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1 Introdu
tion and PreliminariesThe fa
t that the notion of strong 
ompa
tness is a singularity in the large
ardinal hierar
hy is well-known. There is, of 
ourse, the fundamental workof Magidor [19℄, showing that the least strongly 
ompa
t 
ardinal � 
an beeither the least super
ompa
t 
ardinal or the least measurable 
ardinal (inwhi
h 
ase � isn't even 2� super
ompa
t). A generalization of this work byKim
hi and Magidor [16℄ shows that the (possibly proper) 
lasses of super-
ompa
t and strongly 
ompa
t 
ardinals 
an 
oin
ide ex
ept at measurablelimit points, where a result of Menas [21℄ shows they 
an't. Magidor hasalso shown (in unpublished work that doesn't even appear in [16℄) that it is
onsistent, relative to n 2 ! super
ompa
t 
ardinals, for the �rst n strongly
ompa
t 
ardinals to be the �rst n measurable 
ardinals.Although Magidor's work was groundbreaking and established the general�eld of \identity 
risis studies", there has been additional, extensive resear
hdone in this area. We mention three su
h results along these lines. One isthe work of [7℄, in whi
h, roughly speaking, a model with a level by level
orresponden
e between degrees of strong 
ompa
tness and super
ompa
t-ness is provided. Another is the work of [6℄, where, using the just mentionedunpublished te
hniques of Magidor and te
hniques from [8℄, relative to n 2 !super
ompa
t 
ardinals, a model in whi
h the �rst n measurable 
ardinals�1; : : : ; �n are both the �rst n strongly 
ompa
t 
ardinals and are so thatea
h �i is �+i super
ompa
t is 
onstru
ted. In the model of [6℄, 2�i = �++i2



for i = 1; : : : ; n. A third is the work of [2℄, in whi
h it is shown, roughlyspeaking, that the super
ompa
t and non-super
ompa
t strongly 
ompa
t
ardinals 
an in a generi
 extension 
onform to any pattern pres
ribed by a�xed ground model fun
tion.The purpose of this paper is to add to the litany of 
onfusion by showing,again using among other te
hniques the aforementioned unpublished ideas ofMagidor, that the 
lass of strongly 
ompa
t 
ardinals 
an assume yet anotheridentity. Spe
i�
ally, we prove the following.Theorem 1 Con(ZFC + There is a proper 
lass of super
ompa
t 
ardinals)=) Con(ZFC + There is a proper 
lass of strongly 
ompa
t 
ardinals +No strongly 
ompa
t 
ardinal � is 2� = �+ super
ompa
t + 8�[� is strongly
ompa
t i� � is strong℄.Unlike Magidor's result that the �rst n (for n 2 !) strongly 
ompa
t
ardinals 
an be the �rst n measurable 
ardinals and the result of [6℄, thereis no barrier to proving Theorem 1 for more than �nitely many strongly
ompa
t 
ardinals. In fa
t, while these results require severe restri
tions onthe large 
ardinal stru
ture of the ground model, the large 
ardinal stru
turefor the ground model of Theorem 1, modulo a proper 
lass of super
ompa
t
ardinals, 
an otherwise be 
ompletely arbitrary. We will 
omment on thismore at the end of Se
tion 2.The stru
ture of this paper is as follows. Se
tion 1 
ontains our introdu
-tory 
omments and preliminary remarks 
on
erning notation, terminology,3



et
. Se
tion 2 
ontains a proof of Theorem 1 for one 
ardinal, i.e., a 
on-stru
tion of a model, relative to a super
ompa
t 
ardinal, in whi
h the leaststrongly 
ompa
t 
ardinal � is the least strong 
ardinal and isn't 2� = �+super
ompa
t. Se
tion 3 
ontains a proof of Theorem 1 in the general 
ase.Se
tion 4 dis
usses some possible generalizations of Theorem 1 and 
ontainsour 
on
luding remarks.Before giving the proof of Theorem 1, we brie
y mention some preliminaryinformation. Essentially, our notation and terminology are standard, andwhen this is not the 
ase, this will be 
learly noted. For � < � ordinals,[�; �℄; [�; �); (�; �℄, and (�; �) are as in standard interval notation.When for
ing, q � p will mean that q is stronger than p. If G is V -generi
over P, we will use both V [G℄ and V P to indi
ate the universe obtained byfor
ing with P. If we also have that � is ina

essible and P = hhP�; _Q�i : � <�i is an Easton support iteration of length � so that at stage �, a non-trivialfor
ing is done based on the ordinal Æ�, then we will say that Æ� is in the �eldof P. If x 2 V [G℄, then _x will be a term in V for x. We may, from time totime, 
onfuse terms with the sets they denote and write x when we a
tuallymean _x, espe
ially when x is some variant of the generi
 set G, or x is in theground model V .If � < � are regular 
ardinals, then Add(�; �) is the standard partialordering for adding � Cohen subsets to �. If � is a regular 
ardinal andP is a partial ordering, P is �-
losed if for every sequen
e hp� : � < �i ofelements of P so that � < 
 < � implies p� � p
 (an in
reasing 
hain of4



