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§0 Introduction and Preliminaries

As is well-known, the notion of strong compactness is a singularity in the hierarchy
of large cardinals. The fundamental work of Magidor [Ma| shows that the least strongly
compact cardinal x can either be the least supercompact cardinal or the least measurable
cardinal, in which case x isn’t even 2" supercompact. A generalization of this result by
Kimchi and Magidor [KiM]| shows that the (possibly proper) classes of supercompact and
strongly compact cardinals can coincide except at measurable limit points or that the first
n (for n € w) strongly compact cardinals can be the first n measurable cardinals.

The purpose of this paper is to show that the techniques of [AS97a] and [AS97b] can
be combined with unpublished ideas of Magidor to produce a model in which the first n
(for n € w) strongly compact cardinals are not only the first n measurable cardinals, but

each is a little supercompact. Specifically, we prove the following.

THEOREM 1. Con(ZFC + There are n € w supercompact cardinals) = Con(ZFC +
The first n strongly compact cardinals k1, ...,k, are the first n measurable cardinals +

2% = kT fori=1,...,n + Each k; is k] supercompact fori =1,...n).

A bit of history is perhaps in order now. As was just noted, in the early 1970s,
Magidor in [Ma] showed the consistency, relative to the existence of a strongly compact
cardinal, of the least strongly compact cardinal being the least measurable cardinal. In
the spring of 1983, Woodin, in response to a question put to him by the first author,
showed the consistency (see [CW]), relative to the existence of a cardinal x which is £T3
supercompact, of the least measurable cardinal x being so that 2 = kT and & is kT
supercompact. In the mid 1980s, Kimchi and Magidor did the work of [KiM]. In late
1992, Shelah and the first author began the research leading to the results of [AS97a| and
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[AS97b]. The main theorem of [AS97a] showed, roughly speaking, the relative consistency
of the classes of strongly compact and supercompact cardinals coinciding level by level,
except where explicitly prohibited by ZFC. This strengthened the work of [KiM]. The
main theorem of [AS97b] showed that Menas’ result of [Me] that the least measurable
limit x of either strongly compact or supercompact cardinals isn’t 2% supercompact is best
possible by constructing, starting from a supercompact limit of supercompact cardinals, a
model in which the least measurable limit « of both strongly compact and supercompact
cardinals is so that 2 = k** and  is k™ supercompact. The forcing conditions of [AS97h]
were generalizations of the forcing conditions of [AS97a|, and both provided, among other
things, an alternate way of proving Woodin’s aforementioned 1983 theorem. This still left
open the question of combining Woodin’s results with the results of Magidor and Kimchi
and Magidor, i.e., obtaining a model in which the least measurable cardinal s is both
the least strongly compact cardinal and is kT supercompact, or in general, obtaining a
model in which the first n measurable cardinals k1,...,k, (for n € w) are the first n
strongly compact cardinals, with each measurable cardinal x; being KZL supercompact.
This question went unresolved for a number of years, despite several attempts at solving
it made by Shelah and the first author. Then, during the January 7-13, 1996 meeting
in Set Theory held at the Mathematics Research Institute, Oberwolfach, the first author
proved (see [A97a]) Theorem 1 for n = 1. His proof, however, was non-iterative, and the
question remained of proving Theorem 1 for arbitrary finite n. This question was finally
resolved by the two authors of this paper during their stay as Research in Pairs fellows at

the Mathematics Research Institute, Oberwolfach, June 8-21, 1997.
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We take the opportunity here to make two remarks about Theorem 1. The first is

that there is nothing special about each «; being m:’ supercompact in Theorem 1. In fact,
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each k; can be K % etc. supercompact, so long as 2% > nj’J’, 28 > g
2M > Fc;r‘l, etc. After completing the proof of Theorem 1, interested readers are invited to
look at the statement of Theorem 3 of [AS97b] in order to determine for themselves what
variants are possible. The second is that no proof is currently known, in both Theorem 1
and the corresponding result of [KiM], when n is infinite. This will be discussed further
at the end of the paper.

The structure of this paper is as follows. Section 0 contains our introductory com-
ments and preliminary remarks concerning notation, terminology, etc. Section 1 contains
a discussion of a certain modification of the main forcing notion of [AS97a] (given at the
end of [AS97b]) that will be critical in the proof of Theorem 1. Section 1 also contains a
discussion of the main forcing notion of [AS97b|, which can be used as an alternative in the
proof of Theorem 1. Section 2 shows how the forcing notions discussed in Section 1 can be
used to force a supercompact cardinal to have a certain special kind of supercompactness
embedding that will be key in the proof of Theorem 1. Section 3 then gives a proof of
Theorem 1 for n = 1. Section 4 contains a proof of Theorem 1 for arbitrary finite n.
Section 5 has our concluding remarks.

We give now some preliminary information concerning notation and terminology. Es-
sentially, our notation and terminology are standard, and when this is not the case, this

will be clearly noted. For a@ < (3 ordinals, [«, §], [, §), (o, 8], and («, B) are as in standard

interval notation. If z is a set, then TC(z) is the transitive closure of x.
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When forcing, ¢ > p will mean that ¢ is stronger than p. For P a partial ordering, ¢ a
formula in the forcing language with respect to P, and p € P, p||¢ will mean p decides .
For G V-generic over P, we will use both V[G] and V¥ to indicate the universe obtained
by forcing with P. If z € V[G], then & will be a term in V for z. We may, from time
to time, confuse terms with the sets they denote and write x when we actually mean z,
especially when x is some variant of the generic set G, or z is in the ground model V.

