adding A Cohen subsets to k. If k is a regular cardinal and
P is a partial ordering, P is k-closed if for every sequence (p, : @ < k) of

elements of P so that # < v < k implies ps < p, (an increasing chain of



length ), there is some p € P (an upper bound to this chain) so that p, < p
for all a < k. P is < k-closed if P is §-closed for all cardinals § < k. P is &-
directed closed if for every cardinal 6 < k and every directed set (p, : o < d)
of elements of P (where (p, : @ < §) is directed if for every two distinct
elements p,,p, € (po : @ < 6), p, and p, have a common upper bound of
the form p,) there is an upper bound p € P. P is k-strategically closed if in
the two person game in which the players construct an increasing sequence
(po : @ < k), where player I plays odd stages and player II plays even and
limit stages (choosing the trivial condition at stage 0), then player II has a
strategy which ensures the game can always be continued. Note that if P is
k-strategically closed and f : k — V is a function in V¥, then f € V. Pis
< k-strategically closed if PP is d-strategically closed for all cardinals § < .
P is < k-strategically closed if in the two person game in which the players
construct an increasing sequence (p, : a < k), where player I plays odd
stages and player II plays even and limit stages, then player II has a strategy
which ensures the game can always be continued. Note that trivially, if PP is
< k-closed, then P is < k-strategically closed and < k-strategically closed.
The converse of both of these facts is false.

Suppose as in the preceding paragraph that x < A are regular cardinals.
A partial ordering P that will be used throughout the course of this paper
is the partial ordering for adding a non-reflecting stationary set of ordinals
of cofinality k to A. Specifically, P is defined as {p : For some a < A,

p:a — {0,1} is a characteristic function of S,, a subset of a not stationary



at its supremum nor having any initial segment which is stationary at its
supremum, so that 3 € S, implies 8 > « and cof(5) = k}, ordered by ¢ > p
iff ¢ D p and S, = S, Nsup(S,), i.e., S, is an end extension of S,. It is well-
known that for G V-generic over P (see [9] or [16]), in V[G], if we assume GCH
holds in V, a non-reflecting stationary set S = S[G] = U{S, : p € G} C A
of ordinals of cofinality x has been introduced, the bounded subsets of A
are the same as those in V', and cardinals, cofinalities, and GCH have been
preserved. It is also virtually immediate that P is k-directed closed, and it
can be shown (see [9] or [16]) that P is < A-strategically closed.

We mention that we are assuming familiarity with the large cardinal
notions of measurability, strongness, superstrongness, strong compactness,
and supercompactness. We will also at the end of this paper refer to the
large cardinal notions of Woodinness and Shelahness. Interested readers
may consult [15], [20], or [22] for further details. We mention only that
unlike [15], we will say that the cardinal x is A strong for A > & if there
is j : V — M an elementary embedding having critical point x so that
j(k) > XA and V) € M. As always, k is strong if x is A strong for every
A > k. We will also say the cardinal x is superstrong with target A if there is
j 'V — M an elementary embedding having critical point  so that j(k) = A
and V), C M. If jo : V — M witnesses that x is superstrong with target
Aand j; : M — N witnesses the measurability of A in M, then it is easily
verified that j; 0 jp : V' — N witnesses that x is A strong.

We mention that we are also assuming some familiarity with the basics of



extender technology and the transference of generic objects via elementary
embeddings. The section on background material of [10] is extremely useful
in this regard. We will freely, particularly in the proofs of Lemmas 2.4 and
2.5, use notation, definitions, and terminology found here. Readers may also
consult [20] for additional details concerning extenders.

Finally, both authors wish to express their gratitude to Menachem Magi-
dor for his explanations to them given at the January 7-13, 1996 meeting in
Set Theory held at the Mathematics Research Institute, Oberwolfach, Ger-
many on his method of forcing to make the first n measurable and strongly

compact cardinals coincide, for any finite n.

2 The Proof of Theorem 1 for One Cardinal

In this section, we will construct, starting with a supercompact cardinal, a
model in which the least strongly compact cardinal x is the same as the
least strong cardinal and « isn’t 2¢ = k* supercompact. We begin with the

following lemma, which also appears as Lemma 3.1 of [5].

