
CONTINUOUS TREE-LIKE SCALES

JAMES CUMMINGS

Abstract. Answering a question raised by Luis Pereira, we show that a con-
tinuous tree-like scale can exist above a supercompact cardinal. We also show

that the existence of a continuous tree-like scale at ℵω is consistent with Mar-

tin’s Maximum.

1. Introduction

In his PhD thesis [12] Luis Pereira introduced the notion of a PCF-theoretic
object called a tree-like scale, and showed that there is a connection between the
existence of such scales and Shelah’s PCF Conjecture. Pereira raised the question
as to whether a continuous tree-like scale can exist at singular cardinals above a
supercompact cardinal. We give a positive answer to this question. Before stating
our results more precisely, we give some background.

We recall that if 〈µn : n < ω〉 is an increasing sequence of regular cardinals, then
a scale of length λ in

∏
n µn (modulo finite sets) is a sequence 〈fα : α < λ〉 which

is increasing and cofinal in (
∏
n µn, <

∗), where f <∗ g if and only if f(m) < g(m)
for all large m. When λ = (supn µn)+ we will call such sequences scales in

∏
n µn.

If µ is a singular cardinal of cofinality ω then a scale at µ is a scale in
∏
n µn for

some increasing sequence 〈µn : n < ω〉 of regular cardinals cofinal in µ.
If β < λ is a limit ordinal of uncountable cofinality, then h is an exact upper

bound (eub) for 〈fα : α < β〉 if and only if

{g : g <∗ h} = {g : ∃α < β : g <∗ fα}.

Such an h may not exist, but if it exists it is unique modulo finite: the scale is
continuous if and only if at every β < λ where an eub for 〈fα : α < β〉 exists, fβ is
such an eub. The scale is good if and only if for every β < λ with cf(β) > ω there
is an eub g for 〈fα : α < β〉 such that cf(g(n)) = cf(β) for all n.

The following definition appears as Definition 5.11 in [12].

Definition 1. A scale 〈fα : α < λ〉 in
∏
n µn is tree-like if and only if for every

n < ω and every α < β < λ, if fα(n) = fβ(n) then fα � n = fβ � n.

We note that if 〈fα : α < λ〉 is tree-like, then there are functions 〈Fn : µn+1 →
µn : n < ω〉 such that Fn(fα(n+ 1)) = fα(n) for all α, n.

Pereira [12] proved that the existence of enough continuous tree-like scales can
imply cases of Shelah’s PCF Conjecture. We will sketch the proof of an interesting
special case. Recall that the PCF Conjecture states that for any set A of regular
cardinals with |A| < min(A), |pcf(A)| = |A|.
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Shelah [14] proved some results which relate the failure of the PCF Conjecture
to the existence of free subsets. In particular if the PCF Conjecture fails for the
set {ℵn : 1 < n < ω} then there exist

(1) An infinite set X ⊆ ω,
(2) A regular cardinal θ,
(3) An internally approachable structure N ≺ Hθ of length and cardinality ℵm

for some m < min(X), containing everything relevant,
such that for all n ∈ X
(1) χN (ℵn) /∈ Sk(N ∪ {χN (ℵm) : m ∈ X,m 6= n}).

We claim that under these circumstances there is no continuous tree-like scale
in

∏
n ℵn. If there is a continuous tree-like scale in

∏
n ℵn then there is such a scale

〈fα : α < ℵω+1〉 lying in N , and also there exists in N a sequence of functions
Fn such that Fn(fα(n + 1)) = fα(n) for all α, n. Let γ = sup(N ∩ ℵω+1), then a
standard argument from PCF theory shows that fγ(n) = sup(N ∩ ℵn) for all large
n. But then Fn(sup(N ∩ ℵn+1)) = sup(N ∩ ℵn) for all large n, contradicting (1).

Pereira had conjectured that continuous tree-like scales should exist, and pro-
posed this as a line of attack on the PCF Conjecture. In particular he conjectured
that when κ is singular strong limit of cofinality ω and 2κ = λ > κ+ there will
always exist a continuous tree-like scale of length λ. However Gitik [9] refuted this
conjecture, producing (among other results) a model where 2κ = κ++ and there is
no continuous tree-like scale of length κ++.