If k is a cardinal and P is a partial ordering, P is k-closed if given a sequence (p, :
a < k) of elements of P so that 8 < v < s implies pg < p, (an increasing chain of length
k), then there is some p € P (an upper bound to this chain) so that p, < p for all a < &.
P is < k-closed if P is d-closed for all cardinals § < k. P is k-directed closed if for every
cardinal § < x and every directed set (p, : @ < §) of elements of P (where (p, : o < d) is
directed if for every two distinct elements p,,p, € (po : @ < 6), p, and p, have a common
upper bound p, ) there is an upper bound p € P. P is k-strategically closed if in the two
person game in which the players construct an increasing sequence (p, : o < k), where
player I plays odd stages and player II plays even and limit stages, then player II has a
strategy which ensures the game can always be continued. Note that if P is x-strategically
closed and f : k — V is a function in V¥, then f € V. P is < k-strategically closed
if P is d-strategically closed for all cardinals § < k. P is < k-strategically closed if in
the two person game in which the players construct an increasing sequence (p, : @ < k),
where player I plays odd stages and player II plays even and limit stages, then player 11
has a strategy which ensures the game can always be continued. Note that trivially, if P is
< k-closed, then P is < k-strategically closed and < k-strategically closed. The converse

of both of these facts is false.



The usual partial ordering for adding A Cohen subsets to a regular cardinal £ will be
written as Add(k, ). Standard arguments show Add(k, \) is k-directed closed. See [J],
Lemmas 19.7 and 19.8, pages 181-182, for further details.

We mention that we are assuming complete familiarity with the notions of measura-
bility, strong compactness, and supercompactness. Interested readers may consult [SRK],
[Kal, or [KaM)| for further details. We note only that all elementary embeddings witnessing
the A supercompactness of x are presumed to come from some fine, k-complete, normal
ultrafilter U over P,;(\) = {z C A\ : |z|] < K}, and all elementary embeddings witnessing
the \ strong compactness of x are presumed to come from some fine, x-complete ultrafilter
U over P,(\). An equivalent definition for x being A strongly compact is that there is an
elementary embedding j : V — M having critical point x so that for any x C M with
|z| < A, there is some y € M such that « C y and M = “ly| < j(k)”.

Finally, we mention that since ideas and notions from [AS97a] and [AS97b] are used
throughout the course of this paper, it would be most helpful to readers if copies of these
papers were kept close at hand. In fact, at many instances during our exposition, we
will refer to proofs not given here but found in either [AS97a] or [AS97b]. These papers,
however, need not be read in their entirety to follow this paper. In order to facilitate the
understanding of readers, though, we will keep as much as possible to the notations and
terminology of [AS97a] and [AS97b].

§1 The Forcing Notions of [AS97a] and [AS97b]

Fix v < § < A\, A > 67 regular cardinals in our ground model V', with § inaccessible
and )\ either inaccessible or the successor of a cardinal of cofinality > §. We recall now the
partial orderings Pgy and Py, [S] of [AS97a] and [AS97b] and both the version of Pj,[S]
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given in Section 4 of [AS97b] (which is a modification of the partial ordering Py ,[S] of
[AS97a]) and the version of Pj,[S] of [AS97b] used in the proof of Theorem 3 of that
paper.

We assume GCH holds for all cardinals x > 6. As in Section 4 of [AS97b], the first
notion of forcing Pg 5 is just the standard notion of forcing for adding a non-reflecting
stationary set of ordinals of cofinality v to A. Specifically, P(?’ y = {p : For some a < A,
p : o — {0,1} is a characteristic function of S,, a subset of a not stationary at its
supremum nor having any initial segment which is stationary at its supremum, so that
B € Sp implies B > § and cof(B) = v}, ordered by ¢ > p iff ¢ O p and S, = S, N sup(Sy),
i.e., Sy is an end extension of S,,. It is well-known that for G V-generic over Py, (see [B] or
[KiM]), in V[G], since GCH holds in V for all cardinals x > §, a non-reflecting stationary
set S = S[G] = U{S, : p € G} C X of ordinals of cofinality v has been introduced, the
bounded subsets of \ are the same as those in V, and cardinals, cofinalities, and GCH
at cardinals Kk > 0 have been preserved. It is also virtually immediate that Pg y\ 18 -
directed closed, and it can be shown (see [B], Lemma 4.15, page 436 or [KiM]) that Py,
is < A-strategically closed.

Work now in V; = V7 3*, letting S be a term always forced to denote the above set S.
Pfy ,[S] is the standard notion of forcing for introducing a club set C' which is disjoint to
S (and therefore makes S non-stationary). Specifically, P527 \[S] = {p : For some successor
ordinal @ < A, p: o — {0, 1} is a characteristic function of Cj, a club subset of «a, so that
CpN S = 0}, ordered by ¢ > p iff C; is an end extension of C,. It is again well-known (see
[MS]) that for H V)-generic over P,[S], a club set C' = C[H]| = U{C}, : p € H} C A which
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is disjoint to S has been introduced, the bounded subsets of A are the same as those in V7,
and cardinals, cofinalities, and GCH for cardinals x > § have been preserved.
The following lemma is proven in both [AS97a] and [AS97b].
LEMMA 1 (LEMMA 1 OF [AS97A] AND [AS97B]). |FP§)X“&(S)”, ie., Vi = “There is a
A

sequence (z,, : « € S) so that for each o € S, x,, C « is cofinal in «, and for any A € [A]",

{a € S:2, C A} is stationary”.

