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x0 Introdu
tion and PreliminariesAs is well-known, the notion of strong 
ompa
tness is a singularity in the hierar
hyof large 
ardinals. The fundamental work of Magidor [Ma℄ shows that the least strongly
ompa
t 
ardinal � 
an either be the least super
ompa
t 
ardinal or the least measurable
ardinal, in whi
h 
ase � isn't even 2� super
ompa
t. A generalization of this result byKim
hi and Magidor [KiM℄ shows that the (possibly proper) 
lasses of super
ompa
t andstrongly 
ompa
t 
ardinals 
an 
oin
ide ex
ept at measurable limit points or that the �rstn (for n 2 !) strongly 
ompa
t 
ardinals 
an be the �rst n measurable 
ardinals.The purpose of this paper is to show that the te
hniques of [AS97a℄ and [AS97b℄ 
anbe 
ombined with unpublished ideas of Magidor to produ
e a model in whi
h the �rst n(for n 2 !) strongly 
ompa
t 
ardinals are not only the �rst n measurable 
ardinals, butea
h is a little super
ompa
t. Spe
i�
ally, we prove the following.Theorem 1. Con(ZFC + There are n 2 ! super
ompa
t 
ardinals) =) Con(ZFC +The �rst n strongly 
ompa
t 
ardinals �1; : : : ; �n are the �rst n measurable 
ardinals +2�i = �++i for i = 1; : : : ; n + Ea
h �i is �+i super
ompa
t for i = 1; : : : n).A bit of history is perhaps in order now. As was just noted, in the early 1970s,Magidor in [Ma℄ showed the 
onsisten
y, relative to the existen
e of a strongly 
ompa
t
ardinal, of the least strongly 
ompa
t 
ardinal being the least measurable 
ardinal. Inthe spring of 1983, Woodin, in response to a question put to him by the �rst author,showed the 
onsisten
y (see [CW℄), relative to the existen
e of a 
ardinal � whi
h is �+3super
ompa
t, of the least measurable 
ardinal � being so that 2� = �++ and � is �+super
ompa
t. In the mid 1980s, Kim
hi and Magidor did the work of [KiM℄. In late1992, Shelah and the �rst author began the resear
h leading to the results of [AS97a℄ and2



[AS97b℄. The main theorem of [AS97a℄ showed, roughly speaking, the relative 
onsisten
yof the 
lasses of strongly 
ompa
t and super
ompa
t 
ardinals 
oin
iding level by level,ex
ept where expli
itly prohibited by ZFC. This strengthened the work of [KiM℄. Themain theorem of [AS97b℄ showed that Menas' result of [Me℄ that the least measurablelimit � of either strongly 
ompa
t or super
ompa
t 
ardinals isn't 2� super
ompa
t is bestpossible by 
onstru
ting, starting from a super
ompa
t limit of super
ompa
t 
ardinals, amodel in whi
h the least measurable limit � of both strongly 
ompa
t and super
ompa
t
ardinals is so that 2� = �++ and � is �+ super
ompa
t. The for
ing 
onditions of [AS97b℄were generalizations of the for
ing 
onditions of [AS97a℄, and both provided, among otherthings, an alternate way of proving Woodin's aforementioned 1983 theorem. This still leftopen the question of 
ombining Woodin's results with the results of Magidor and Kim
hiand Magidor, i.e., obtaining a model in whi
h the least measurable 
ardinal � is boththe least strongly 
ompa
t 
ardinal and is �+ super
ompa
t, or in general, obtaining amodel in whi
h the �rst n measurable 
ardinals �1; : : : ; �n (for n 2 !) are the �rst nstrongly 
ompa
t 
ardinals, with ea
h measurable 
ardinal �i being �+i super
ompa
t.This question went unresolved for a number of years, despite several attempts at solvingit made by Shelah and the �rst author. Then, during the January 7-13, 1996 meetingin Set Theory held at the Mathemati
s Resear
h Institute, Oberwolfa
h, the �rst authorproved (see [A97a℄) Theorem 1 for n = 1. His proof, however, was non-iterative, and thequestion remained of proving Theorem 1 for arbitrary �nite n. This question was �nallyresolved by the two authors of this paper during their stay as Resear
h in Pairs fellows atthe Mathemati
s Resear
h Institute, Oberwolfa
h, June 8-21, 1997.3