Lemma 2.1 Let k be at least 2" supercompact and strong. Assume j :V —
M 1is an elementary embedding witnessing at least the 2" supercompactness of
Kk, and let p be the normal measure over k associated with j. Then {§ < Kk : §

is a strong cardinal} € p.

Proof: We first show, for 5 and p as in the statement of Lemma 2.1, that

{6 < k:0is Kk strong} € u. (See also the proof of Proposition 26.11 of [15].)



To see this, note that since M*" C M, j | V,,; € M. Thus, as in [3], page
203, there is £ € M a (k, j(k)) extender and k : M — Ult(M, £) so that  is
the critical point of £ and M and Ult(M, £) agree through rank j(x). This
means M F “k is superstrong with target j(k)”, so by reflection, {§ < k : §
is superstrong with target x} € p. By our remarks in Section 1, {0 < k: § is
K strong} € p.

Fix now § < k so that V F “§ is k strong”. We show that if A > &
is arbitrary, V' F “0 is A strong”. Let A’ > X be so that any extender &
witnessing the A strongness of ¢ is such that £ € V). By the strongness of
K, let j* : V. — M* be an embedding having critical point x witnessing that
k is A’ strong. Since V E “§ is k strong”, M* E “j*(0) = d is j*(k) > N > A
strong”. As Vy C M* and M* FE “0 is A strong”, V F “0 is A strong”. This
proves Lemma 2.1.

O

We observe that in the above proof, it will actually be the case that
M E “k is a strong limit of strong cardinals”. This is since M F “k is j(k)
strong and j(k) is strong”, so by the second paragraph of the above proof,
M E “k is strong”. Further, if 6 < k is so that V' F “§ is strong”, then
M E “j(0) = 6 is strong”. Thus, by reflection, we have the more powerful
fact that {0 < k : § is a strong limit of strong cardinals} € p.

We turn now to the proof of Theorem 1.

Proof: Let V F “ZFC + k is supercompact”. Without loss of generality,

by first doing a preliminary forcing if necessary, we may also assume that
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V £ GCH.

By Lemma 2.1, let A = (0, : @ < k) be an enumeration of the strong
cardinals below k. The partial ordering P* we use in the proof of Theorem
1 given in this section is the Easton support iteration ((P% Qf) : a < k),
where IP§ is the partial ordering Add(w, 1) and IFpx “Qf adds a non-reflecting

stationary set of ordinals of cofinality w to d,”.
Lemma 2.2 V" E “No cardinal § < k is strong”.

Proof: Let § < k be so that V' F “0 is strong”. It must therefore be the
case that § = 6, for some o < k. This allows us to write P* = P% + Q¢ xR =
Phyq * R.

By the definition of P* and the fact that any stationary subset of a
measurable (or weakly compact) cardinal must reflect, V¥a+1 E “§ isn’t
measurable (and hence isn’t strong) since there is S C § which is a non-
reflecting stationary set of ordinals of cofinality w”. Since by the definition
of P*, IFpx “R is §'-strategically closed for &' the least inaccessible above
§”, VFar1 = VF" E S C § is a non-reflecting stationary set of ordinals of
cofinality w, so d isn’t measurable”. Thus, V" F “No V-strong cardinal
0 < k is measurable”. The proof of Lemma 2.2 will therefore be complete
once we have shown there is no cardinal § < x so that VE" E “§ is strong”.

Write P* as P§ * Q. By the definition of P, |P§| = w and g “Q is
N;-strategically closed”. Therefore, using Hamkins’ terminology of [12], [13],

and [14], P* is a “gap forcing admitting a very low gap”, so by the results



of [12], [13] and [14], V" F “Any strong cardinal was already strong in V.
This means V*" E “No cardinal § <  is strong”. This proves Lemma 2.2.

O

Lemma 2.3 V" E “No cardinal § < k is strongly compact”.

Proof: By Lemmas 2.1 and 2.2, VF" E “There are unboundedly in x many
cardinals § < k containing a non-reflecting stationary set of ordinals of cofi-
nality w”. It is a theorem of [22] that if a cardinal  contains a non-reflecting
stationary set of ordinals of cofinality p, then there are no strongly compact
cardinals in the interval (p,7]. Thus, V" F “No cardinal § < & is strongly

compact”. This proves Lemma 2.3.

