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Abstract. Monroe Eskew asked whether the tree property at ω2 implies there

is no Kurepa tree (as is the case in the Mitchell model, or under PFA). We

prove that the tree property at ω2 is consistent with the existence of ω1-trees
with as many branches as desired.

1. Introduction

Monroe Eskew observed that in the standard models where ω2 has the tree
property, there is no Kurepa tree. He then raised the natural question whether the
tree property at ω2 implies that there is no Kurepa tree. In this note we answer
this question in the negative.

We build our model in two steps. In the first step we perform Mitchell’s con-
struction to obtain the tree property at ω2. In the second step we add an ω1-tree
with many branches, and argue that the tree property is preserved. The main
point is that in the second step we use a certain variation of the standard forcing
to add such an ω1-tree computed in the ground model; a similar idea appears in
Uri Abraham’s construction [1] of a model where both ω2 and ω3 have the tree
property.

We presume that the reader is quite familiar with Abraham’s analysis of Mitchell
forcing.

2. Adding trees

Let λ be a cardinal with λ > ω1. We define a poset Kλ to add an ω1-tree with
λ branches. A condition p is a pair (tp, fp) where tp is a countable normal tree of
successor height αp + 1, and fp is a countable partial function from λ to Levαp

(tp).
Conditions are ordered as follows: q ≤ p if and only if αq ≥ αp, tq � (αp + 1) = tp,
dom(fp) ⊆ dom(fq) and fp(η) ≤tq fq(η) for all η ∈ dom(p).

Remark 1. This is not quite the standard poset for adding trees with many branches,
since we do not demand that fp be injective.

Lemma 1. The poset Kλ is countably closed, and adds an ω1-tree with λ distinct
branches.

Proof. Let 〈pi : i < ω〉 be a decreasing sequence of conditions, let pi = (ti, fi) and
let ti have height αi + 1. Let t∗ be the unique tree of height supi(αi + 1) such
that t∗ � (αi + 1) = ti, and let d =

⋃
i dom(fi). For each ζ ∈ d, the sequence

bζ = 〈fi(ζ) : i < ω, ζ ∈ dom(fi)〉 is increasing in t∗. To define a lower bound
(tω, fω) we distinguish two cases:

• If αi is eventually constant, then ti is also eventually constant with value
t∗, and for every ζ ∈ d the sequence bζ is eventually constant with some
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value on the top level of t∗. In this case we set tω = t∗, dom(fω) = d, and
fω(ζ) equal to the eventual constant value of bζ .
• If αi is not eventually constant, then t∗ has limit height and for each ζ ∈ d

the sequence bζ forms a cofinal branch in t∗. We choose tω to be some
countable normal tree of height ht(t∗) + 1 such that tω � ht(t∗) = t∗, and
every branch bζ is bounded by some point on the top level of tω. We then
set fω(ζ) equal to the unique point which bounds bζ .

To finish it will suffice to show that for all α < ω1 and distinct ζ, η < λ the set
of conditions q such that αq > α and fq(ζ) 6= fq(η) is dense. Given a condition
p, we first form q0 ≤ q such that αq0 > α as follows: tq0 is some sufficiently tall
countable normal tree with tq0 � (αp + 1) = p, dom(fp) = dom(fq0), and fq0(θ) is
some point on the top level of tq0 which lies above fp(θ) for all θ ∈ dom(fp). Then
we find q1 ≤ q0 such that αq1 = αq0 and ζ, η ∈ dom(fq1). Finally we find q ≤ q1
such that αq = αq1 + 1, dom(fq) = dom(fq1) and fq(ζ) 6= fq(η).

�

Lemma 2. Let CH hold, and let µ be a regular uncountable cardinal such that
γℵ0 < µ for all γ < µ. Then the poset Kλ has the µ-Knaster property.

Proof. Consider a sequence of conditions pi = (ti, fi) for i < µ. Since ℵ1 < µ and
CH holds we may assume that ti = t for some fixed tree t of height α + 1, (using
the Delta system lemma) that the domains of the fi form a Delta system with root
r say, and finally (CH again) that fi � r is constant. �

If λ < λ′ then define a map π from Kλ′ to Kλ by π : (t, f) 7→ (t, f � λ).
We claim this is a projection. Clearly it is order-preserving, so let q ∈ Kλ′ and
let p ≤ π(q). Let αq = α and αp = β, and define q′ ≤ q as follows: αq′ = β,
fq′(η) = fp(η) for η ∈ dom(p) and fq′(η) some point in Levβ(tp) lying above fq(η)
for η ∈ dom(q) \ dom(p) = dom(q) \ λ. Clearly π(q′) = p.