We fix now in V; a &(S) sequence X = (z, : a € S). We are ready to define in V; in
the same manner as was done in Section 4 of [AS97b| the partial ordering P517 \[S]. First,
since each element of S has cofinality v, each x € X can be assumed to be so that order
type(z) = 7. Then, Pj,[S] is defined as the set of all 4-tuples (w,a, 7, Z) satisfying the
following properties.

1. we [N

3. 7= (r; :i € w) is a sequence of functions from « to {0, 1}, i.e., a sequence of subsets
of a.

4. Z C{zp: S € S} is a set so that if z € Z, then for some y € [w|”,y C zand z — y
is bounded in the 3 so that z = zg. In other words, for every 3 € Z, w N g is
cobounded in xg.

As in [AS97a), the definition of Z implies |Z| < 4.
The ordering on Pj,[S] is given by (w', at, 7!, Z1) < (w?, o?, 7%, Z?) iff the following

hold.



3. If i € w!, then r} C r2.
4. 7' C 72
5. If z € Z'N[w']” and o < a < a?, then |{i € 2 : r?(a) = 0} = |{i € z: r2(a) =

1} =~.

The intuition behind the definition of P51, 4[S] just given is essentially the same as
in [AS97a]. Specifically, we wish to be able simultaneously to make 2° = A, destroy the
measurability of §, and be able to resurrect the < A supercompactness of § if necessary.
P517 1[S] has been designed so as to allow us to do all of these things.

1
The proof that le‘;’*[s]

= “0 is non-measurable” is as in Lemma 3 of [AS97a]. In
particular, the argument of Lemma 3 of [AS97a| will show that § can’t carry a y-additive
uniform ultrafilter. We can then carry through the proof of Lemma 4 of [AS97a] to show
Py * (P(%,A[S] X P(?,A[S]) is equivalent to Add(),1) * Add(8,A). The proofs of Lemma 5
of [AS97a] and Lemma 6 of [AS97b] will then show Pg, * Py \[S] preserves cardinals and
cofinalities, is A*-c.c., is < d-strategically closed, and is so that V PoarFs AlS] E ‘2% = A
for every cardinal € [d, A)”.

Although the above definition of Py ,[S] (henceforth to be referred to as the “simpler
form”) is perfectly adequate for our purposes, as mentioned at the end of [AS97b], it
will not suffice to prove Theorem 3 of [AS97b]. In order to do this, a more complicated
form of Pj,[S] is required. Since this version of Py ,[S] will also work for Theorem 1, for
completeness, we recall its definitions and properties here. First, we fix 6 < A as before.

We then as was done in [AS97b] redefine Py, as the partial ordering which adds a non-

reflecting stationary set of ordinals S of cofinality § to A\. The definition of P527 1 [S] remains
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the same. Having fixed a &(S) sequence as before, P§,[S] is then the set of all 5-tuples

(w,a, 7, Z,T) satisfying the following properties.

1. w C \is so that |w| = 4.

2.

3.

a < 4.

7= (r; 11 € w) is a sequence of functions from « to {0, 1}, i.e., a sequence of subsets
of a.

Z is a function so that:

dom(Z) C {z3: f € S} and range(Z) C {0,1}.

If z € dom(Z), then for some y € [w]5, y C z and z — y is bounded in the (3 so that
z = xg.

I is a function so that:

dom(I') = dom(Z).

If z € dom(I'), then I'(2) is a closed, bounded subset of a such that if y is inaccessible,

v € I'(2), and [ is the vth element of z, then # € w, and for some §' € fNw N z,

re(7) = Z(2).

Note that the definitions of Z and I" imply |dom(Z)| = |dom(T")| < 6.

The ordering on P(;’A[S] is given by (w!,al, 7!, Z1 Tt < (w? 2,72, Z% T?) iff the

following hold.

1.

If i € w!, then v} Cr? and |{i € w! : r?[(as — 1) is not constantly 0}| < 6.

Zt C 72
dom(T'!) C dom(I?).
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6. If z € dom(I'!), then I'!(2) is an initial segment of I'?(z) and |{z € dom(['!) : T'1(z) #

2(2)}] < 4.

The intuition behind the above definition of Pj,[S] is the same as in [AS97b]. If § is
measurable, then § must carry a normal measure. The forcing P517 1 [S] has specifically been
designed to destroy this fact. (See Lemma 3 of [AS97b] for a proof.) It has been designed,
however, to destroy the measurability of 6 “as lightly as possible”, making little damage,
assuming 0 is < A supercompact. Specifically, if § is < A supercompact, then the non-
reflecting stationary set S, having been added to A, does not kill the < A supercompactness
of § by itself. The additional forcing P51, 1[S] is necessary to do the job and has been designed
so as not only to destroy the < A\ supercompactness of § but to destroy the measurability
of § as well. The forcing P517 1[S], however, has been designed so that if necessary, we can
resurrect the < A supercompactness of ¢ by forcing further with P527 RERE

We conclude this section by noting that there are additional properties of the more
complicated version of P517 4[S] that will be relevant to our work. These will be discussed
in more detail in later sections.