Lemma 2.4 V" E “k is strongly compact”.

Proof: The proof of Lemma 2.4 uses the unpublished ideas of Magidor
referred to at the beginning of this paper. (See also the proof of Lemma 4
of [6].) Let A > 2% = k™ be an arbitrary successor of a regular cardinal, and
let k1 : V — M be an embedding witnessing the \ supercompactness of x so
that M F “k is < X supercompact but « isn’'t A supercompact”. A has been
chosen large enough so that we may assume by choosing a normal ultrafilter
of Mitchell order 0 over s that k2 : M — N is an embedding witnessing

the measurability of x definable in M so that N F “k isn’t measurable”.
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It is the case that if k£ : V — N is an elementary embedding with critical
point x and for any x C N with |z| < A, there is some y € N so that
r Cyand N F “ly| < j(k)”, then k witnesses the A strong compactness of
k. Using this fact, it is easily verifiable that j = ky o k; is an elementary
embedding witnessing the A strong compactness of k. We show that j extends
to j : VF" — NJ(F")_ Since this extended embedding witnesses the A strong
compactness of x in V¥", this proves Lemma 2.4.

To do this, write j(P*) as Pr«QF *R*, where QF is a term for the portion of
7(P*) between x and k() and R* is a term for the rest of j(IP¥), i.e., the part
above ky (k). Note that since N E “s isn’t measurable”, s & field(Q*). Also,
since Lemma 2.1 and the succeeding paragraph imply that M F “k is strong”,
by elementarity, N E “ko(k) is strong”. Thus, the field of Q"‘ is composed
of all N-strong cardinals in the interval (s, kq(k)] (so ka(x) € field(QF)),
and the field of R* is composed of all N-strong cardinals in the interval
(k2 (), k2 (k1 (r))).

Let Gy be V-generic over P*. We construct in V[Gg| an N[Gy]-generic
object Gy over QF and an N|Gy|[G1]-generic object Gy over R*. Since P* is
an Easton support iteration of length x, a direct limit is taken at stage «, and
no forcing is done at stage x, the construction of G; and G5 automatically
guarantees that j"Gy C G * G1 * G. This means that j : V' — N extends
to j : V[Go] = N|[Go][G1][G2].

To build G1, note that since ky can be assumed to be generated by

an ultrafilter U over k and since in both V and M, 2% = kT, |ko(x™)| =
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|ko(2%)| = |{f : f : kK — kT is a function}| = |[xT]*| = k. Thus, as
N[Gy] E “|p(QF)] = ko(2%)”, we can let (D, : a < k') enumerate in V]G]
the dense open subsets of Q* present in N|[Gy|. Since the x closure of N
with respect to either M or V implies the least element of the field of Q* is
> kT, the definition of  as the Easton support iteration which adds a non-
reflecting stationary set of ordinals of cofinality w to each N[Gy|-strong car-
dinal in the interval (k, k2(k)] implies that N[Go| E “QF is < kT-strategically
closed”. By the fact the standard arguments show that forcing with the x-
c.c. partial ordering P* preserves that N|[Gy| remains k-closed with respect
to either M[Gy] or V[Gy], Q° is < xT-strategically closed in both M[Gy] and
V]G

We can now construct G in either M[Gy] or V|G| as follows. Player
I picks p, € D, extending sup({(gs : f < «)) (initially, g_; is the empty
condition) and player II responds by picking ¢, > ps (so ¢o € D,). By
the < k*-strategic closure of Q in both M|[Gy] and V[Gy], player II has a
winning strategy for this game, so (g, : @ < £7) can be taken as an increasing
sequence of conditions with ¢, € D, for o < k*. Clearly, G; = {p € Q° :
do < k1[ga > p|} is our N[Gy]-generic object over QF.

