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Abstract. Monroe Eskew [3] asked whether the tree property at ω2 implies

there is no Kurepa tree (as is the case in the Mitchell model, or under PFA). We
prove that the tree property at ω2 is consistent with the existence of ω1-trees

with as many branches as desired.

1. Introduction

Monroe Eskew [3] observed that in the standard models where ω2 has the tree
property there is no Kurepa tree. He then raised the natural question whether the
tree property at ω2 implies that there is no Kurepa tree. We answer this question
in the negative.

We build our model in two steps. In the first step we perform Mitchell’s con-
struction [5] to obtain the tree property at ω2. In the second step we add an
ω1-tree with many branches, and argue that the tree property is preserved. The
main point is that in the second step we use a certain variation of the standard
forcing to add such an ω1-tree computed in the ground model; a similar idea appears
in Uri Abraham’s construction [1] of a model where both ω2 and ω3 have the tree
property.

The paper is organised as follows:

• In section 2 we review the arguments that there are no Kurepa trees under
PFA or in the Mitchell model, and discuss properties of Mitchell’s construc-
tion which will be used in the proof of the main result.

• In section 3 we define a poset for adding an ω1-tree with many branches
and prove some technical results.

• In section 4 we show first that the tree property at ω2 is consistent with the
existence of a Kurepa tree (Theorem 1) and then parlay this result into a
proof that the tree property at ω2 puts no bound on the number of branches
of an ω1-tree (Theorem 2).

We will use some standard facts about forcing, whose proofs we give here for the
sake of completeness. We write lh(s) for the length of a sequence s, and iG(ȧ) for
the interpretation of a forcing term ȧ by a generic object G.

Lemma 1 (Silver [7]). Let P be a countably closed forcing poset and suppose that
either T is an ω1-tree or 2ω > ω1 and T is an ω2-tree. Then forcing with P adds
no new cofinal branch in T .
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Proof. Let ḃ name a new cofinal branch. We will build a strictly increasing sequence
of ordinals (αi)i≤ω less than ht(T ), together with a family of conditions (ps)s∈≤ω2

in P and a family of points (xs)s∈≤ω2 in T such that:

• If t extends s then pt ≤ ps.
• xs is a point on level αlh(s) of T , and ps forces that xs is the unique point

of ḃ on this level.
• For each s ∈ <ω2, xs_0 6= xs_1.

This is easy using the hypotheses that P is countably closed and ḃ is forced to be
a new branch. Clearly {xs : s ∈ ω2} is a set of 2ω distinct points on level αω, but
this is impossible by our hypotheses. �

Lemma 2 (Mitchell [4]). Let P be a poset such that P × P is ccc, and let T be a
tree of height ω1. Then forcing with T adds no new cofinal branch in T .

Proof. Let ḃ be forced to be a new cofinal branch. We will build a sequence of
conditions (pi, qi)i<ω1

in P × P and a strictly increasing sequence of countable
ordinals (γi)i<ω1

such that:

• pi and qi decide the unique point of ḃ on level γi in the same way, say as
xi.
• pi and qi decide the unique point of ḃ on level γi + 1 in different ways, say
pi as yi and qi as zi.

This is easy using the hypothesis that ḃ is forced to be a new branch.
By the hypothesis on P we find i < j such that there exist conditions p ≤ pi, pj

and q ≤ qi, qj . Since both pj and qj force that xj is the unique point of ḃ on level
γj , while pi (resp qi) forces that yi (resp zi) is the unique point on level γi + 1, we
see that yi, zi ≤T xj . This is a contradiction since T is a tree. �

We will also use a standard fact (which we learned from Menachem Magidor)
about the preservation of the Knaster property.

Lemma 3. If κ is a regular uncountable cardinal, A is κ-Knaster and B is κ-cc
then A remains κ-Knaster after forcing with B.