§2 A Supercompact Cardinal with a Special Kind of Embedding

In this section, we force and construct a supercompact cardinal possessing a spe-

cial sort of supercompactness embedding. Such cardinals will be critical in the proof of

Theorem 1. Specifically, we prove the following.
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LEMMA 2. Suppose V | = “ZFC + GCH + k is supercompact”. There is then a partial
ordering P*° € V so that V™" = “k is supercompact + 2 = k1. In addition, there
is an elementary embedding j* : VE™ 5 MI"(P™®) definable in VF™' witnessing the kT
(P

supercompactness of Kk so that M’ “k isn’t measurable”.

PROOF OF LEMMA 2: Fix f : k — Vj; a Laver function [L], i.e., f is so that for every z and
every A > |TC(z)|, there is a A supercompact ultrafilter Uy , with associated embedding
Jur.. : V — M so that jy, . (f)(x) = x. Also, let (0, : @ < k) enumerate the inaccessibles
< K, and let 7 < dg be a fixed but arbitrary regular cardinal.

As Laver does in [L], we define now simultaneously an Easton support iteration P®° =
((P*,Q*) : o < k) and a sequence of ordinals (p, : o < k), where py = ag)\pa if \is
a limit ordinal. We use here in our definition the simpler form of P517 \[S] of Section 1
defined using v and the associated Pg 5 and P527 4[] and indicate at the end of the section
the modifications needed when the more complicated form of P517 \[S] is used. Specifically,
the definition has Py being trivial with pp = 0, and P}, ; = P} Q*, where | P, “Qr is
trivial” and p,+1 = po unless one of the following holds:

1. If for all § < o, pg < @ and J, < K is so that V' |= “0, isn’t §} supercompact”, then

%01 = P+ Q7 where Q% is a term for PgmaijL * Pcsla,cs;ﬁ [55$+], and .5"5;5+ is a term

for the non-reflecting stationary subset of 61+ introduced by P(?m st If f(a) is an

ordinal and f(a) > pq, then pa+1 = f(a). If this condition on f(«)) doesn’t hold,
then po+1 = pa-

2. If for B < o, pg < a and J, < K is so that V | “0, is §1 supercompact”, then

%1 = P*+Q%, where Q% is a term for P? st ¥ (P} [S5$+] X P52m5$+ [55;+])- If

Sas a0t
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f(a) is an ordinal and f(«) > pg, then po+1 = f(a). If this condition on f(a) doesn’t

hold, then py41 = pao.

Suppose now j : V — M is an embedding witnessing the x™ supercompactness of  so
that M = “ isn’t T supercompact”. Lemma 9 of [AS97b] shows that if P*0 = P*xQ* =
P x (P,S’MJr (Pt [Sper+] % P? it [S.++])) were an iteration as defined in the proofs of
Theorem 1 or Theorem 3 of [AS97b], then j : V — M extends to j* : VZ™° — Mi"(P™°)
witnessing the k1 supercompactness of x in a manner definable in V¥ "% The type of
iteration used in the proofs of Theorem 1 or Theorem 3 of [AS97b|, however, is essentially
the one just described here. The only real difference is that here, we use a Laver function
to “space out” the iteration at successor stages below k. At stage x + 1 in V, however,
the partial ordering used in the iteration is PSWJr+ * (P;MJr [Set+] X sz,n++ [S.++]), and
at stage x + 1 in M, the partial ordering used in the iteration is P£7K++ * P,i,mur (S, ++].
These occurrences at stage £+ 1 in V and M in conjunction with the definition of P*? will
then allow the arguments of Lemma 9 of [AS97b] to go through to yield that j extends to
§*: VET? = MIT(P™°) | Note that since PS,WLJr *P;7K++[SK++] is used at stage k+1in M,
Lemma 3 of [AS97a] and Lemma 8 of [AS97b] show that M3~ (P™°) k= “x isn’t measurable”.

We show now that VP*° = “k is supercompact”. To do this, we give an argument
similar to the one given in the proof of Lemma 2 of [Aocc|. Specifically, let v > T be an
arbitrary cardinal, and let A > 211" be a cardinal so that for some embedding k£ : V — M
witnessing the \ supercompactness of k, k(f)(x) = A. By the definition of P*° and

the properties of k, k(P®°) = (P* x (P° ., * (PF}’MJr [Sts] X P,37,¢++ [S4+]))) * Q* =

K,K

K

(P* % Q%) x Q* = P"0 % Q* = P"% x R* x Q;;(K), where R* is a term for the MP™"
partial ordering PI;“(K)/P”’O. By the definition of P*% in M, | p.o“The field of Q is
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composed of cardinals > \”. Further, by the definition of P®° and the fact M* C M,
it is true that in V and M, | p.. “Both R* and R* x QZ(,@) are \-strategically closed
and A > 2017 And, by our earlier remarks, in both V and M, |- P “Q* is forcing
equivalent to Add(kt+,1) x Add(k, s*7), a k-directed closed partial ordering having size
k++”. Therefore, VFi*QL = yP™° E “2f = kTt” and the standard arguments (see,
e.g., Lemma 2 of [Aocc]) in turn show that MP™"*E" remains A-closed with respect to
VPR and that if Gox G is V-generic over P*%Q* = P and Gy is V|[Go][G1]-generic
over R*, in V[Gy][G1][G2], we can find a master condition ¢ extending each p € k"G;.
If G is V[Go][G1][G2]-generic over Q) so that ¢ € G3, in V[Go][G1][G2][G3], there is
an elementary embedding k* : V[Go|[G1] — M[Go][G1][G2][G3] extending k. Since in V,
- pro “R* * QZ(K) is A-strategically closed”, V[Go][G1] = “k is 7 supercompact”. This

proves Lemma, 2.