It remains to construct in V[Gy| the desired N|[Gy|[G1]-generic object G
over R*. To do this, we first note that as M F “k is strong”, we can write
ki (P%) as P* % S5 % T%, where IFps “S* adds a non-reflecting stationary set of

ordinals of cofinality w to ", and T* is a term for the rest of k; (P*).
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Note now that M F “No cardinal 6 € (k, A] is strong”. To see this, assume
to the contrary § € (k, A] is so that M F “§ is strong”. If £ : M — M* is
an elementary embedding witnessing the A’ strongness of § for some cardinal
AN > X>06 >k, then as M F “k is < A supercompact”, M* F “U(k) = Kk
is < £(\) supercompact”. Since ¢(§) can be made arbitrarily high in the
universe by increasing the amount of strongness ¢ witnesses, ¢(A) can be
made arbitrarily high in the universe also, so by choosing A’ large enough,
the fact M* F “k is < £()\) supercompact” is sufficient to deduce that & is
A supercompact in M. As this contradicts the choice of M, we must have
that M F “§ isn’t strong”. Thus, the field of T* is composed of all M-strong
cardinals in the interval (A, ki(x)), which implies that in M, IFp.s. “T*
is < At-strategically closed”. Further, since V' F GCH and \ is regular,
I[A]*"| = X and 2* = AT. Therefore, as k; can be assumed to be generated
by an ultrafilter U over P.()\), |ki(AT)| = |k (2N)] = |28V = [{f : f :
P.(\) = AT is a function}| = [AT]Y] = AT.

Work until otherwise specified in M. Consider the “term forcing” partial
ordering T* (see [10], Section 1.2.5, page 8) associated with T%, i.e., 7 € T* iff
7 is a term in the forcing language with respect to P*xS* and IFprysn “T € T+,
ordered by 7 > o iff IFp,., ¢ “7 > 07, Clearly, T* € M. Also, since IFp.,qx “r
is < At-strategically closed”, it can easily be verified that T* itself is < A*-
strategically closed in M and, since M* C M, in V as well. Therefore,
as Fpacn “T%| = k1 (A) and 2800 = (k;(A)" = k(AT)”, we can assume

without loss of generality that in M, |T*| = k;(A). This means we can let
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(D, : o < A") enumerate in V the dense open subsets of T* present in M
and argue as before to construct in V' an M-generic object Hy over T*.
Note now that since N can be assumed to be given by an ultrapower of M
via a normal ultrafilter i € M over k, Fact 2 of Section 1.2.2 of [10] tells us
that k) Hy generates an N-generic object G over k2(T*). By elementariness,
ko(T*) is the term forcing in N defined with respect to ka(k1(Px)wi1) =
P* % Q*. Therefore, since j(P*) = ky(ki(P*)) = P*  Q* xR, G is N-generic
over ko(T*), and Go * G is ko(IP" % S¥)-generic over N, Fact 1 of Section 1.2.5
of [10] tells us that for Gy = {igy«c, (7) : T € G3}, Gy is N|Go|[G1]-generic
over R®. Thus, in V[Gq], j : V — N extends to j : V[Go] — N[G)][G1][G2]-

This proves Lemma 2.4.

Lemma 2.5 V" F “k is strong”.

Proof: We use for the proof of this lemma notation and terminology from
the introductory section of [10]. Fix A > x™, A a cardinal so that A = Rj.
Let j : V — M be an elementary embedding witnessing the A strongness of
generated by a (k, A)-extender of width x so that M F “k isn’t A strong”, and
let 2 : V — N be the elementary embedding witnessing the measurability of
 generated by the normal ultrafilter = {x C k : k € j(x)}. We then have

the commutative diagram
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N

where j = k ot and the critical point of k£ is above x.

Observe that M F “No cardinal p € (k, A] is strong”, for if this were false,
then since V\y, C M, M F “k is < p strong”. By the argument in the second
paragraph of the proof of Lemma 2.1, M F “k is strong”, contradicting the
choice of M. This means that in M, the least strong cardinal § > & is so
that 0 > A.