length �), there is some p 2 P (an upper bound to this 
hain) so that p� � pfor all � < �. P is < �-
losed if P is Æ-
losed for all 
ardinals Æ < �. P is �-dire
ted 
losed if for every 
ardinal Æ < � and every dire
ted set hp� : � < Æiof elements of P (where hp� : � < Æi is dire
ted if for every two distin
telements p�; p� 2 hp� : � < Æi, p� and p� have a 
ommon upper bound ofthe form p�) there is an upper bound p 2 P. P is �-strategi
ally 
losed if inthe two person game in whi
h the players 
onstru
t an in
reasing sequen
ehp� : � � �i, where player I plays odd stages and player II plays even andlimit stages (
hoosing the trivial 
ondition at stage 0), then player II has astrategy whi
h ensures the game 
an always be 
ontinued. Note that if P is�-strategi
ally 
losed and f : � ! V is a fun
tion in V P, then f 2 V . P is< �-strategi
ally 
losed if P is Æ-strategi
ally 
losed for all 
ardinals Æ < �.P is � �-strategi
ally 
losed if in the two person game in whi
h the players
onstru
t an in
reasing sequen
e hp� : � < �i, where player I plays oddstages and player II plays even and limit stages, then player II has a strategywhi
h ensures the game 
an always be 
ontinued. Note that trivially, if P is< �-
losed, then P is < �-strategi
ally 
losed and � �-strategi
ally 
losed.The 
onverse of both of these fa
ts is false.Suppose as in the pre
eding paragraph that � < � are regular 
ardinals.A partial ordering P that will be used throughout the 
ourse of this paperis the partial ordering for adding a non-re
e
ting stationary set of ordinalsof 
o�nality � to �. Spe
i�
ally, P is de�ned as fp : For some � < �,p : �! f0; 1g is a 
hara
teristi
 fun
tion of Sp, a subset of � not stationary5



at its supremum nor having any initial segment whi
h is stationary at itssupremum, so that � 2 Sp implies � > � and 
of(�) = �g, ordered by q � pi� q � p and Sp = Sq \ sup(Sp), i.e., Sq is an end extension of Sp. It is well-known that forG V -generi
 over P (see [9℄ or [16℄), in V [G℄, if we assume GCHholds in V , a non-re
e
ting stationary set S = S[G℄ = [fSp : p 2 Gg � �of ordinals of 
o�nality � has been introdu
ed, the bounded subsets of �are the same as those in V , and 
ardinals, 
o�nalities, and GCH have beenpreserved. It is also virtually immediate that P is �-dire
ted 
losed, and it
an be shown (see [9℄ or [16℄) that P is � �-strategi
ally 
losed.We mention that we are assuming familiarity with the large 
ardinalnotions of measurability, strongness, superstrongness, strong 
ompa
tness,and super
ompa
tness. We will also at the end of this paper refer to thelarge 
ardinal notions of Woodinness and Shelahness. Interested readersmay 
onsult [15℄, [20℄, or [22℄ for further details. We mention only thatunlike [15℄, we will say that the 
ardinal � is � strong for � > � if thereis j : V ! M an elementary embedding having 
riti
al point � so thatj(�) > � and V� � M . As always, � is strong if � is � strong for every� > �. We will also say the 
ardinal � is superstrong with target � if there isj : V !M an elementary embedding having 
riti
al point � so that j(�) = �and V� � M . If j0 : V ! M witnesses that � is superstrong with target� and j1 : M ! N witnesses the measurability of � in M , then it is easilyveri�ed that j1 Æ j0 : V ! N witnesses that � is � strong.We mention that we are also assuming some familiarity with the basi
s of6



extender te
hnology and the transferen
e of generi
 obje
ts via elementaryembeddings. The se
tion on ba
kground material of [10℄ is extremely usefulin this regard. We will freely, parti
ularly in the proofs of Lemmas 2.4 and2.5, use notation, de�nitions, and terminology found here. Readers may also
onsult [20℄ for additional details 
on
erning extenders.Finally, both authors wish to express their gratitude to Mena
hem Magi-dor for his explanations to them given at the January 7-13, 1996 meeting inSet Theory held at the Mathemati
s Resear
h Institute, Oberwolfa
h, Ger-many on his method of for
ing to make the �rst n measurable and strongly
ompa
t 
ardinals 
oin
ide, for any �nite n.2 The Proof of Theorem 1 for One CardinalIn this se
tion, we will 
onstru
t, starting with a super
ompa
t 
ardinal, amodel in whi
h the least strongly 
ompa
t 
ardinal � is the same as theleast strong 
ardinal and � isn't 2� = �+ super
ompa
t. We begin with thefollowing lemma, whi
h also appears as Lemma 3.1 of [5℄.Lemma 2.1 Let � be at least 2� super
ompa
t and strong. Assume j : V !M is an elementary embedding witnessing at least the 2� super
ompa
tness of�, and let � be the normal measure over � asso
iated with j. Then fÆ < � : Æis a strong 
ardinalg 2 �.Proof: We �rst show, for j and � as in the statement of Lemma 2.1, thatfÆ < � : Æ is � strongg 2 �. (See also the proof of Proposition 26.11 of [15℄.)7