We take the opportunity here to make two remarks about Theorem 1. The �rst isthat there is nothing spe
ial about ea
h �i being �+i super
ompa
t in Theorem 1. In fa
t,ea
h �i 
an be �++i , �+++i , �+4i , et
: super
ompa
t, so long as 2�i > �++i , 2�i > �+++i ,2�i > �+4i , et
. After 
ompleting the proof of Theorem 1, interested readers are invited tolook at the statement of Theorem 3 of [AS97b℄ in order to determine for themselves whatvariants are possible. The se
ond is that no proof is 
urrently known, in both Theorem 1and the 
orresponding result of [KiM℄, when n is in�nite. This will be dis
ussed furtherat the end of the paper.The stru
ture of this paper is as follows. Se
tion 0 
ontains our introdu
tory 
om-ments and preliminary remarks 
on
erning notation, terminology, et
. Se
tion 1 
ontainsa dis
ussion of a 
ertain modi�
ation of the main for
ing notion of [AS97a℄ (given at theend of [AS97b℄) that will be 
riti
al in the proof of Theorem 1. Se
tion 1 also 
ontains adis
ussion of the main for
ing notion of [AS97b℄, whi
h 
an be used as an alternative in theproof of Theorem 1. Se
tion 2 shows how the for
ing notions dis
ussed in Se
tion 1 
an beused to for
e a super
ompa
t 
ardinal to have a 
ertain spe
ial kind of super
ompa
tnessembedding that will be key in the proof of Theorem 1. Se
tion 3 then gives a proof ofTheorem 1 for n = 1. Se
tion 4 
ontains a proof of Theorem 1 for arbitrary �nite n.Se
tion 5 has our 
on
luding remarks.We give now some preliminary information 
on
erning notation and terminology. Es-sentially, our notation and terminology are standard, and when this is not the 
ase, thiswill be 
learly noted. For � < � ordinals, [�; �℄; [�; �); (�; �℄, and (�; �) are as in standardinterval notation. If x is a set, then TC(x) is the transitive 
losure of x.4



When for
ing, q � p will mean that q is stronger than p. For P a partial ordering, ' aformula in the for
ing language with respe
t to P , and p 2 P , pk' will mean p de
ides '.For G V -generi
 over P , we will use both V [G℄ and V P to indi
ate the universe obtainedby for
ing with P . If x 2 V [G℄, then _x will be a term in V for x. We may, from timeto time, 
onfuse terms with the sets they denote and write x when we a
tually mean _x,espe
ially when x is some variant of the generi
 set G, or x is in the ground model V .If � is a 
ardinal and P is a partial ordering, P is �-
losed if given a sequen
e hp� :� < �i of elements of P so that � < 
 < � implies p� � p
 (an in
reasing 
hain of length�), then there is some p 2 P (an upper bound to this 
hain) so that p� � p for all � < �.P is < �-
losed if P is Æ-
losed for all 
ardinals Æ < �. P is �-dire
ted 
losed if for every
ardinal Æ < � and every dire
ted set hp� : � < Æi of elements of P (where hp� : � < Æi isdire
ted if for every two distin
t elements p�; p� 2 hp� : � < Æi, p� and p� have a 
ommonupper bound p�) there is an upper bound p 2 P . P is �-strategi
ally 
losed if in the twoperson game in whi
h the players 
onstru
t an in
reasing sequen
e hp� : � � �i, whereplayer I plays odd stages and player II plays even and limit stages, then player II has astrategy whi
h ensures the game 
an always be 
ontinued. Note that if P is �-strategi
ally
losed and f : � ! V is a fun
tion in V P , then f 2 V . P is < �-strategi
ally 
losedif P is Æ-strategi
ally 
losed for all 
ardinals Æ < �. P is � �-strategi
ally 
losed if inthe two person game in whi
h the players 
onstru
t an in
reasing sequen
e hp� : � < �i,where player I plays odd stages and player II plays even and limit stages, then player IIhas a strategy whi
h ensures the game 
an always be 
ontinued. Note that trivially, if P is< �-
losed, then P is < �-strategi
ally 
losed and � �-strategi
ally 
losed. The 
onverseof both of these fa
ts is false. 5