Proof. Let b force that (ȧα)α<κ is a counterexample, and choose bα ≤ b and aα
such that bα � ȧα = aα. Use the Knaster property to find unbounded A ⊆ κ
such that (aα)α∈A is a sequence of pairwise compatible conditions. Then use κ-cc
to find α ∈ A such that bα  {β ∈ A : bβ ∈ G} is unbounded in κ. This is a
contradiction since iG(ȧβ) = aβ for bβ ∈ G, while b forces that (ȧα)α<κ has no
pairwise comparable subsequence of length κ. �

2. PFA and the Mitchell model

We begin by reviewing the standard arguments that PFA implies there are no
ω2-Aronszajn trees and there are no Kurepa trees.

Fact 1 (Baumgartner [2]). PFA implies that there are no ω2-Aronszajn trees.

Proof. Assume PFA, and suppose for a contradiction that T is an ω2-Aronszajn
tree. Let P = Coll(ω1, ω2), then it follows from Lemma 1 that T has no cofinal
branches in the extension by P. Working in this extension let U be a cofinal
subtree of T with height ω1, so that U has no cofinal branches, and let Q be the
standard ccc forcing to specialise U . Applying PFA to the proper poset P ∗Q, we
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obtain some β ∈ ω2 ∩ cof(ω1) together with a special cofinal subtree of T � β, an
immediate contradiction since every point of height β in T induces a cofinal branch
in T � β. �

Fact 2 (Baumgartner [2]). PFA implies that there are no Kurepa trees.

Proof. Assume PFA, and suppose for a contradiction that T is a Kurepa tree. Let
P = Coll(ω1, 2

ω1), then it follows from Lemma 1 that P adds no new cofinal branch
to T , so that T has at most ω1 cofinal branches in the extension by P. Let Q be the
standard ccc forcing in V P (see eg [2]) to “freeze” the set of branches of T by adding
a certain function f with domain T , so that every branch of T in any ω1-preserving
extension of V P∗Q lies in V P and is simply definable from the function f and some
point of T .

Applying PFA to the proper poset P ∗ Q we obtain a function with domain T
which witnesses that T has at most ω1 branches, an immediate contradiction since
T is a Kurepa tree. �

We turn now to the Mitchell model [5], and take the opportunity to record some
facts for later use. Our treatment of Mitchell’s construction follows Abraham [1]
and we refer the reader to that paper for proofs of the facts quoted here. Given an
inaccessible cardinal β, Mitchell constructed a forcing poset which we denote PMi

β

and which has the following properties:

• PMi
β is a β-Knaster poset of cardinality β with PMi

β ⊆ Vβ .

• PMi
β can be written as the projection of Add(ω, β)×QMi

β for some countably

closed term forcing QMi
β .

• PMi
β preserves ω1 and collapses all cardinals between ω1 and β, so that β

becomes ω2.
• PMi

β adds β Cohen subsets of ω, and forces that 2ω = β.
• For every inaccessible α < β:

– PMi
α = PMi

β ∩ Vα.

– PMi
β can be factorised as PMi

α ∗RMi
α,β where (in the extension by PMi

α ) the

poset RMi
α,β can be written as the projection of Add(ω, β − α) × QMi

α,β

for some countably closed term forcing QMi
α,β

Fact 3 (Mitchell [5]). If κ is weakly compact then PMi
κ forces that there are no

ω2-Aronszajn trees.

Proof. Let G be PMi
κ -generic over V , and suppose for contradiction that T is an

κ-Aronszajn tree in V [G]. By standard reflection properties of the weakly compact
cardinal κ, there is an inaccessible α < κ such that T � α is an Aronszajn tree in
V [G � α] where G � α is the PMi

α -generic object induced by G. Clearly T � α has
a cofinal branch in V [G], and it follows from the analysis of PMi

κ given above that
forcing over V [G � α] with Add(ω, κ− α)×QMi

α,κ adds a branch to T .