To see this, note that sin
e M2� � M , j � V�+1 2 M . Thus, as in [3℄, page203, there is E 2M a (�; j(�)) extender and k : M ! Ult(M; E) so that � isthe 
riti
al point of k and M and Ult(M; E) agree through rank j(�). Thismeans M � \� is superstrong with target j(�)", so by re
e
tion, fÆ < � : Æis superstrong with target �g 2 �. By our remarks in Se
tion 1, fÆ < � : Æ is� strongg 2 �.Fix now Æ < � so that V � \Æ is � strong". We show that if � > �is arbitrary, V � \Æ is � strong". Let �0 > � be so that any extender Ewitnessing the � strongness of Æ is su
h that E 2 V�0 . By the strongness of�, let j� : V !M� be an embedding having 
riti
al point � witnessing that� is �0 strong. Sin
e V � \Æ is � strong", M� � \j�(Æ) = Æ is j�(�) > �0 > �strong". As V�0 � M� and M� � \Æ is � strong", V � \Æ is � strong". Thisproves Lemma 2.1. �We observe that in the above proof, it will a
tually be the 
ase thatM � \� is a strong limit of strong 
ardinals". This is sin
e M � \� is j(�)strong and j(�) is strong", so by the se
ond paragraph of the above proof,M � \� is strong". Further, if Æ < � is so that V � \Æ is strong", thenM � \j(Æ) = Æ is strong". Thus, by re
e
tion, we have the more powerfulfa
t that fÆ < � : Æ is a strong limit of strong 
ardinalsg 2 �.We turn now to the proof of Theorem 1.Proof: Let V � \ZFC + � is super
ompa
t". Without loss of generality,by �rst doing a preliminary for
ing if ne
essary, we may also assume that8



V � GCH.By Lemma 2.1, let A = hÆ� : � < �i be an enumeration of the strong
ardinals below �. The partial ordering P� we use in the proof of Theorem1 given in this se
tion is the Easton support iteration hhP��; _Q��i : � < �i,where P�0 is the partial ordering Add(!; 1) and 
P�� \ _Q�� adds a non-re
e
tingstationary set of ordinals of 
o�nality ! to Æ�".Lemma 2.2 V P� � \No 
ardinal Æ < � is strong".Proof: Let Æ < � be so that V � \Æ is strong". It must therefore be the
ase that Æ = Æ� for some � < �. This allows us to write P� = P�� � _Q�� � _R =P��+1 � _R .By the de�nition of P� and the fa
t that any stationary subset of ameasurable (or weakly 
ompa
t) 
ardinal must re
e
t, V P��+1 � \Æ isn'tmeasurable (and hen
e isn't strong) sin
e there is S � Æ whi
h is a non-re
e
ting stationary set of ordinals of 
o�nality !". Sin
e by the de�nitionof P�, 
P��+1 \ _R is Æ0-strategi
ally 
losed for Æ0 the least ina

essible aboveÆ", V P��+1 = V P� � \S � Æ is a non-re
e
ting stationary set of ordinals of
o�nality !, so Æ isn't measurable". Thus, V P� � \No V -strong 
ardinalÆ < � is measurable". The proof of Lemma 2.2 will therefore be 
ompleteon
e we have shown there is no 
ardinal Æ < � so that V P� � \Æ is strong".Write P� as P�0 � _Q . By the de�nition of P, jP�0 j = ! and 
P�0 \ _Q is�1-strategi
ally 
losed". Therefore, using Hamkins' terminology of [12℄, [13℄,and [14℄, P� is a \gap for
ing admitting a very low gap", so by the results9



of [12℄, [13℄ and [14℄, V P� � \Any strong 
ardinal was already strong in V ".This means V P� � \No 
ardinal Æ < � is strong". This proves Lemma 2.2.�Lemma 2.3 V P� � \No 
ardinal Æ < � is strongly 
ompa
t".Proof: By Lemmas 2.1 and 2.2, V P� � \There are unboundedly in � many
ardinals Æ < � 
ontaining a non-re
e
ting stationary set of ordinals of 
o�-nality !". It is a theorem of [22℄ that if a 
ardinal 
 
ontains a non-re
e
tingstationary set of ordinals of 
o�nality �, then there are no strongly 
ompa
t
ardinals in the interval (�; 
℄. Thus, V P� � \No 
ardinal Æ < � is strongly
ompa
t". This proves Lemma 2.3. �Lemma 2.4 V P� � \� is strongly 
ompa
t".Proof: The proof of Lemma 2.4 uses the unpublished ideas of Magidorreferred to at the beginning of this paper. (See also the proof of Lemma 4of [6℄.) Let � > 2� = �+ be an arbitrary su

essor of a regular 
ardinal, andlet k1 : V !M be an embedding witnessing the � super
ompa
tness of � sothat M � \� is < � super
ompa
t but � isn't � super
ompa
t". � has been
hosen large enough so that we may assume by 
hoosing a normal ultra�lterof Mit
hell order 0 over � that k2 : M ! N is an embedding witnessingthe measurability of � de�nable in M so that N � \� isn't measurable".10