o Lemma 2
When the more complicated version of P517 +[S] and the associated versions of Pg A
and P§,[S] are employed as the building blocks of P*, instead of working with J;%, we

use 6771 ie., at each non-trivial stage in our iteration, we force with either Pg st ¥
arYo

A [Sss++] or PY i *(Py puii[Ssre+]x Py iy [Syi++]). This is since by Lemma
6 of [AS97b], both of the just mentioned partial orderings will collapse §7. Except for this
difference, however, the proof of Lemma 2 is the same as before, making the appropriate
references to Lemmas 6 and 8 of [AS97b| as necessary.

In conclusion to this section, we note that if we assume that x has no inaccessible
cardinals above it, no use of the Laver function f is needed in the definition of P®°. At

each d§, < k which isn’t §] supercompact, we can force as in Case 1 of the definition of
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Pr0 and at each 6, < s which is 6] supercompact, we can force as in Case 2 of the
definition of P*°. We leave it to any interested readers to verify that the proof of Lemma
2 becomes simpler under these circumstances. It is only when there are large enough
cardinals above x that the use of the Laver function f is required in the definition of P%°.
§3 The Case n =1

We present in this section a proof of Theorem 1 when n = 1. We assume that
V E “ZFC + & is supercompact”. By Lemma 2, we also assume that V | “2¢ = 1”7
and that there is a K supercompactness embedding k% : V' — M* generated by a x*
supercompact ultrafilter over P, (k%) so that M* = “k isn’'t measurable”. Further, we
assume for the time being that there are no measurable cardinals in V' above x.

Fix now an arbitrary regular cardinal v < k. Let (§, : @ < k) this time enumerate
the measurables < x. The partial ordering P! we use in the proof of Theorem 1 when
n = 1is the Easton support iteration ((P%, Q%) : a < ), where PJ is trivial and || o “Qr

adds a non-reflecting stationary set of ordinals of cofinality v to d,”.
LEMMA 3. VP™' £ “No cardinal § < k is measurable”.

PRrROOF OF LEMMA 3: Let § < k be so that V |= “0 is measurable”. It must therefore be
the case that § = , for some o < k. This allows us to write P = P*xQ% xR = P§+1*R-

By the definition of P®! and the fact that any stationary subset of a measurable
(or weakly compact) cardinal must reflect, VFa+1 |= “§ isn’t measurable since there is
S C 6 which is a non-reflecting stationary set of ordinals of cofinality 7”. Since by the
definition of P!, ||- e “R is §'-strategically closed for 8’ the least inaccessible above 47,
VPiarR — P = “S C ¢ is a non-reflecting stationary set of ordinals of cofinality +,
so § isn’t measurable”. Thus, V¥ " = “No V-measurable cardinal § < x is measurable”.
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The proof of Lemma 3 will therefore be complete once we have shown there is no cardinal
§ < K so that |- p.,. “0 is measurable”.

To do this, we give an argument similar to the one found in the last part of Lemma 8
of [A97b], which in turn is essentially the same as the arguments given in Theorem 2.1.5
of [H] and Theorem 2.5 of [KiM|. Assume that VF™' k= “§ is measurable”. Since we
have just shown that no V-cardinal is measurable in V¥ m, we can write P! = PE « R,
where § ¢ field(PF) and [i- Py “R is §'-strategically closed for ¢’ the least inaccessible above
§”. Thus, || Py “6 is measurable” iff ||- ;.. “0 is measurable”, so we show without loss of
generality that |- Py “§ isn’t measurable”.

Note now that since V¢ = “0 is Mahlo”, V' = “§ is Mahlo”. Next, let p € Pf be so
that p|l “/1 is a measure over ¢”. We show there is some ¢ > p, ¢ € PC"‘ so that for every
X € (p(6))Y, ¢|“X € 7. To do this, we build in V a binary tree 7 of height §, assuming
no such ¢ exists. The root of our tree is (p, ). At successor stages 5+ 1, assuming (r, X) is
on the Bth level of 7,7 > p,and X C §, X € Vissothat 7|l “X € 17, welet X = XqUX;
be such that Xy, X1 € V, XoNX; =0, and for ro > 7, 71 > r incompatible, ro||- “Xo € "
and || “X; € 7. We can do this by our hypothesis of the non-existence of a g € PC"c
as mentioned earlier. We place both (rg, Xo) and (ry,X;) in 7 at height 5 + 1 as the
successors of (r, X). At limit stages A < §, for each branch B in 7 of height < ), we take
the intersection of all second coordinates of elements along B. The result is a partition of
§ into < 2* many sets, so since ¢ is Mahlo in V, 2* < 6, i.e., the partition is into < § many
sets. Since V¢ = “§ is measurable”, there is at least one element Y of this partition

resulting from a branch of height A and a condition s > p so that s||- “Y € ”. For all such
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Y, we place a pair of the form (s,Y) into 7 at level A as the successor of each element of
the branch generating Y.