Let H be a Kλ generic filter, and let T =
⋃
{t : (t, f) ∈ G}. As usual let

Kλ′/H = {p ∈ Kλ′ : π(p) ∈ H}. It is easy to see that this poset is equivalent to
the poset R ∈ V [H] defined as follows. A condition is a pair r = (αr, fr) where fr
is a countable partial function from λ′ \ λ to Levαr

(T ). s ≤ r if and only αs ≥ αr,
dom(fr) ⊆ dom(fs) and fr(η) ≤ fs(η) for all η ∈ dom(r).

It is easy to see that if CH holds in V then R is µ-Knaster in V [H] for µ as
above (the class of such µ is abolute between V and V [H] in this situation). The
countable closure of Kλ and Kλ′ implies that R is countably distributive (adds no
ω-sequences of ordinals) in V [H].

2.1. Preservation of the Knaster property. The following is probably well-
known (I think I learned it from Magidor).

Lemma 3. If κ is regular uncountable, A is κ-Knaster and B is κ-cc then A remains
κ-Knaster after forcing with B.

Proof. Let b force that 〈ȧα : α < κ〉 is a counterexample, and choose bα ≤ b and aα
such that bα � ȧα = aα. Use the Knaster property to find unbounded A ⊆ κ such
that 〈aα : α ∈ A〉 are pairwise compatible. Then use κ-cc to find α ∈ A such that
bα 
 {β ∈ A : bβ ∈ G} is unbounded in κ. Forcing below bα we see that in V [G]
the sequence 〈iG(ȧβ) = aβ : β ∈ A, bβ ∈ G} is pairwise compatible. �
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2.2. The tree property. Let κ be measurable (probably an overkill, weak com-
pact should be enough) and let CH hold. Let P be Mitchell forcing and let Q be
Kκ (as defined in V ). We force over V with P×Q, and claim that κ = ℵ2 and has
the tree property in the final model. Let G×H be the generic object.

Since P and Q are κ-Knaster in V , so is their product. It follows that κ = ℵ2 in
V [G×H]. We may as usual force with j(P)/G×j(Q)/H and extend the embedding
j to get j : V [G ×H] → M [j(G) × j(H)]. Certainly the generic ω1-tree added by
H is a Kurepa tree in V [G ×H]. Let T ∈ V [G ×H] be a κ-tree and suppose for
contradiction that T has no branch. As usual T ∈ M [G×H] and T has a branch
in M [j(G)× j(H)], so we will be done if we can argue that j(P)/G× j(Q)/H adds
no branch to T .

As usual, it is helpful to write P as the projection of a product Add(ω, κ) × S
where S is a certain countably closed term forcing. This means that we may embed
V [G] into V [G0×G1] where G0 is the Add(ω, κ)-generic added by G, G1 is S-generic
and G is the P-generic induced by G0 × G1. Similarly we may embed M [G] into
M [G0 ×G1].

Lemma 4. Q is countably distributive in M [G].

Proof. Let H be Q-generic over M [G]. Forcing over M [G][H] with Add× S/G we
embed M [G][H] into M [H×G0×G1] where H×G0×G1 is Q×Add×S-generic. By
Easton’s lemma every ω-sequence of ordinals in M [H×G0×G1] lies in M [G0]. �

Let R = j(Q)/H.

Lemma 5. R is countably distributive and κ-Knaster in M [G×H].

Proof. Since R is κ-Knaster in M [H] and P is κ-cc (in fact κ-Knaster) in M [H], it
follows from Lemma 3 that R is κ-Knaster in M [G×H].

Arguing as in the last lemma we may embed M [G][j(H)] into M [G0×G1×j(H)]
and use Easton’s lemma to show that every ω-sequence of ordinals in this model is
in M [G0]. It follows that R is countably distributive in M [G×H]. �

Working inM [G] we may write j(P)/G as the projection of a productAdd(ω, j(κ)−
κ)×S∗ where S∗ is a countably closed term forcing. Since Q is countably distributive
in M [G], the same analysis obtains in the model M [G×H]. Since R is κ-Knaster in
M [G×H], we have that κ = ω2 in M [G][j(H)] and T has no branch in M [G][j(H)].
Since R is countably distributive in M [G×H], the product analysis for j(P)/G still
obtains in M [G][j(H)]. As usual we may now argue that T has no branch in
M [j(G)][j(H)].
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