It is the 
ase that if k : V ! N is an elementary embedding with 
riti
alpoint � and for any x � N with jxj � �, there is some y 2 N so thatx � y and N � \jyj < j(�)", then k witnesses the � strong 
ompa
tness of�. Using this fa
t, it is easily veri�able that j = k2 Æ k1 is an elementaryembedding witnessing the � strong 
ompa
tness of �. We show that j extendsto j : V P� ! N j(P�). Sin
e this extended embedding witnesses the � strong
ompa
tness of � in V P�, this proves Lemma 2.4.To do this, write j(P�) as P�� _Q�� _R� , where _Q� is a term for the portion ofj(P�) between � and k2(�) and _R� is a term for the rest of j(P�), i.e., the partabove k2(�). Note that sin
e N � \� isn't measurable", � 62 �eld( _Q�). Also,sin
e Lemma 2.1 and the su

eeding paragraph imply thatM � \� is strong",by elementarity, N � \k2(�) is strong". Thus, the �eld of _Q� is 
omposedof all N -strong 
ardinals in the interval (�; k2(�)℄ (so k2(�) 2 �eld( _Q�)),and the �eld of _R� is 
omposed of all N -strong 
ardinals in the interval(k2(�); k2(k1(�))).Let G0 be V -generi
 over P�. We 
onstru
t in V [G0℄ an N [G0℄-generi
obje
t G1 over Q� and an N [G0℄[G1℄-generi
 obje
t G2 over R� . Sin
e P� isan Easton support iteration of length �, a dire
t limit is taken at stage �, andno for
ing is done at stage �, the 
onstru
tion of G1 and G2 automati
allyguarantees that j 00G0 � G0 �G1 �G2. This means that j : V ! N extendsto j : V [G0℄! N [G0℄[G1℄[G2℄.To build G1, note that sin
e k2 
an be assumed to be generated byan ultra�lter U over � and sin
e in both V and M , 2� = �+, jk2(�+)j =11



jk2(2�)j = jff : f : � ! �+ is a fun
tiongj = j[�+℄�j = �+. Thus, asN [G0℄ � \j}(Q�)j = k2(2�)", we 
an let hD� : � < �+i enumerate in V [G0℄the dense open subsets of Q� present in N [G0℄. Sin
e the � 
losure of Nwith respe
t to either M or V implies the least element of the �eld of Q� is> �+, the de�nition of Q� as the Easton support iteration whi
h adds a non-re
e
ting stationary set of ordinals of 
o�nality ! to ea
h N [G0℄-strong 
ar-dinal in the interval (�; k2(�)℄ implies that N [G0℄ � \Q� is � �+-strategi
ally
losed". By the fa
t the standard arguments show that for
ing with the �-
.
: partial ordering P� preserves that N [G0℄ remains �-
losed with respe
tto either M [G0℄ or V [G0℄, Q� is � �+-strategi
ally 
losed in both M [G0℄ andV [G0℄.We 
an now 
onstru
t G1 in either M [G0℄ or V [G0℄ as follows. PlayerI pi
ks p� 2 D� extending sup(hq� : � < �i) (initially, q�1 is the empty
ondition) and player II responds by pi
king q� � p� (so q� 2 D�). Bythe � �+-strategi
 
losure of Q� in both M [G0℄ and V [G0℄, player II has awinning strategy for this game, so hq� : � < �+i 
an be taken as an in
reasingsequen
e of 
onditions with q� 2 D� for � < �+. Clearly, G1 = fp 2 Q� :9� < �+[q� � p℄g is our N [G0℄-generi
 obje
t over Q� .It remains to 
onstru
t in V [G0℄ the desired N [G0℄[G1℄-generi
 obje
t G2over R� . To do this, we �rst note that as M � \� is strong", we 
an writek1(P�) as P� � _S� � _T�, where 
P� \ _S� adds a non-re
e
ting stationary set ofordinals of 
o�nality ! to �", and _T� is a term for the rest of k1(P�).
12