We may view forcing with Add(ω, κ − α) × QMi
α,κ as a two-step iteration, where

we first force with the countably closed poset QMi
α,κ and then with the ℵ1-Knaster

poset Add(ω, κ−α). Using Lemmas 1 and 2, neither step can add a cofinal branch
to the tree T � α and we have an immediate contradiction. �

The following fact, which is an easy variation on an argument of Silver [7] involv-
ing the Levy collapse of an inaccessible cardinal, has been observed independently
by several authors.
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Fact 4. If κ is weakly compact then PMi
κ forces that there are no Kurepa trees.

Proof. Let G be PMi
κ -generic over V , and suppose for contradiction that T is a

Kurepa tree in V [G]. Let α < κ be an inaccessible cardinal chosen large enough
that T ∈ V [G � α]. Arguing much as in the proof of Fact 3, the forcing poset
Add(ω, κ−α)×QMi

α,κ adds no new cofinal branches of the tree T , and so in particular
all branches of T in V [G] already appear in the inner model V [G � α]. Since κ is

inaccessible in V [G � α] and κ = ω
V [G]
2 , we see that T has at most ℵ1 branches in

V [G], contradicting the assumption that it is a Kurepa tree. �

3. Adding trees

Let λ be a cardinal with λ > ω1. We define a poset PKu
λ to add an ω1-tree with

λ branches. A condition p is a pair (tp, fp) where tp is a countable normal tree of
successor height αp + 1, and fp is a countable partial function from λ to Levαp

(tp).
Conditions are ordered as follows: q ≤ p if and only if αq ≥ αp, tq � (αp + 1) = tp,
dom(fp) ⊆ dom(fq) and fp(η) ≤tq fq(η) for all η ∈ dom(p).

Remark 1. This is not quite the standard poset due to Stewart [6] for adding trees
with many branches, since we do not demand that fp be injective.

Lemma 4. The poset PKu
λ is countably closed, and adds an ω1-tree with λ distinct

branches.

Proof. Let (pi)i<ω be a decreasing sequence of conditions, let pi = (ti, fi) and let
ti have height αi + 1. Let t∗ be the unique tree of height supi(αi + 1) such that
t∗ � (αi + 1) = ti for all i, and let d =

⋃
i dom(fi). For each ζ ∈ d, the sequence

bζ = (fi(ζ))i<ω,ζ∈dom(fi) is increasing in t∗. To define a lower bound (tω, fω) we
distinguish two cases:

• If the sequence (αi)i<ω is eventually constant, then the sequence (ti)i<ω is
also eventually constant with value t∗, and for every ζ ∈ d the sequence bζ
is eventually constant with some value on the top level of t∗. In this case
we set tω = t∗, dom(fω) = d, and fω(ζ) equal to the eventual constant
value of bζ .
• If the sequence (αi)i<ω is not eventually constant, then t∗ has limit height

and for each ζ ∈ d the sequence bζ forms a cofinal branch in t∗. We
choose tω to be some countable normal tree of height ht(t∗) + 1 such that
tω � ht(t∗) = t∗, and every branch bζ is bounded by some point on the top
level of tω. We then set fω(ζ) equal to the unique point which bounds bζ .

To finish, it will suffice to show that for all α < ω1 and distinct ζ, η < λ the set of
conditions q such that αq > α and fq(ζ) 6= fq(η) is dense. Given a condition p, we
first form q0 ≤ p such that αq0 > α as follows: tq0 is some sufficiently tall countable
normal tree with tq0 � (αp + 1) = tp, dom(fp) = dom(fq0), and for θ ∈ dom(fp) we
define fq0(θ) as some point on the top level of tq0 which lies above fp(θ). Then we
find q1 ≤ q0 such that αq1 = αq0 and ζ, η ∈ dom(fq1). Finally we find q ≤ q1 such
that αq = αq1 + 1, dom(fq) = dom(fq1) and fq(ζ) 6= fq(η). �

Lemma 5. Let µ be a regular uncountable cardinal such that γℵ0 < µ for all γ < µ.
Then the poset PKu

µ has the µ-Knaster property.