Pereira also raised the question whether continuous tree-like scales should exist
above a supercompact cardinal. The question is quite a natural one, as supercom-
pact cardinals exert a strong influence on the combinatorics of singular cardinals
above them: for example

(1) (Solovay) If κ is supercompact then the Singular Cardinals Hypothesis holds
at singular cardinals above κ.

(2) (Shelah) If κ is supercompact then there are no good scales at singular
cardinals of cofinality ω above κ.

We note that by work of Shelah a failure of SCH above a cardinal κ implies the
existence of a good scale above κ, so that Shelah’s result implies Solovay’s. It is also
interesting to note that there are versions of Shelah’s result in which κ is a small
cardinal with some form of compactness property; for more on this see Foreman
and Magidor’s paper [8] on very weak squares and Magidor and Shelah’s paper [11]
on almost-free non-free structures

We finish this introduction by stating the main results of this paper.
Theorem 1: If κ is supercompact then there is a generic extension in which κ is
supercompact and there is a continuous tree-like scale of length κ+ω+1 in

∏
n κ

+n.
Theorem 2: If κ is supercompact there is a generic extension in which κ = ω2,
Martin’s Maximum holds and there is a continuous tree-like scale of length ℵω+1

in
∏
n ℵn.

2. Continuous tree-like scales above a supercompact cardinal

We will produce by forcing a continuous tree-like scale on
∏
n κ

+n where κ is
supercompact. The argument can readily be adapted to more general situations.
We use a forcing poset defined by Pereira [12, section 5.3].

Given α inaccessible let Q(α) be the following two step iteration:
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(1) Q0(α) is the full support iteration of length ω in which we add for each
n < ω a function Fn : α+n+1 → α+n using partial functions of size α+n.

(2) Q1(α) is defined in the extension by Q0(α). Conditions are continuous
<∗-increasing sequences in

∏
n α

+n of the form 〈gα : α ≤ β〉 such that
Fn(gα(n+1)) = gα(n) for α ≤ β and n < ω. The ordering is end-extension.

Pereira [12] proved that assuming GCH this forcing poset is α-strategically closed,
collapses no cardinals and adds a continuous tree-like scale.

Assume that κ is supercompact. By a suitable preparatory forcing we may
assume that GCH holds. Let F be a Laver function [10] for κ, that is to say a
function F : κ → Vκ such that for all sets x and cardinals λ there is j : V → M
with κ = crit(j), j(F )(κ) = x, j(κ) > λ, and λM ⊆M .

We will say that a cardinal α is “acceptable” if α is inaccessible and for every
β < α, if F (β) is an ordinal then F (β) < α. We iterate with Easton support for
κ+ 1 steps, forcing with Q(α)V

Pα at every acceptable α < κ together with α = κ.
We claim that this iteration preserves the supercompactness of κ. We use es-

sentially the argument of Laver’s indestructibility theorem [10], except that we
have to work harder for the master conditions because our forcing posets are only
α-strategically closed.

Let λ > κ+ω be a cardinal, let µ be much larger than λ and let j : V → M be
such that κ = crit(j), j(κ) > µ, j(F )(κ) = λ, and µM ⊆M . Let G be the generic
object below κ, and let g = g0 ∗ g1 be the generic object at κ.

By the agreement between V and M , j(Pκ) is in M an iteration which prolongs
Pκ+1. We force over V [G∗g] to obtain a generic object H for the iteration between
stage κ and stage j(κ).

Since j“G ⊆ G ∗ g ∗H, we may lift to get j : V [G] → M [G ∗ g ∗H] by defining
j : iG(τ̇) 7→ iG∗g∗H(j(τ̇)). Note that the next acceptable ordinal past κ on the
M -side is greater than λ, and so easily H is generic over V [G ∗ g] for forcing which
is (2λ)+-strategically-closed. Also M [G ∗ g ∗H] can compute j � HV [G]

λ+ , since both
j � HV

µ and G ∗ g ∗H are in M [G ∗ g ∗H].
To further extend the elementary embedding j to the domain V [G ∗ g], we need

to choose a generic object h0 ∗h1 over M [G∗g∗H] for Q(j(κ)) such that j“g0 ∗g1 ⊆
h0 ∗h1. We will do this by constructing in M [G∗g∗H] a (strong) master condition,
that is a condition in Q(j(κ)) which is a lower bound for j“g0 ∗ g1; forcing below
this condition will give us h0 ∗ h1 as required. We present the construction in two
steps: we construct a master condition for g0, lift the embedding j to the domain
V [G ∗ g0], and then find a master condition for g1.