The usual partial ordering for adding � Cohen subsets to a regular 
ardinal � will bewritten as Add(�; �). Standard arguments show Add(�; �) is �-dire
ted 
losed. See [J℄,Lemmas 19.7 and 19.8, pages 181-182, for further details.We mention that we are assuming 
omplete familiarity with the notions of measura-bility, strong 
ompa
tness, and super
ompa
tness. Interested readers may 
onsult [SRK℄,[Ka℄, or [KaM℄ for further details. We note only that all elementary embeddings witnessingthe � super
ompa
tness of � are presumed to 
ome from some �ne, �-
omplete, normalultra�lter U over P�(�) = fx � � : jxj < �g, and all elementary embeddings witnessingthe � strong 
ompa
tness of � are presumed to 
ome from some �ne, �-
omplete ultra�lterU over P�(�). An equivalent de�nition for � being � strongly 
ompa
t is that there is anelementary embedding j : V ! M having 
riti
al point � so that for any x � M withjxj � �, there is some y 2M su
h that x � y and M j= \jyj < j(�)".Finally, we mention that sin
e ideas and notions from [AS97a℄ and [AS97b℄ are usedthroughout the 
ourse of this paper, it would be most helpful to readers if 
opies of thesepapers were kept 
lose at hand. In fa
t, at many instan
es during our exposition, wewill refer to proofs not given here but found in either [AS97a℄ or [AS97b℄. These papers,however, need not be read in their entirety to follow this paper. In order to fa
ilitate theunderstanding of readers, though, we will keep as mu
h as possible to the notations andterminology of [AS97a℄ and [AS97b℄.x1 The For
ing Notions of [AS97a℄ and [AS97b℄Fix 
 < Æ < �, � > Æ+ regular 
ardinals in our ground model V , with Æ ina

essibleand � either ina

essible or the su

essor of a 
ardinal of 
o�nality > Æ. We re
all now thepartial orderings P 0Æ;� and P 2Æ;�[S℄ of [AS97a℄ and [AS97b℄ and both the version of P 1Æ;�[S℄6



given in Se
tion 4 of [AS97b℄ (whi
h is a modi�
ation of the partial ordering P 1Æ;�[S℄ of[AS97a℄) and the version of P 1Æ;�[S℄ of [AS97b℄ used in the proof of Theorem 3 of thatpaper.We assume GCH holds for all 
ardinals � � Æ. As in Se
tion 4 of [AS97b℄, the �rstnotion of for
ing P 0Æ;� is just the standard notion of for
ing for adding a non-re
e
tingstationary set of ordinals of 
o�nality 
 to �. Spe
i�
ally, P 0Æ;� = fp : For some � < �,p : � ! f0; 1g is a 
hara
teristi
 fun
tion of Sp, a subset of � not stationary at itssupremum nor having any initial segment whi
h is stationary at its supremum, so that� 2 Sp implies � > Æ and 
of(�) = 
g, ordered by q � p i� q � p and Sp = Sq \ sup(Sp),i.e., Sq is an end extension of Sp. It is well-known that for G V -generi
 over P 0Æ;� (see [B℄ or[KiM℄), in V [G℄, sin
e GCH holds in V for all 
ardinals � � Æ, a non-re
e
ting stationaryset S = S[G℄ = [fSp : p 2 Gg � � of ordinals of 
o�nality 
 has been introdu
ed, thebounded subsets of � are the same as those in V , and 
ardinals, 
o�nalities, and GCHat 
ardinals � � Æ have been preserved. It is also virtually immediate that P 0Æ;� is 
-dire
ted 
losed, and it 
an be shown (see [B℄, Lemma 4.15, page 436 or [KiM℄) that P 0Æ;�is � �-strategi
ally 
losed.Work now in V1 = V P 0Æ;� , letting _S be a term always for
ed to denote the above set S.P 2Æ;�[S℄ is the standard notion of for
ing for introdu
ing a 
lub set C whi
h is disjoint toS (and therefore makes S non-stationary). Spe
i�
ally, P 2Æ;�[S℄ = fp : For some su