Note now thatM � \No 
ardinal Æ 2 (�; �℄ is strong". To see this, assumeto the 
ontrary Æ 2 (�; �℄ is so that M � \Æ is strong". If ` : M ! M� isan elementary embedding witnessing the �0 strongness of Æ for some 
ardinal�0 > � � Æ > �, then as M � \� is < � super
ompa
t", M� � \`(�) = �is < `(�) super
ompa
t". Sin
e `(Æ) 
an be made arbitrarily high in theuniverse by in
reasing the amount of strongness ` witnesses, `(�) 
an bemade arbitrarily high in the universe also, so by 
hoosing �0 large enough,the fa
t M� � \� is < `(�) super
ompa
t" is suÆ
ient to dedu
e that � is� super
ompa
t in M . As this 
ontradi
ts the 
hoi
e of M , we must havethat M � \Æ isn't strong". Thus, the �eld of _T� is 
omposed of all M -strong
ardinals in the interval (�; k1(�)), whi
h implies that in M , 
P�� _S� \ _T�is � �+-strategi
ally 
losed". Further, sin
e V � GCH and � is regular,j[�℄<�j = � and 2� = �+. Therefore, as k1 
an be assumed to be generatedby an ultra�lter U over P�(�), jk1(�+)j = jk1(2�)j = j2k1(�)j = jff : f :P�(�)! �+ is a fun
tiongj = j[�+℄�j = �+.Work until otherwise spe
i�ed in M . Consider the \term for
ing" partialordering T� (see [10℄, Se
tion 1.2.5, page 8) asso
iated with _T�, i.e., � 2 T� i�� is a term in the for
ing language with respe
t to P�� _S� and 
P�� _S� \� 2 _T�",ordered by � � � i� 
P�� _S� \� � �". Clearly, T� 2M . Also, sin
e 
P�� _S� \ _T�is � �+-strategi
ally 
losed", it 
an easily be veri�ed that T� itself is � �+-strategi
ally 
losed in M and, sin
e M� � M , in V as well. Therefore,as 
P�� _S� \j _T�j = k1(�) and 2k1(�) = (k1(�))+ = k1(�+)", we 
an assumewithout loss of generality that in M , jT�j = k1(�). This means we 
an let13



hD� : � < �+i enumerate in V the dense open subsets of T� present in Mand argue as before to 
onstru
t in V an M -generi
 obje
t H2 over T�.Note now that sin
e N 
an be assumed to be given by an ultrapower ofMvia a normal ultra�lter U 2M over �, Fa
t 2 of Se
tion 1.2.2 of [10℄ tells usthat k002H2 generates an N -generi
 obje
t G�2 over k2(T�). By elementariness,k2(T�) is the term for
ing in N de�ned with respe
t to k2(k1(P�)�+1) =P� � _Q� . Therefore, sin
e j(P�) = k2(k1(P�)) = P� � _Q� � _R� , G�2 is N -generi
over k2(T�), and G0 �G1 is k2(P� � _S�)-generi
 over N , Fa
t 1 of Se
tion 1.2.5of [10℄ tells us that for G2 = fiG0�G1(�) : � 2 G�2g, G2 is N [G0℄[G1℄-generi
over R� . Thus, in V [G0℄, j : V ! N extends to j : V [G0℄ ! N [G0℄[G1℄[G2℄.This proves Lemma 2.4. �Lemma 2.5 V P� � \� is strong".Proof: We use for the proof of this lemma notation and terminology fromthe introdu
tory se
tion of [10℄. Fix � > �+, � a 
ardinal so that � = ��.Let j : V !M be an elementary embedding witnessing the � strongness of �generated by a (�; �)-extender of width � so thatM � \� isn't � strong", andlet i : V ! N be the elementary embedding witnessing the measurability of� generated by the normal ultra�lter U = fx � � : � 2 j(x)g. We then havethe 
ommutative diagram
14



V ���������Ri M-j
N �������

���k
where j = k Æ i and the 
riti
al point of k is above �.Observe thatM � \No 
ardinal � 2 (�; �℄ is strong", for if this were false,then sin
e V� � M , M � \� is < � strong". By the argument in the se
ondparagraph of the proof of Lemma 2.1, M � \� is strong", 
ontradi
ting the
hoi
e of M . This means that in M , the least strong 
ardinal Æ > � is sothat Æ > �.For any ordinal �, de�ne �� as the least ordinal > � so that � isn't ��strong if su
h an ordinal exists, and �� = 0 otherwise. De�ne f : � ! �as f(�) = The least ina

essible 
ardinal > ��. By our 
hoi
e of � andthe pre
eding paragraph, � < � < j(f)(�) < Æ, where Æ is the least strong
ardinal in M � �, i.e., the least element of the �eld of j(P�)� �.Note now that M = fj(g)(a) : a 2 [�℄<!, dom(g) = [�℄jaj, g : [�℄jaj !V g = fk(i(g))(a) : a 2 [�℄<!, dom(g) = [�℄jaj, g : [�℄jaj ! V g. By de�ning
 = i(f)(�), we have k(
) = k(i(f)(�)) = j(f)(�) > �. This means j(g)(a) =k(i(g))(a) = k(i(g) � [
℄jaj)(a), i.e., M = fk(h)(a) : a 2 [�℄<!, h 2 N ,dom(h) = [
℄jaj, h : [
℄jaj ! Ng. By elementariness, we must have N � \�isn't strong and � < 
 = i(f)(�) < Æ0 = The least strong 
ardinal inN � � =15