Proof. Consider a sequence of conditions pi = (ti, fi) for i < µ. Using the ∆-system
lemma we may find an unbounded set A ⊆ µ such that:
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• For all i ∈ A, ti = t for some fixed countable tree t.
• (dom(fi))i∈A forms a ∆-system with some root r.
• For all i ∈ A, fi � r = g for some fixed function g.

It is now easy to verify that (pi)i∈A is a sequence of pairwise compatible conditions.
�

As an immediate corollary, if CH holds then PKu
µ has the ℵ2-cc and hence pre-

serves all cardinals.

Lemma 6. If λ < λ′ let π from PKu
λ′ to PKu

λ be given by π : (t, f) 7→ (t, f � λ).
Then π is a projection.

Proof. It is routine to check that π is order-preserving and maps the trivial condi-
tion to the trivial condition. Let q ∈ PKu

λ′ and let p ∈ PKu
λ with p ≤ π(q). Let αq = α

and αp = β, and define q′ ≤ q as follows: αq′ = β, fq′(η) = fp(η) for η ∈ dom(p)
and fq′(η) is some point in Levβ(tp) lying above fq(η) for η ∈ dom(q) \ dom(p) =
dom(q) \ λ. Clearly π(q′) = p. �

Let H be a PKu
λ generic filter, and let T =

⋃
{t : (t, f) ∈ G}. As usual let

PKu
λ′ /H = {p ∈ PKu

λ′ : π(p) ∈ H}, so that forcing over V [H] with PKu
λ /H will give a

PKu
λ′ -generic object H ′ whose projection via π is H. It is easy to see that PKu

λ′ /H is
equivalent to the poset RKu

λ,λ′ ∈ V [H] defined as follows. A condition in RKu
λ,λ′ is a

pair r = (αr, fr) where fr is a countable partial function from λ′ \ λ to Levαr
(T ).

s ≤ r if and only αs ≥ αr, dom(fr) ⊆ dom(fs) and fr(η) ≤ fs(η) for all η ∈ dom(r).

Lemma 7. Let CH hold in V , let H be PKu
λ -generic and let RKu

λ,λ′ ∈ V [H] be defined
as above. Then:

• RKu
λ,λ′ is countably distributive in V [H].

• The class of regular cardinals µ such that γℵ0 < µ for all γ < µ is absolute
between V and V [H]. Moreover for every cardinal µ in this class, RKu

λ,λ′ is

µ-Knaster in V [H].

Proof. The first assertion is immediate because the forcing poset PKu
λ′ is countably

closed, and RKu
λ,λ′ is equivalent to PKu

λ′ /H. By Lemma 5 with µ = ℵ2, PKu
λ is ℵ2-

Knaster and so easily V [H] has the same cardinals and cofinalities as V ; since V
and V [H] also have the same countable sequences of ordinals, the given class of
cardinals is absolute between V and V [H]. Finally if µ lies in this class then a very
similar argument to that for Lemma 5 shows that RKu

λ,λ′ is µ-Knaster in V [H]. �

4. The main result

We are now ready to prove that the tree property at ω2 is consistent with the
existence of a Kurepa tree.

Theorem 1. Let κ be weakly compact and let CH hold. Then in the generic ex-
tension by PMi

κ × PKu
κ :

• ω1 is preserved and κ is ω2.
• There is an ω1-Kurepa tree.
• ω2 has the tree property.

Proof. Let G×H be PMi
κ ×PKu

κ -generic over V . Since PMi
κ and PKu

κ are κ-Knaster in
V , so is PMi

κ ×PKu
κ . We recall from Section 2 that we can write PMi

κ as the projection
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of Add(ω, κ) × QMi
κ for some countably closed forcing poset QMi

κ . It follows that
PMi
κ ×PKu

κ is the projection of Add(ω, κ)×(QMi
κ ×PKu

κ ), where QMi
κ ×PKu

κ is countably
closed, hence PMi

κ ×PKu
κ preserves ω1. It follows that ω1 is preserved and κ is ω2 in

V [G×H].
By the construction of PKu

κ , in V [H] there is an ω1-tree with κ cofinal branches.
In V [G ×H] the same tree will be an ω1-tree with ω2 cofinal branches, that is to
say a Kurepa tree.