For any ordinal «, define o, as the least ordinal > « so that « isn’t o,
strong if such an ordinal exists, and o, = 0 otherwise. Define f : K — &
as f(a) = The least inaccessible cardinal > o0,. By our choice of A and
the preceding paragraph, x < A < j(f)(k) < d, where ¢ is the least strong
cardinal in M > k, i.e., the least element of the field of j(P*) —

Note now that M = {j(g)(a) : a € [A]*, dom(g) = []"", ¢ : [x]"] —
VY = {k(i(9))(a) : a € [\, dom(g) = [s]'", g : []”l = V}. By defining
v = i(f)(x), we have k(y) = k(i(f)(x)) = j(f)(%) > A. This means j(g)(a) =
k(i(9))(@) = K(i(g) T 1)")(a), ie, M = {k(h)(a) : @ € \]*, h € N,
dom(h) = [7]'”, h : [4]”l = N}. By elementariness, we must have N F “x
isn’t strong and kK < v = i(f)(k) < 6y = The least strong cardinal in N > k =

15



The least element of the field of i(P*) — k", since M F “k(k) = & isn’t strong
and k(k) =k < k(y) =k((f)(k)) = j(f)(r) < k(dp) = ¢”. Therefore, k can
be assumed to be generated by an N-extender of width v € (&, dp).

Write i(P*) = P* « Q°, where Q° is a term for the portion of i(P*) whose
field is composed of ordinals in the interval [k,i(x)). Since N F “k isn't
a strong cardinal”, the field of Q° is actually composed of ordinals in the
interval (k,i(k)), or more precisely, of ordinals in the interval [0y, i(x)). This
means that if Gy is once again V-generic over P*, the argument from Lemma
2.4 for the construction of the generic object (G; can be applied here as well
to construct in V[Gy] an N[Gy]-generic object G} over Q°. Since "Gy C
Gy * G7, i extends to i : V[Gy] — N[Gy]|G7], and since k"G, = Gy and
k(k) = K, k extends to k : N[Gy] — M|[Gy]. By Fact 3 of Section 1.2.2 of
[10], k : N[Go] — M[Gy] can also be assumed to be generated by an extender
of width v € (k, dp).

In analogy to the preceding paragraph, write j(IP*) = P* «x Q'. By the
last sentence of the preceding paragraph and the fact dg is the least ordinal
in the field of Q°, we can use Fact 2 of Section 1.2.2 of [10] to infer that
H={pec Q" :3q € k"Gilqg > p|} is M[Gyl-generic over k(Q'). Thus, k
extends to k : N[Gy|[Gi] — M[Go|[H], and we get the new commutative

diagram

16



V[Go]

M[Go[H]

N[Gol[G1]

Since M F “No cardinal p € [k, \] is strong”, the field of Q' is composed
of ordinals in the interval (A, j(k)). Therefore, as V), C M, V,\[Gy] C M[Gy),
and as the field of Q' is composed of ordinals in the interval (A, j(k)), V3 [Go]
is the set of all sets of rank < A in M[Gy|[H]. Hence, j is a A strong

embedding. Since A was arbitrary, this proves Lemma 2.5.

Lemma 2.6 V" E “k isn’t 28 = kT supercompact”.

Proof: By Lemmas 2.2 and 2.5, V" E “k is a strong cardinal so that
no cardinal § < & is strong”. Thus, by Lemma 2.1, VF" E “k isn’t 2%
supercompact”. Since |P*| = k and V F “2% = 7 VI" | “2% = 7. This

proves Lemma 2.6.

Lemmas 2.1 - 2.6 complete the proof of Theorem 1 for one cardinal.
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We remark that the use of non-reflecting stationary subsets of ordinals of
cofinality w in the preceding proof was completely arbitrary. We could just as
easily have added non-reflecting stationary subsets of ordinals of cofinality v,
where for 9 < x the least strong cardinal, v € (w, dp) is an arbitrary regular
cardinal.

We conclude this section by noting that the large cardinal structure above
k in V can be completely arbitrary by the proof just given. This is quite
different from the situation in Magidor’s original proof of the consistency
of the first n € w strongly compact cardinals being the first n measurable
cardinals and the situation in [6], in which severe limitations are of necessity
placed on the large cardinal structure of the ground model. The reason for
this is that strongness, unlike measurability, is not a local property, so in
the proofs of Lemmas 2.4 and 2.5, we don’t have to worry about unwanted
cardinals having a non-reflecting stationary set of ordinals added to them.
The fact that these limitations don’t exist will allow us in the next section

to prove Theorem 1 for a proper class of cardinals.