essorordinal � < �, p : �! f0; 1g is a 
hara
teristi
 fun
tion of Cp, a 
lub subset of �, so thatCp \S = ;g, ordered by q � p i� Cq is an end extension of Cp. It is again well-known (see[MS℄) that for H V1-generi
 over P 2Æ;�[S℄, a 
lub set C = C[H℄ = [fCp : p 2 Hg � � whi
h7



is disjoint to S has been introdu
ed, the bounded subsets of � are the same as those in V1,and 
ardinals, 
o�nalities, and GCH for 
ardinals � � Æ have been preserved.The following lemma is proven in both [AS97a℄ and [AS97b℄.Lemma 1 (Lemma 1 of [AS97a℄ and [AS97b℄). k{ P 0Æ;�\|( _S)", i.e., V1 j= \There is asequen
e hx� : � 2 Si so that for ea
h � 2 S, x� � � is 
o�nal in �, and for any A 2 [�℄�,f� 2 S : x� � Ag is stationary".We �x now in V1 a |(S) sequen
e X = hx� : � 2 Si. We are ready to de�ne in V1 inthe same manner as was done in Se
tion 4 of [AS97b℄ the partial ordering P 1Æ;�[S℄. First,sin
e ea
h element of S has 
o�nality 
, ea
h x 2 X 
an be assumed to be so that ordertype(x) = 
. Then, P 1Æ;�[S℄ is de�ned as the set of all 4-tuples hw;�; �r; Zi satisfying thefollowing properties.1. w 2 [�℄<Æ.2. � < Æ.3. �r = hri : i 2 wi is a sequen
e of fun
tions from � to f0; 1g, i.e., a sequen
e of subsetsof �.4. Z � fx� : � 2 Sg is a set so that if z 2 Z, then for some y 2 [w℄
 , y � z and z � yis bounded in the � so that z = x� . In other words, for every x� 2 Z, w \ x� is
obounded in x� .As in [AS97a℄, the de�nition of Z implies jZj < Æ.The ordering on P 1Æ;�[S℄ is given by hw1; �1; �r1; Z1i � hw2; �2; �r2; Z2i i� the followinghold.1. w1 � w2.2. �1 � �2. 8



3. If i 2 w1, then r1i � r2i .4. Z1 � Z2.5. If z 2 Z1 \ [w1℄
 and �1 � � < �2, then jfi 2 z : r2i (�) = 0gj = jfi 2 z : r2i (�) =1gj = 
.The intuition behind the de�nition of P 1Æ;�[S℄ just given is essentially the same asin [AS97a℄. Spe
i�
ally, we wish to be able simultaneously to make 2Æ = �, destroy themeasurability of Æ, and be able to resurre
t the < � super
ompa
tness of Æ if ne
essary.P 1Æ;�[S℄ has been designed so as to allow us to do all of these things.The proof that V P 1Æ;�[S℄1 j= \Æ is non-measurable" is as in Lemma 3 of [AS97a℄. Inparti
ular, the argument of Lemma 3 of [AS97a℄ will show that Æ 
an't 
arry a 
-additiveuniform ultra�lter. We 
an then 
arry through the proof of Lemma 4 of [AS97a℄ to showP 0Æ;� � (P 1Æ;�[ _S℄ � P 2Æ;�[ _S℄) is equivalent to Add(�; 1) � _Add(Æ; �). The proofs of Lemma 5of [AS97a℄ and Lemma 6 of [AS97b℄ will then show P 0Æ;� � P 1Æ;�[ _S℄ preserves 
ardinals and
o�nalities, is �+-
.
., is < Æ-strategi
ally 
losed, and is so that V P 0Æ;��P 1Æ;�[ _S℄ j= \2� = �for every 
ardinal � 2 [Æ; �)".Although the above de�nition of P 1Æ;�[S℄ (hen
eforth to be referred to as the \simplerform") is perfe
tly adequate for our purposes, as mentioned at the end of [AS97b℄, itwill not suÆ
e to prove Theorem 3 of [AS97b℄. In order to do this, a more 
ompli
atedform of P 1Æ;�[S℄ is required. Sin
e this version of P 1Æ;�[S℄ will also work for Theorem 1, for
ompleteness, we re
all its de�nitions and properties here. First, we �x Æ < � as before.We then as was done in [AS97b℄ rede�ne P 0Æ;� as the partial ordering whi
h adds a non-re
e
ting stationary set of ordinals S of 
o�nality Æ to �. The de�nition of P 2Æ;�[S℄ remains9