We need to choose a master condition p0 for g0 with some care, so as to be able
to choose a master condition for g1. We will define p0 coordinate by coordinate,
working in the model M [G ∗ g ∗ H]. Let µn = sup(j“κ+n), and note that µn <
j(κ+n). We maintain the induction hypotheses:

(1) p0 � i is a strong master condition for j : V [G] → M [G ∗ g ∗ H] and
g0 � i, that is p0 � i ≤ j(q) for all q ∈ g0 � i. As usual this implies
that if p0 � i ∈ hi with hi generic over M [G ∗ g ∗ H] we can lift to get
j : V [G][g0 � i]→M [G ∗ g ∗H][hi].

(2) p0 � i forces that the domain of p0(i) is µi+1 + 1.

To define p0(0) compute the union of j(F0 � α) for α < κ+; this is a partial
function from µ1 to κ, we define p0(0) to extend this function, have domain µ1 + 1
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and map µ1 to µ0 = κ. In general to define p0(i) we force below p0 � i to obtain
hi with j“(g0 � i) ⊆ hi, , extend the embedding j to an embedding j : V [G][g0 �
i]→M [G ∗ g ∗H][hi], form the union of the functions j(Fi � α) for α < κ+i+1, and
extend by one point to get a function with domain µi+1 + 1 which maps µi+1 to
µi. Finally we define p0(i) to be (a name for) the resulting function.

To define a strong master condition for g1, we work in M [G ∗ g ∗H ∗ h0] where
p0 ∈ h0. We have an embedding j : V [G ∗ g0] → M [G ∗ g ∗ H ∗ h0], and the
construction of p0 gives j(Fn)(µn+1) = µn for all n. Compute the union of j(q)
for q ∈ g1; this is a µω+1-sequence of functions, but is not a condition since it is
missing a top element.

By considerations of continuity the only possible candidate (mod finite) for a
top element is the function n 7→ µn, since (as is easily checked) this function is an
eub for

⋃
j“g1. This function is a valid candidate because j(Fn)(µn+1) = µn for all

n. Extending
⋃
j“g1 by adding the function n 7→ µn at µω+1, we obtain a strong

master condition p1 for g1.
Now we can proceed along the same lines as Laver’s indestructibility argument[10].

Forcing below p1 we get h1 with j“g1 ⊆ h1, so we obtain j : V [G ∗ g]→M [G ∗ g ∗
H ∗ h]. We compute the set U of X ∈ (Pκλ)V [G∗H] such that j“λ ∈ j(X), and use
the closure of the forcing which adds H ∗h to prove that U ∈ V [G∗ g]. It is routine
to check that U will serve as a witness that κ is λ-supercompact in V [G ∗ g]. Since
λ was arbitrary, we have proved that κ is fully supercompact in V [G ∗ g].

We have proved

Theorem 1. If κ is supercompact then there is a generic extension in which κ is
supercompact and there is a continuous tree-like scale of length κ+ω+1 in

∏
n κ

+n.

3. Continuous tree-like scales and Martin’s Maximum

The forcing axiom Martin’s Maximum (MM) [7] is known to be consistent rel-
ative to a supercompact cardinal, and is widely believed to be equiconsistent with
a supercompact cardinal. Some evidence that MM is very strong comes from its
effects on the combinatorics of singular cardinals. As we mentioned in the Introduc-
tion, Shelah showed that there are no good scales at singular cardinals of cofinality
ω above a supercompact cardinal; Menachem Magidor [2] has shown that under
MM there are no good scales at any singular cardinal of cofinality ω.

In this section we show that MM is consistent with the existence of a continuous
tree-like scale of length ℵω+1 in

∏
n ℵn. Since the main ideas of the proof are very

similar to those of the last section, we will be somewhat sketchy.
We start by recalling the standard construction [7] of a model of MM, starting

with a supercompact cardinal κ and a Laver function F : κ → Vκ. We will build
an iteration Pκ of length κ, in which semiproper forcing is iterated with revised
countable support: at each stage α such that F (α) is a Pα-name for a semiproper
forcing we let Pα+1 = Pα ∗ Q̇α.