Work now in V¥¢. Since § is measurable in V¢, V¢ = “0 is weakly compact”.
By construction, 7 is a tree having ¢ levels so that each level has size < §. Thus, by the
weak compactness of § in V< we can let B = ((rg, X3) : 8 < 6) be a branch of height
§ through 7. If we define for § < 0 Yp = X3 — X341, then since (X3 : 3 < §) is so that
0< B <p<dimplies Xg O X,, for 0 < < p<9,YzNnY,=0. Since by the construction
of T, at level § + 1, the two second coordinate portions of the successor of (rg, Xg) are
Xp4+1 and Y, for the sz so that (sg,Yp) is at level B+ 1 of T, (sg : B < §) must form in
V¢ an antichain of size ¢ in PE.

In VF , PEis embeddable as a subordering of the Easton support product a];[CQg as
calculated in VI . As VFC = “§ is Mahlo”, this immediately implies that V% 3 = “PE
is §-c.c.”, contradicting that (sz : 3 < ) is in VF ¢ an antichain of size §. Thus, there is

some ¢ > p so that for every X € (p(6))", ¢|“X € 17, i.e., § is measurable in V. This

contradiction proves Lemma 3.

o Lemma 3
LEMMA 4. VP! = “k is both strongly compact and k™ supercompact”.

ProOOF OF LEMMA 4: The proof of Lemma 4 heavily uses unpublished ideas of Magidor

[kt]=" *

(which don’t even appear in the circulated manuscript of [KiM]). Let A > 2 =2F =
27 = kgt be an arbitrary cardinal, and let k; : V — M be an embedding witnessing the \

supercompactness of k. A has been chosen large enough so that any ultrafilter over P (x™)

present in V is an element of M, so we may assume by the remarks in the first paragraph
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of this section that ko : M — N is an embedding witnessing the x* supercompactness
of k definable in M so that N |= “k isn’t measurable”. It is easily verifiable using the
embedding definition of A strong compactness given in Section 0 that j = ko k; is so that
j:V — N is a A strongly compact embedding that also witnesses the x* supercompactness
of k. We show that j extends to j* : VP Nj*(Pn’l), thus proving Lemma 4.

To do this, write j(P®1!) as P*!xQ"xR"*, where Q" is a term for the portion of j(P*?)
between & and ko (k) and R” is a term for the rest of j(P*1), i.e., the part above ky (k). Note
that since N |= “x isn’t measurable”, « ¢ field(Q"). Also, since M = “x is measurable”,
by elementarity, N | “ko(k) is measurable”. Thus, the field of Q" is composed of all
N-measurable cardinals in the interval (k, ko(k)] (so ky(k) € field(Q*)), and the field of
R" is composed of all N-measurable cardinals in the interval (kz(k), k2(k1(k)))-

Let G be V-generic over P®!. We construct in V[Gy] an N|[Go]-generic object G
over @~ and an N[Gy|[G1]-generic object Gy over R®. Since P™! is an Easton support
iteration of length x with no forcing done at stage k, the construction of G; and G,
automatically guarantees that j”Go C Gg * G1 * G2, meaning that j : V — N extends to
j* : V[Go] = N[Go][G1][G2].

To build G, note that since k; can be assumed to be generated by an ultrafiler I
over (Po (k™)™ = (P.(k1))", and since in both V and M, 28" = 25 = g++ | |ky(kt)| =
|k2(25) = {f : f: Ps(kT) — kT is a function}| = |[m++]n+| = kTT. Thus, as N[Go] &=
“Q%| = k2(2%)”, we can let (D, : @ < kTT) enumerate in V[Gy] the dense open subsets
of @ present in N[Gy]. Since the k™ closure of N with respect to either M or V implies
the least element of the field of Q is > x* T, the definition of Q* as the Easton support
iteration which adds a non-reflecting stationary set of ordinals of cofinality v to each
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N|Gp]-measurable cardinal in the interval (x, k2(x)] implies that N[Go] E “QF is < kTT-
strategically closed”. By the fact the standard arguments show that forcing with the x-c.c.
partial ordering P*! preserves that N|[Go| remains k* closed with respect to either M[Gy]
or V[Go], Q" is < ktT-strategically closed in both M[Go] and V[Gy)].

We can now construct G in either M |G| or V|G| as follows. Player I picks p,, € D,,
extending sup((gs : 8 < «)) (initially, g_; is the empty condition) and player II responds
by picking g, > pa (S0 qo € D,). By the < kT T-strategic closure of @ in both M[Gy]
and V[Gy], player II has a winning strategy for this game, so (g, : @ < K™T) can be taken
as an increasing sequence of conditions with ¢, € D, for a < k1. Clearly, G; = {p €
Q" : Ja < KT T[qs > p|} is our N[Go|-generic object over Q.