The least element of the �eld of i(P�)��", sin
e M � \k(�) = � isn't strongand k(�) = � < k(
) = k(i(f)(�)) = j(f)(�) < k(Æ0) = Æ". Therefore, k 
anbe assumed to be generated by an N -extender of width 
 2 (�; Æ0).Write i(P�) = P� � _Q 0 , where _Q 0 is a term for the portion of i(P�) whose�eld is 
omposed of ordinals in the interval [�; i(�)). Sin
e N � \� isn'ta strong 
ardinal", the �eld of _Q 0 is a
tually 
omposed of ordinals in theinterval (�; i(�)), or more pre
isely, of ordinals in the interval [Æ0; i(�)). Thismeans that if G0 is on
e again V -generi
 over P�, the argument from Lemma2.4 for the 
onstru
tion of the generi
 obje
t G1 
an be applied here as wellto 
onstru
t in V [G0℄ an N [G0℄-generi
 obje
t G�1 over Q 0 . Sin
e i00G0 �G0 � G�1, i extends to i : V [G0℄ ! N [G0℄[G�1℄, and sin
e k00G0 = G0 andk(�) = �, k extends to k : N [G0℄ ! M [G0℄. By Fa
t 3 of Se
tion 1.2.2 of[10℄, k : N [G0℄!M [G0℄ 
an also be assumed to be generated by an extenderof width 
 2 (�; Æ0).In analogy to the pre
eding paragraph, write j(P�) = P� � _Q 1 . By thelast senten
e of the pre
eding paragraph and the fa
t Æ0 is the least ordinalin the �eld of _Q 0 , we 
an use Fa
t 2 of Se
tion 1.2.2 of [10℄ to infer thatH = fp 2 Q 1 : 9q 2 k00G�1[q � p℄g is M [G0℄-generi
 over k(Q 1). Thus, kextends to k : N [G0℄[G�1℄ ! M [G0℄[H℄, and we get the new 
ommutativediagram
16



V [G0℄���������Ri M [G0℄[H℄-j
N [G0℄[G�1℄�����

�����k
Sin
e M � \No 
ardinal � 2 [�; �℄ is strong", the �eld of _Q 1 is 
omposedof ordinals in the interval (�; j(�)). Therefore, as V� � M , V�[G0℄ �M [G0℄,and as the �eld of Q 1 is 
omposed of ordinals in the interval (�; j(�)), V�[G0℄is the set of all sets of rank < � in M [G0℄[H℄. Hen
e, j is a � strongembedding. Sin
e � was arbitrary, this proves Lemma 2.5. �Lemma 2.6 V P� � \� isn't 2� = �+ super
ompa
t".Proof: By Lemmas 2.2 and 2.5, V P� � \� is a strong 
ardinal so thatno 
ardinal Æ < � is strong". Thus, by Lemma 2.1, V P� � \� isn't 2�super
ompa
t". Sin
e jP�j = � and V � \2� = �+", V P� � \2� = �+". Thisproves Lemma 2.6. �Lemmas 2.1 - 2.6 
omplete the proof of Theorem 1 for one 
ardinal. �17



We remark that the use of non-re
e
ting stationary subsets of ordinals of
o�nality ! in the pre
eding proof was 
ompletely arbitrary. We 
ould just aseasily have added non-re
e
ting stationary subsets of ordinals of 
o�nality 
,where for Æ0 < � the least strong 
ardinal, 
 2 (!; Æ0) is an arbitrary regular
ardinal.We 
on
lude this se
tion by noting that the large 
ardinal stru
ture above� in V 
an be 
ompletely arbitrary by the proof just given. This is quitedi�erent from the situation in Magidor's original proof of the 
onsisten
yof the �rst n 2 ! strongly 
ompa
t 
ardinals being the �rst n measurable
ardinals and the situation in [6℄, in whi
h severe limitations are of ne
essitypla
ed on the large 
ardinal stru
ture of the ground model. The reason forthis is that strongness, unlike measurability, is not a lo
al property, so inthe proofs of Lemmas 2.4 and 2.5, we don't have to worry about unwanted
ardinals having a non-re
e
ting stationary set of ordinals added to them.The fa
t that these limitations don't exist will allow us in the next se
tionto prove Theorem 1 for a proper 
lass of 
ardinals.3 The Proof of Theorem 1 in the GeneralCaseWe turn now to the proof of Theorem 1 for a proper 
lass of 
ardinals.Proof: Let V � \ZFC + h�� : � 2 Ordi is the proper 
lass of super
ompa
t
ardinals". Without loss of generality, we assume in addition that V � GCHand that by \
utting o�" the universe if ne
essary at the least ina