3 The Proof of Theorem 1 in the General
Case

We turn now to the proof of Theorem 1 for a proper class of cardinals.
Proof: Let V F “ZFC + (k4 : a € Ord) is the proper class of supercompact
cardinals”. Without loss of generality, we assume in addition that V F GCH

and that by “cutting off” the universe if necessary at the least inaccessible
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limit of supercompact cardinals, for g = w and v, = Ug<qkp for a > 0, 7, <
Kq is singular if « is a limit ordinal. Further, by the methods of either [4] or [1]
(both of which generalize Laver’s result of [17]), we can also assume without
loss of generality that for R = Add(w,1) * R*, V; = VF® E “GCH + The
supercompactness of each &, is indestructible under forcing with x,-directed
closed set or class partial orderings not destroying GCH”. Since it will be
the case that IFadd(w,) “R* is N;-strategically closed” and |Add(w, 1)| = w,
R is a gap forcing admitting a very low gap. Thus, once again by Hamkins’
results of [12], [13], and [14], V} F “Any cardinal which is supercompact or
strong must have been supercompact or strong in V7.

Work in V3. For each ordinal a, let (0§ : 8 < k,) be an enumeration of the
V-strong cardinals in the interval (74, kq), and let Pfe = ((Pg“,(@g“> 1B <
Ka) be the Easton support iteration where P> = {0} and IFpra “Qg“ adds
a non-reflecting stationary set of ordinals of cofinality v, to 05”. We define
IP as the Easton support product [],.qo.q P*. Since each P is 7 -directed
closed, the standard Easton arguments show V" = ZFC.

For each ordinal o, write PP = P, x P* x P~¢, where P, = [[5_, P
and P~* is the remainder of P. By the definition of P and the fact the super-
compactness of k, is indestructible under set or class forcing not destroying
GCH, V™"  “GCH + K, is supercompact”. Further, since R« (P>® x Pe) =
Add(w,1) * (R* % (P>® x P5)) is so that - Add(w,1) “RF * (P> x Pre) is
N;-strategically closed”, the results of [12], [13], and [14] once more apply

pPro

to show that any cardinal which is strong in VFMX must have been
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strong in V. Thus, we can apply the results of Section 2 to show that
YEZexkre = we is both strongly compact and strong, there are no strongly
compact or strong cardinals in the interval (7, Kq), and ko isn't 25 = k7
supercompact”. Since V; F “|P.,| < ZVJ”, the Lévy-Solovay results [18]
show that V) “¥F"F<a — yF =« is both strongly compact and strong,
there are no strongly compact or strong cardinals in the interval (7q, Ko ), and
Kq isn’t 2%« = kT supercompact”. Therefore, since any cardinal § which is
strongly compact or strong and is not a k, must be so that § € (Va, ko), Vi

is our desired model. This proves Theorem 1 for a proper class of cardinals.

U

We conclude this section by noting that a result of Menas from [21] shows
that any measurable limit of strongly compact cardinals is strongly compact.
This has as a consequence that if we assume large enough cardinals in the
universe, there can never be a precise coincidence between the notions of
strongly compact and strong. This is shown by the following, whose proof is
essentially the same as Menas’ proof of [21] that the least measurable limit

k of strongly compact or supercompact cardinals isn’t 2% supercompact.

Fact 3.1 Ifk is the least measurable limit of cardinals which are both strongly

compact and strong, then k isn’t k + 2 strong.

Proof: Assume to the contrary that x is kK + 2 strong, and let j : V' — M be
an elementary embedding witnessing this fact. Since M F “k is measurable”

and j [ k = id, M F “k is a measurable limit of cardinals which are both

20



strongly compact and strong”. This contradicts that M F “j(k) > &k is
the least measurable limit of cardinals which are both strongly compact and

strong”. This proves Fact 3.1.

4 Possible Generalizations and Concluding Re-
marks

We observe that by combining the techniques of this paper with those of [2],

it is possible to prove the following.

Theorem 2 Let V E “ZFC + () is an inaccessible limit of measurable limits
of supercompact cardinals + f : Q — 3 is a function”. There is then a
partial ordering P € V so that for V.= V5, the universe of V¥ truncated
at Q, V. E “ZFC + If f(a) = 0, then the a'® compact cardinal v, isn’t 27
supercompact or vy, + 2 strong + If f(a) = 1, then the a'® compact cardinal
Yo 18 supercompact + If f(a) = 2, then the o' compact cardinal vy, is strong

but isn’t 27~ supercompact”.