the same. Having �xed a |(S) sequen
e as before, P 1Æ;�[S℄ is then the set of all 5-tupleshw;�; �r; Z;�i satisfying the following properties.1. w � � is so that jwj = Æ.2. � < Æ.3. �r = hri : i 2 wi is a sequen
e of fun
tions from � to f0; 1g, i.e., a sequen
e of subsetsof �.4. Z is a fun
tion so that:a) dom(Z) � fx� : � 2 Sg and range(Z) � f0; 1g.b) If z 2 dom(Z), then for some y 2 [w℄Æ, y � z and z � y is bounded in the � so thatz = x�.5. � is a fun
tion so that:a) dom(�) = dom(Z).b) If z 2 dom(�), then �(z) is a 
losed, bounded subset of � su
h that if 
 is ina

essible,
 2 �(z), and � is the 
th element of z, then � 2 w, and for some �0 2 � \ w \ z,r�0(
) = Z(z).Note that the de�nitions of Z and � imply jdom(Z)j = jdom(�)j � Æ.The ordering on P 1Æ;�[S℄ is given by hw1; �1; �r1; Z1;�1i � hw2; �2; �r2; Z2;�2i i� thefollowing hold.1. w1 � w2.2. �1 � �2.3. If i 2 w1, then r1i � r2i and jfi 2 w1 : r2i �j(�2 � �1) is not 
onstantly 0gj < Æ.4. Z1 � Z2:5. dom(�1) � dom(�2). 10



6. If z 2 dom(�1), then �1(z) is an initial segment of �2(z) and jfz 2 dom(�1) : �1(z) 6=�2(z)gj < Æ.The intuition behind the above de�nition of P 1Æ;�[S℄ is the same as in [AS97b℄. If Æ ismeasurable, then Æ must 
arry a normal measure. The for
ing P 1Æ;�[S℄ has spe
i�
ally beendesigned to destroy this fa
t. (See Lemma 3 of [AS97b℄ for a proof.) It has been designed,however, to destroy the measurability of Æ \as lightly as possible", making little damage,assuming Æ is < � super
ompa
t. Spe
i�
ally, if Æ is < � super
ompa
t, then the non-re
e
ting stationary set S, having been added to �, does not kill the < � super
ompa
tnessof Æ by itself. The additional for
ing P 1Æ;�[S℄ is ne
essary to do the job and has been designedso as not only to destroy the < � super
ompa
tness of Æ but to destroy the measurabilityof Æ as well. The for
ing P 1Æ;�[S℄, however, has been designed so that if ne
essary, we 
anresurre
t the < � super
ompa
tness of Æ by for
ing further with P 2Æ;�[S℄.We 
on
lude this se
tion by noting that there are additional properties of the more
ompli
ated version of P 1Æ;�[S℄ that will be relevant to our work. These will be dis
ussedin more detail in later se
tions.x2 A Super
ompa
t Cardinal with a Spe
ial Kind of EmbeddingIn this se
tion, we for
e and 
onstru
t a super
ompa
t 
ardinal possessing a spe-
ial sort of super
ompa
tness embedding. Su
h 
ardinals will be 
riti
al in the proof ofTheorem 1. Spe
i�
ally, we prove the following.11



Lemma 2. Suppose V j= \ZFC + GCH + � is super
ompa
t". There is then a partialordering P�;0 2 V so that V P�;0 j= \� is super
ompa
t + 2� = �++". In addition, thereis an elementary embedding j� : V P�;0 !M j�(P�;0) de�nable in V P�;0 witnessing the �+super
ompa
tness of � so that M j�(P�;0) j= \� isn't measurable".Proof of Lemma 2: Fix f : �! V� a Laver fun
tion [L℄, i.e., f is so that for every x andevery � � jTC(x)j, there is a � super
ompa
t ultra�lter U�;x with asso
iated embeddingjU�;x : V !M so that jU�;x(f)(�) = x. Also, let hÆ� : � � �i enumerate the ina