It remains to see that ω2 has the tree property in V [G × H], so assume for a
contradiction that T is an κ-Aronszajn tree in V [G ×H]. By the usual reflection
arguments we may may find an inaccessible α < κ such that T � α is an α-Aronszajn
tree in V [G � α × H � α], where G � α × H � α is the PMi

α × PKu
α -generic object

induced by G×H.
Since T � α has a branch in V [G×H], we will be done if we can show that forcing

over V [G � α×H � α] with RMi
α,κ×RKu

α,κ adds no cofinal branch in T � α. We will do
this by arguments which parallel those for Fact 3. We start by embedding V [G] into
V [GAdd ×Gterm] where GAdd is the Add(ω, κ)-generic added by G, Gterm is QMi

κ -
generic and G is the PMi

κ -generic object induced by projection from GAdd ×Gterm.
Similarly we embed V [G � α] into V [GAdd � α×Gterm � α].

Claim 1. The models V [GAdd � α], V [G � α] and V [G � α×H � α] have the same
ω-sequences of ordinals.

Proof. PMi
α is a projection of Add(ω, α) × QMi

α , so PMi
α × PKu

α is a projection of
Add(ω, α) × QMi

α × PKu
α . Since QMi

α × PKu
α is countably closed, the claim follows

immediately by Easton’s Lemma. �

Claim 2. The forcing poset RKu
α,κ is countably distributive and α-Knaster in V [G �

α×H � α].

Proof. By Lemma 7, RKu
α,κ is α-Knaster in V [H � α]. By Lemma 5, PKu

α is α-

Knaster in V and so (by the Product Lemma) RMi
α is α-cc in V [H � α]. It follows

from Lemma 3 that RKu
α,κ is α-Knaster in V [G � α×H � α].

Arguing as in the preceding claim we may embed V [G � α][H] into V [GAdd �
α×Gterm � α×H] and use Easton’s lemma to show that every ω-sequence of ordinals
in this model is in V [GAdd � α]. It follows that RKu

α,κ is countably distributive in
V [G � α×H � α]. �

By Claim 2 RKu
α,κ is α-Knaster in V [G � α×H � α], so we have that α = ω2 and

T � α has no cofinal branch in V [G � α×H].
Recall from Section 2 that in V [G � α] we may write RMi

α,κ as a projection of

Add(ω, κ − α) × QMi
α,κ, where QMi

α,κ is a countably closed term forcing. The same

analysis obtains in V [G � α × H], and by Claims 1 and 2 the poset QMi
α,κ is still

countably closed in this model. We may now argue exactly as in Fact 3 that T � α
has no branch in V [G×H], an immediate contradiction.

�

It is now easy to arrange a model of the tree property at ω2 where an ω1-tree
has an arbitrary number of branches.

Theorem 2. Let κ be weakly compact and let CH hold. Let λ ≥ κ. Then in the
generic extension by PMi

κ × PKu
λ :

• ω1 is preserved, κ is ω2 and cardinals greater than κ are preserved.
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• There is an ω1-tree with at least λ branches.
• ω2 has the tree property.

Proof. Let G×H be PMi
κ × PKu

λ -generic. Arguments as in the proof of Theorem 1
show that PKu

λ is κ-cc in V [G], so that cardinals above κ are preserved. For the tree
property suppose that T ∈ V [G × H] is a κ-tree. Using the chain condition and
evident homogeneity of PKu

λ , we may find H ′ such that T ∈ V [G×H ′] ⊆ V [G×H]
and G × H ′ is PMi

κ × PKu
κ -generic. Appealing to Theorem 1 T has a branch in

V [G×H ′]. �
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