essible18



limit of super
ompa
t 
ardinals, for 
0 = ! and 
� = [�<��� for � > 0, 
� <�� is singular if � is a limit ordinal. Further, by the methods of either [4℄ or [1℄(both of whi
h generalize Laver's result of [17℄), we 
an also assume withoutloss of generality that for R = Add(!; 1) � _R� , V1 = V R � \GCH + Thesuper
ompa
tness of ea
h �� is indestru
tible under for
ing with ��-dire
ted
losed set or 
lass partial orderings not destroying GCH". Sin
e it will bethe 
ase that 
Add(!;1) \ _R� is �1-strategi
ally 
losed" and jAdd(!; 1)j = !,R is a gap for
ing admitting a very low gap. Thus, on
e again by Hamkins'results of [12℄, [13℄, and [14℄, V1 � \Any 
ardinal whi
h is super
ompa
t orstrong must have been super
ompa
t or strong in V ".Work in V1. For ea
h ordinal �, let hÆ�� : � < ��i be an enumeration of theV -strong 
ardinals in the interval (
�; ��), and let P�� = hhP��� ; _Q��� i : � <��i be the Easton support iteration where P��0 = f;g and 
P��� \ _Q��� addsa non-re
e
ting stationary set of ordinals of 
o�nality 
+� to Æ��". We de�neP as the Easton support produ
t Q�2Ord P�� . Sin
e ea
h P�� is 
+� -dire
ted
losed, the standard Easton arguments show V P1 � ZFC.For ea
h ordinal �, write P = P<� � P�� � P>�, where P<� = Q�<� P��and P>� is the remainder of P. By the de�nition of P and the fa
t the super-
ompa
tness of �� is indestru
tible under set or 
lass for
ing not destroyingGCH, V P>�1 � \GCH + �� is super
ompa
t". Further, sin
e R�( _P>�� _P��) =Add(!; 1) � ( _R� � ( _P>� � _P��)) is so that 
Add(!;1) \ _R� � ( _P>� � P��) is�1-strategi
ally 
losed", the results of [12℄, [13℄, and [14℄ on
e more applyto show that any 
ardinal whi
h is strong in V P>��P��1 must have been19



strong in V . Thus, we 
an apply the results of Se
tion 2 to show thatV P>��P�� � \�� is both strongly 
ompa
t and strong, there are no strongly
ompa
t or strong 
ardinals in the interval (
�; ��), and �� isn't 2�� = �+�super
ompa
t". Sin
e V1 � \jP<�j < 2
+� ", the L�evy-Solovay results [18℄show that V P>��P���P<�1 = V P1 � \�� is both strongly 
ompa
t and strong,there are no strongly 
ompa
t or strong 
ardinals in the interval (
�; ��), and�� isn't 2�� = �+� super
ompa
t". Therefore, sin
e any 
ardinal Æ whi
h isstrongly 
ompa
t or strong and is not a �� must be so that Æ 2 (
�; ��), V P1is our desired model. This proves Theorem 1 for a proper 
lass of 
ardinals.�We 
on
lude this se
tion by noting that a result of Menas from [21℄ showsthat any measurable limit of strongly 
ompa
t 
ardinals is strongly 
ompa
t.This has as a 
onsequen
e that if we assume large enough 
ardinals in theuniverse, there 
an never be a pre
ise 
oin
iden
e between the notions ofstrongly 
ompa
t and strong. This is shown by the following, whose proof isessentially the same as Menas' proof of [21℄ that the least measurable limit� of strongly 
ompa
t or super
ompa
t 
ardinals isn't 2� super
ompa
t.Fa
t 3.1 If � is the least measurable limit of 
ardinals whi
h are both strongly
ompa
t and strong, then � isn't �+ 2 strong.Proof: Assume to the 
ontrary that � is �+2 strong, and let j : V !M bean elementary embedding witnessing this fa
t. Sin
e M � \� is measurable"and j � � = id, M � \� is a measurable limit of 
ardinals whi
h are both20



strongly 
ompa
t and strong". This 
ontradi
ts that M � \j(�) > � isthe least measurable limit of 
ardinals whi
h are both strongly 
ompa
t andstrong". This proves Fa
t 3.1. �4 Possible Generalizations and Con
luding Re-marksWe observe that by 
ombining the te
hniques of this paper with those of [2℄,it is possible to prove the following.Theorem 2 Let V � \ZFC + 
 is an ina