It remains to construct in V[Gy] the desired N[Gy|[G1]-generic object G5 over R*. To
do this, we first note that as A > 2, M | “k is measurable”. This means we can write
ki(Pt) as Pl S%+ T, where || p., “S* adds a non-reflecting stationary set of ordinals
of cofinality y to x”, and T is a term for the rest of ki(P"'). Since we have assumed
V E “No cardinal § > k is measurable”, the A closure of M with respect to V' implies
M = “No cardinal § € (k, ] is measurable”. Thus, the field of 7% is composed of all
M-measurable cardinals in the interval (A, k1(x)), which implies that in M, | pu.1, gx wps
is < At-strategically closed”. Further, since we can assume X is regular, |[\]*"| = ),
and 2 = AT (our ground model V is constructed by forcing over a model of GCH using
a set partial ordering), and since, as before, k; can be assumed to be generated by an
ultrafilter U over P.(\), |ki(AT)| = |k1(2Y)| = |28V = {f : f : P.(\) = AT is a
function} = |[AT]}| = AT,
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Work until otherwise specified in M. Consider the “term forcing” partial ordering
T* (see [C], Section 1.5, p. 8) associated with T+, ie., 7 € T* iff 7 is a term in the
forcing language with respect to P®! % §% and IF proign T € T+%”, ordered by 7 > o
iff || pri,ge“T > 0”7, Clearly, T* € M. Also, since || pr1,éx “TR is < AT-strategically
closed”, it can easily be verified that T* itself is < AT-strategically closed in M and, since
M* C M, in V as well. Therefore, as ||- pe1,¢0 “|T%| = k1(A) and 25N = (k (V)T =
k1(AT)”, we can assume without loss of generality that in M, |T*| = k1(\). This means
we can let (D, : @ < AT) enumerate in V the dense open subsets of T* present in M and
argue as before to construct in V an M-generic object Hy over T*.

Note now that since /N can be assumed to be given by an ultrapower of M via a normal
measure U € M over (P,.;(HJF))M, Fact 2 of Section 1.2 of [C] tells us that kY Hy generates
an N-generic object G% over ky(T™*). By elementariness, ky(7™) is the term forcing whose
elements are names for elements of ky(T%) = R* in NFk2(P™*5%) " Therefore, since G5 is
N-generic over ky(T*), and since G * G is ka (P! % S%)-generic over N, Fact 1 of Section
1.5 of [C] tells us that for G2 = {igy«c,(7) : T € G5}, G2 is N[Gy|[G1]-generic over R".
As Gy is a set of conditions in an Easton support iteration of length « in which a direct
limit was taken at s, each condition in Gy has a support which is bounded in . It follows

that in V[Go], j : V — N extends to j* : V[Go] — N|[Go][G1][G2]. This proves Lemma 4.

o Lemma 4
Since V | “|P®Y| = k7, VP™" |= “2¢ = ™", Thus, Lemmas 3 and 4 complete the

proof of Theorem 1 when n = 1.
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o Theorem 1 (n = 1)

We remark that Magidor’s unpublished ideas mentioned at the beginning of the proof
of Lemma 4 were used in the context of a ground model V so that V | “GCH + & is
supercompact”. The partial ordering used in this situation was, as now, the P*! of Lemma
4. The embedding k7 in this circumstance was as described above, but the embedding k-
was generated by a normal measure &/ € M concentrating on non-measurable cardinals.
The proof given in Lemma 4 then went through in this situation as well to show j = kyok;
extends, using that although NV is only x closed with respect to V', GCH gives fewer dense
open sets to meet, i.e., in the construction of G;, only st instead of k™ dense open
subsets of Q" have to be met.

In conclusion to this section, we note that the first author’s non-iterative proof of
Theorem 1 for the case n = 1 [A97a] used Magidor’s notion of iterated Prikry forcing [Ma]
to destroy all measurable cardinals found below the cardinal x produced in Theorem 3 of
[AS97Db], thereby requiring an initial assumption of a supercompact limit of supercompact
cardinals. At the Oberwolfach meeting at which this proof was discovered, Magidor and
Woodin independently of one another told both authors a (non-iterative) proof of Theorem
1 for the case n = 1 could be given using Radin forcing, starting from only one super-
compact cardinal. Neither Woodin’s nor Magidor’s proof has been published (and both
proofs seem unlikely to be published anywhere in the foreseeable future), but our methods
here and the methods of [A97a] provide another non-iterative proof starting from only one
supercompact cardinal for the case n = 1.

An outline of this proof is as follows: First, start with a ground model V so that
V | “GCH + & is supercompact”. Next, force using the partial ordering P*° of Lemma 2
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to preserve the supercompactness of k, make 2% = k¥, and construct a k™ supercompact
embedding j* : VE™? 5 MIT(P™?) g0 that MIT(P™°) = “k isn’t measurable”. Finally,
force over VP’ using Q*, Magidor’s notion of iterated Prikry forcing of [Ma], to destroy
all measurable cardinals below x. Magidor’s arguments of [Ma] yield V¥ oxQ = “kis
both strongly compact and the least measurable cardinal”, and the exact same argument
as given in the Lemma of [A97a] shows V¥ QT E “k is kKt supercompact”. Also, since
b pro Q] = &7, VPO | 5 = 7,

The advantage of the non-iterative proof just given and the earlier non-iterative proofs
previously mentioned is that the large cardinal structure above s can be arbitrary in any of
these proofs. The proof of Lemma 4 and the proofs to be given in the next section require
severe restrictions on the large cardinal structure of the universe. We will comment more
upon this in the concluding remarks of the paper.

§4 The Case of Arbitrary Finite n

In this section, we give a proof of Theorem 1 for arbitrary finite n.