For Theorem 2, we take a compact cardinal as being one which is either
supercompact or non-supercompact strongly compact. Also, since we will
be able to assume GCH in V, when f(a) = 0 or f(a) = 2, 7, won't be v
supercompact.

We will not give a detailed proof here, but we will explicitly describe the

forcing conditions P used in the construction of V. Readers of this paper
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and [2] should then fairly easily be able to combine the methods of these two
papers to prove Theorem 2.

We begin as in the proof of Theorem 1 given in Section 3 by assuming
V E GCH and that by using a partial ordering of the form R = Add(w, 1) *R*
that V¥ = “GCH + The supercompact and strongly compact cardinals coin-
cide except at measurable limit points + Every supercompact cardinal & is
indestructible under x-directed closed forcing not destroying GCH”. Since the
work of [1] and [2] tells us R can be presumed to preserve all V-supercompact
cardinals, their measurable limits, and the regularity of {2, we can assume
without loss of generality that 2 is in V* the least regular limit of measurable
limits of supercompact cardinals.

Working in V| we let (6, : @ < Q) enumerate the measurable limits of
supercompact cardinals below 2. For an arbitrary a < §, let (k§ : § < dq)
enumerate the V' = V*-supercompact cardinals in the interval (Uy<40,,84).
Define p, = w when a = 0 and p, = (U,<46,)" when a € (0,9Q). If f(a) =0,
take P* as the Easton support iteration of partial orderings which add a non-
reflecting stationary set of ordinals of cofinality p, to each xf. If f(a) =1,
take P as the partial ordering which adds a non-reflecting stationary set of
ordinals of cofinality x§ to d,. If f(a) = 2, take P* as Qf x Qf, where Qf is
the partial ordering which adds a non-reflecting stationary set of ordinals of
cofinality x§ to d,, and Qf is the Easton support iteration of partial orderings
which add a non-reflecting stationary set of ordinals of cofinality p, to each

V-strong cardinal in the interval (p,,x§). Let P* be the Easton support
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product [, oP* P=Rx P* is our desired partial ordering.

a<Q

We remark that another possible generalization of Theorem 1 that one
might wish to obtain is the construction, relative to a proper class of super-
compact cardinals, of a model in which not only do the strongly compact
and strong cardinals precisely coincide, but each strongly compact cardinal
k is kT supercompact. In such a model, GCH would of necessity have to
fail, since by Lemma 2.1, no strongly compact cardinal x could be 2" super-
compact. The techniques used to build this sort of model would doubtlessly
involve a melding of the ideas of [6] and [8] with the ideas of this paper, along
with the construction of the appropriate kinds of supercompact and strong
embeddings. Although we feel attaining this result is within reach, we have
not yet been able to come up with a concrete proof.

In conclusion to this paper, we note that it is tempting to want to prove
an analogue to Theorem 1 for superstrong cardinals, i.e., to want to construct

a model in which the strongly compact and superstrong cardinals precisely

coincide. That this can’t be, however, is shown by the following.

Fact 4.1 Suppose k is both strongly compact and superstrong. Then k has a

normal measure concentrating on strongly compact cardinals.

Proof: Let j : V — M be an elementary embedding witnessing that x is
superstrong. Since Vj) € M, V E “j(k) is a strong limit cardinal”. Thus,
Vi F “k is < j(k) strongly compact”, ie., M F “s is < j(k) strongly

compact”. This means, by elementarity, that M F “k is < j(k) strongly
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compact and j(k) is strongly compact”, so by a theorem of DiPrisco [11],
M F “k is strongly compact”. Fact 4.1 now follows by reflection.

O

Thus, an analogue to Theorem 1 for superstrong cardinals is impossible.
We finish by asking, however, if an analogue to Theorem 1 can be proven
for Woodin or Shelah cardinals, i.e., if it is consistent, relative to some large
cardinal hypothesis, for the classes of strongly compact and Woodin cardinals

or strongly compact and Shelah cardinals to coincide precisely.
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