essible limit of measurable limitsof super
ompa
t 
ardinals + f : 
 ! 3 is a fun
tion". There is then apartial ordering P 2 V so that for V = V P
 , the universe of V P trun
atedat 
, V � \ZFC + If f(�) = 0, then the �th 
ompa
t 
ardinal 
� isn't 2
�super
ompa
t or 
� + 2 strong + If f(�) = 1, then the �th 
ompa
t 
ardinal
� is super
ompa
t + If f(�) = 2, then the �th 
ompa
t 
ardinal 
� is strongbut isn't 2
� super
ompa
t".For Theorem 2, we take a 
ompa
t 
ardinal as being one whi
h is eithersuper
ompa
t or non-super
ompa
t strongly 
ompa
t. Also, sin
e we willbe able to assume GCH in V , when f(�) = 0 or f(�) = 2, 
� won't be 
+�super
ompa
t.We will not give a detailed proof here, but we will expli
itly des
ribe thefor
ing 
onditions P used in the 
onstru
tion of V . Readers of this paper21



and [2℄ should then fairly easily be able to 
ombine the methods of these twopapers to prove Theorem 2.We begin as in the proof of Theorem 1 given in Se
tion 3 by assumingV � GCH and that by using a partial ordering of the form R = Add(!; 1)� _R�that V R � \GCH + The super
ompa
t and strongly 
ompa
t 
ardinals 
oin-
ide ex
ept at measurable limit points + Every super
ompa
t 
ardinal � isindestru
tible under �-dire
ted 
losed for
ing not destroying GCH". Sin
e thework of [1℄ and [2℄ tells us R 
an be presumed to preserve all V -super
ompa
t
ardinals, their measurable limits, and the regularity of 
, we 
an assumewithout loss of generality that 
 is in V R the least regular limit of measurablelimits of super
ompa
t 
ardinals.Working in V R, we let hÆ� : � < 
i enumerate the measurable limits ofsuper
ompa
t 
ardinals below 
. For an arbitrary � < 
, let h��� : � < Æ�ienumerate the V = V R-super
ompa
t 
ardinals in the interval ([
<�Æ
; Æ�).De�ne �� = ! when � = 0 and �� = ([
<�Æ
)+ when � 2 (0;
). If f(�) = 0,take P� as the Easton support iteration of partial orderings whi
h add a non-re
e
ting stationary set of ordinals of 
o�nality �� to ea
h ��� . If f(�) = 1,take P� as the partial ordering whi
h adds a non-re
e
ting stationary set ofordinals of 
o�nality ��0 to Æ�. If f(�) = 2, take P� as Q�1 �Q�2 , where Q�1 isthe partial ordering whi
h adds a non-re
e
ting stationary set of ordinals of
o�nality ��0 to Æ�, and Q�2 is the Easton support iteration of partial orderingswhi
h add a non-re
e
ting stationary set of ordinals of 
o�nality �� to ea
hV -strong 
ardinal in the interval (��; ��0 ). Let P� be the Easton support22



produ
t Q�<
 P�. P = R � _P� is our desired partial ordering.We remark that another possible generalization of Theorem 1 that onemight wish to obtain is the 
onstru
tion, relative to a proper 
lass of super-
ompa
t 
ardinals, of a model in whi
h not only do the strongly 
ompa
tand strong 
ardinals pre
isely 
oin
ide, but ea
h strongly 
ompa
t 
ardinal� is �+ super
ompa
t. In su
h a model, GCH would of ne
essity have tofail, sin
e by Lemma 2.1, no strongly 
ompa
t 
ardinal � 
ould be 2� super-
ompa
t. The te
hniques used to build this sort of model would doubtlesslyinvolve a melding of the ideas of [6℄ and [8℄ with the ideas of this paper, alongwith the 
onstru
tion of the appropriate kinds of super
ompa
t and strongembeddings. Although we feel attaining this result is within rea
h, we havenot yet been able to 
ome up with a 
on
rete proof.In 
on
lusion to this paper, we note that it is tempting to want to provean analogue to Theorem 1 for superstrong 
ardinals, i.e., to want to 
onstru
ta model in whi
h the strongly 
ompa
t and superstrong 
ardinals pre
isely
oin
ide. That this 
an't be, however, is shown by the following.Fa
t 4.1 Suppose � is both strongly 
ompa
t and superstrong. Then � has anormal measure 
on
entrating on strongly 
ompa
t 
ardinals.Proof: Let j : V ! M be an elementary embedding witnessing that � issuperstrong. Sin
e Vj(�) � M , V � \j(�) is a strong limit 
ardinal". Thus,Vj(�) � \� is < j(�) strongly 
ompa
t", i.e., M � \� is < j(�) strongly
ompa
t". This means, by elementarity, that M � \� is < j(�) strongly23




ompa
t and j(�) is strongly 
ompa
t", so by a theorem of DiPris
o [11℄,M � \� is strongly 
ompa
t". Fa
t 4.1 now follows by re
e
tion. �Thus, an analogue to Theorem 1 for superstrong 
ardinals is impossible.We �nish by asking, however, if an analogue to Theorem 1 
an be provenfor Woodin or Shelah 
ardinals, i.e., if it is 
onsistent, relative to some large
ardinal hypothesis, for the 
lasses of strongly 
ompa
t and Woodin 
ardinalsor strongly 
ompa
t and Shelah 
ardinals to 
oin
ide pre
isely.Referen
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