Let G be generic for Pκ. In V [G] we have 2ω = κ = ω2. By a result of Shelah
[13] the Semi-Proper Forcing Axiom (SPFA) implies MM, so it is enough to check
that SPFA holds in V [G]. If Q ∈ V [G] is semi-proper and 〈Di : i < ω1〉 are dense
open sets then we choose an embedding j : V →M which witnesses a high degree
of supercompactness for κ, and is such that j(Pκ) = Pκ ∗Q∗R for some R. We then
lift to get j : V [G]→M [G ∗ g ∗H] where g is Q-generic over V [G]. We chose j to
witness enough supercompactness that j“g ∈M [G ∗ g ∗H], and one can check that
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j“g generates a filter on j(Q) which meets j(Di) for each i. By elementarity there
is a filter on Q in V [G] which meets each Di. So MM holds in V [G] as required.

Let κ be supercompact and let GCH hold. Let Pκ be the iteration we just
described and let G be generic for Pκ. Then in V [G] we have that 2ω = ω2 and
GCH holds at all uncountable cardinals. We will force over V [G] with Q =def Q(ω2),
the forcing which we described in the preceding section and which adds a continuous
tree-like scale of length ℵω+1. It is routine to check that Q is countably closed (in
particular it is semi-proper) and does not collapse cardinals. Let g be Q-generic
over V [G].

We claim that MM holds in V [G ∗ g]; as before it suffices to check that SPFA
holds. Let R ∈ V [G∗g] be semi-proper, say R = ig(Ṙ) where Ṙ ∈ V [G] is a Q-name
for a semi-proper forcing poset. Since Q is semi-proper, it follows that Q ∗ Ṙ is also
semi-proper. Let H be R-generic over V [G ∗ g].

We now choose an elementary embedding j : V → M such that j witnesses
a high degree of supercompactness of κ and j(Pκ) = Pκ ∗ Q ∗ R ∗ S for some S.
By standard arguments we may extend j to get a generic elementary embedding
j : V [G] → M [G ∗ g ∗H ∗ h]. We now use the method of the preceding section to
build q ∈ j(Q) which is a strong master condition for j and g, that is q is a lower
bound for j“q; forcing below q we obtain I which is j(Q)-generic with j“g ⊆ I, and
can extend again to get j : V [G ∗ g]→M [G ∗ g ∗H ∗ h ∗ I].

Finally we may argue that j“H ∈M [G ∗ g ∗H ∗h ∗ I], and that j“H generates a
filter on j(R) which meets j(D) for every dense D ⊆ R with D ∈ V [G ∗ g]. Exactly
as in the standard consistency proof for MM, we may use this to argue that SPFA
(and hence MM) holds in V [G ∗ g].

We have proved

Theorem 2. If κ is supercompact there is a generic extension in which κ = ω2,
Martin’s Maximum holds and there is a continuous tree-like scale of length ℵω+1 in∏
n ℵn.

4. Questions and remarks

As far as we know the only known models without tree-like continuous scales are
the ones built by Gitik in [9]. These models are built by Prikry forcing and produce
singular strong limit cardinals κ of cofinality ω where 2κ = λ > κ+ and there is no
tree-like continuous scale of length λ. This raises the following questions:

(1) If κ is singular strong limit of cofinality ω and 2κ = κ+, does there neces-
sarily exist a tree-like continuous scale of length κ+ at κ?

(2) If κ is supercompact and λ > κ is a singular strong limit cardinal of cofi-
nality ω, does there necessarily exist a tree-like continuous scale of length
λ+ at λ?

We note that SCH always holds above a supercompact cardinal, and that do-
ing Prikry forcing above a supercompact cardinal destroys supercompactness in a
rather absolute way (no further cardinal-preserving extension can resurrect super-
compactness).

We conclude by mentioning some related work:



6 JAMES CUMMINGS

(1) In a series of joint papers [3, 4, 5, 6] with Matt Foreman and Menachem
Magidor we have analysed in some detail the interactions between large car-
dinals, forcing axioms, stationary reflection, L-like combinatorial principles
such as squares, and PCF-theoretic scales.

(2) For a regular uncountable κ, Pereira defined a notion of tree-like contin-
uous scale in the set κκ under the eventual domination ordering. Donder
observed that the existence of such scales follows from the existence of a
universal morass, and Brooke-Taylor and Friedman [1] showed that univer-
sal morasses are consistent with large cardinal axioms much stronger than
supercompactness.
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