PRrROOF OF THEOREM 1: Let V) = “ZFC + GCH + k1 < k2 < --- < Ky, are the first n
(for n € w) supercompact cardinals + No cardinal A > &, is measurable”. Let P* € 1}
be a partial ordering so that V = V¥ ) = “Each k; for i = 1,...,n is indestructible under
ki-directed closed forcing”. The existence of this sort of generalized version of Laver’s
partial ordering of [L] is easy to show and is found in many places, e.g., [A83], [A98], or
[CFM]. Note that since as in [L], P* can be defined as an iteration so that for P} the
portion of P* up through stage x;, |P} | = k;, and since also we can assume that the
portion of P* defined beyond stage k; is at least \;-directed closed, where for the rest of
this section, \; is the least inaccessible above k;, V |= “2%i = K,?_ fori=1,...,n". Also, by
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the Lévy-Solovay results [LS], since Vj = “No cardinal A > &, is measurable”, V | “No
cardinal A\ > k,, is measurable” as well.

We take now V' as our ground model and let kg = w. P will be defined as the cartesian
product <H< Pri where P for : = 1,...,n can be defined in two ways, depending upon

1<i<n

whether the simpler or more complicated version of the partial ordering P517 \[S] is used.
If the simpler version of Pj,[S] is used, then P = P*i:0 « Pril where PFi0 is defined
as in Section 2, using only those inaccessibles in the interval (k;_1, k;| satisfying GCH in
its field and fixing x;_1 as the cofinality of the non-reflecting stationary sets added by
each Pg \ (since V = “2fi = ¥ reflection shows that unboundedly many cardinals in
(ki_1, ki) will be in the field of P*#%) and P~! also adds non-reflecting stationary sets of
ordinals of cofinality k;_; to every V¥ """ _measurable cardinal in the interval (Ki—1, kq). If
the more complicated version of P517 L [5] is used, then P*i-0 is defined as in Section 2, using
only those inaccessibles in the interval (k;_1, k;| in its field satisfying GCH, and pril ig
as just defined when the simpler version of Pj,[S] is used.

For i = 1,...,n, write P = P, x P% x P' where P, = [[ P% and P' =

1<5<i-1

[[ Pr. When the simpler version of P},[S] is used, it easily follows that P* is
i+1<j<n ’
rki-directed closed. This is since by the remarks in the middle of p. 108 of [AS97a], each
P§,[S] used in the definition of each P*5-% for j = i+1,...,n is at least ;-directed closed,
so as the cofinalities of the ordinals present in the non-reflecting stationary sets added by
Prit for j=1i+1,...,n are at least x;, P for j =i+1,...,nand P' = J] P"i are

i+1<j<n

all k;-directed closed. Also, when the more complicated version of P517 \[S] is used, it is the
case that a V-generic object for P? is V-generic over a r;-directed closed partial ordering.

This follows by the argument of Lemma 14 of [AS97b| combined with the fact that any
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partial ordering of the form Pg, x (Pj AS] x P \[S]) used in the definition of P":° for
j=1i+1,...,nis r;-directed closed. (See Lemma 4 of [AS97b] for a proof.) Thus, by the

indestructibility properties of x; and the fact P* is \;-strategically closed, V¥ i “Rr; 1s

+»

K; —
supercompact and 2% = ;7.

By the definition of P*i+1, V' = “No cardinal § € (k;,%;41) is measurable”, for
i=1,...,n—1. When i = n, we take (x;, x;11) as all ordinals > x; and P’ as being trivial,
so our initial assumptions on V once more give us VX' = “No cardinal § € (k;, kit1) is

measurable”. Therefore, the arguments of Lemmas 2 - 4 apply to show V¥ P E “Rq is

++

< Ki+1 strongly compact, &; is ch’ supercompact, 2 = k", and no cardinal § € (k;_1, K;)
is measurable”, taking when i = n “< k; strongly compact” as meaning “§ strongly
compact for all cardinals § > k,”, i.e., as meaning fully strongly compact. Since by the
definition of P;, |P;| < A;_1, the results of [LS] tell us VPIXPrixP — P = “K;i 1S < Kiy1
strongly compact, k; is /-zj supercompact, 2 = Ii?ﬂi_, and no cardinal 0 € (k;_1,k;) is
measurable”. Therefore, since a result of DiPrisco [DH] tells us that if § is < 7 strongly

compact and v is p strongly compact, then § is p strongly compact, and since we are

working with finitely many cardinals k1, ..., k,, we can apply finitely often the result of

++

[DH] to infer V¥ |= “x; is strongly compact, x; is nj’ supercompact, 2" = ;" , and no

cardinal § € (k;_1, k;) is measurable”. This completes the proof of Theorem 1 for arbitrary

finite n.
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o Theorem 1

§5 Concluding Remarks
In conclusion to this paper, we note that for the moment, we are restricted to proving
Theorem 1, as was Magidor, only to finite values of n. The proof of Theorem 1, and Magi-
dor’s original proof of the consistency of the first n € w strongly compact cardinals being
the first n measurable cardinals, both heavily use that the ground model contains only
finitely many supercompact cardinals and no measurable cardinals beyond their supre-
mum. This is evident in the proof of Lemma 4, its equivalent form in Magidor’s original
proof, and in the proof given in Section 4. Although it is possible to give alternate proofs,
in both our situation and Magidor’s, by composing supercompact embeddings either with
embeddings generated by normal measures over measurable cardinals of Mitchell order 0
in Magidor’s case or with a x* supercompact embedding as constructed in Lemma 2 in
our case, the proofs still require the initial assumption of only finitely many supercompact
cardinals with no measurable cardinals above their supremum. (See the end of [A95] for
a further discussion of this problem.) Thus, the prime question of the relative consistency
of the first w measurable and strongly compact cardinals coinciding, with or without any

additional degrees of supercompactness, remains open.
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