essibles� �, and let 
 < Æ0 be a �xed but arbitrary regular 
ardinal.As Laver does in [L℄, we de�ne now simultaneously an Easton support iteration P�;0 =hhP ��; _Q��i : � � �i and a sequen
e of ordinals h�� : � < �i, where �� = [�<��� if � isa limit ordinal. We use here in our de�nition the simpler form of P 1Æ;�[S℄ of Se
tion 1de�ned using 
 and the asso
iated P 0Æ;� and P 2Æ;�[S℄ and indi
ate at the end of the se
tionthe modi�
ations needed when the more 
ompli
ated form of P 1Æ;�[S℄ is used. Spe
i�
ally,the de�nition has P0 being trivial with �0 = 0, and P ��+1 = P �� � _Q��, where k{ P�\ _Q�� istrivial" and ��+1 = �� unless one of the following holds:1. If for all � < �, �� < � and Æ� < � is so that V j= \Æ� isn't Æ+� super
ompa
t", thenP ��+1 = P �� � _Q��, where _Q�� is a term for P 0Æ�;Æ++� � P 1Æ�;Æ++� [ _SÆ++� ℄, and _SÆ++� is a termfor the non-re
e
ting stationary subset of Æ++� introdu
ed by P 0Æa;Æ++� . If f(�) is anordinal and f(�) > ��, then ��+1 = f(�). If this 
ondition on f(�) doesn't hold,then ��+1 = ��.2. If for � < �, �� < � and Æ� � � is so that V j= \Æ� is Æ+� super
ompa
t", thenP ��+1 = P �� � _Q��, where _Q�� is a term for P 0Æ�;Æ++� � (P 1Æ�;Æ++� [ _SÆ++� ℄�P 2Æ�;Æ++� [ _SÆ++� ℄). If12



f(�) is an ordinal and f(�) > ��, then ��+1 = f(�). If this 
ondition on f(�) doesn'thold, then ��+1 = ��.Suppose now j : V !M is an embedding witnessing the �+ super
ompa
tness of � sothatM j= \� isn't �+ super
ompa
t". Lemma 9 of [AS97b℄ shows that if P�;0 = P �� � _Q�� =P �� � ( _P 0�;�++ � (P 1�;�++ [ _S�++ ℄�P 2�;�++ [ _S�++ ℄)) were an iteration as de�ned in the proofs ofTheorem 1 or Theorem 3 of [AS97b℄, then j : V ! M extends to j� : V P�;0 ! M j�(P�;0)witnessing the �+ super
ompa
tness of � in a manner de�nable in V P�;0 . The type ofiteration used in the proofs of Theorem 1 or Theorem 3 of [AS97b℄, however, is essentiallythe one just des
ribed here. The only real di�eren
e is that here, we use a Laver fun
tionto \spa
e out" the iteration at su

essor stages below �. At stage � + 1 in V , however,the partial ordering used in the iteration is P 0�;�++ � (P 1�;�++ [ _S�++ ℄ � P 2�;�++ [ _S�++ ℄), andat stage � + 1 in M , the partial ordering used in the iteration is P 0�;�++ � P 1�;�++ [ _S�++ ℄.These o

urren
es at stage �+1 in V andM in 
onjun
tion with the de�nition of P�;0 willthen allow the arguments of Lemma 9 of [AS97b℄ to go through to yield that j extends toj� : V P�;0 !M j�(P�;0). Note that sin
e P 0�;�++ �P 1�;�++ [ _S�++ ℄ is used at stage �+1 in M ,Lemma 3 of [AS97a℄ and Lemma 8 of [AS97b℄ show thatM j�(P�;0) j= \� isn't measurable".We show now that V P�;0 j= \� is super
ompa
t". To do this, we give an argumentsimilar to the one given in the proof of Lemma 2 of [A1℄. Spe
i�
ally, let 
 > �++ be anarbitrary 
ardinal, and let � > 2[
℄<� be a 
ardinal so that for some embedding k : V !Mwitnessing the � super
ompa
tness of �, k(f)(�) = �. By the de�nition of P�;0 andthe properties of k, k(P�;0) = (P �� � (P 0�;�++ � (P 1�;�++ [ _S�++ ℄ � P 2�;�++ [ _S�++ ℄))) � _Q� =(P �� � _Q��) � _Q� = P�;0 � _Q� = P�;0 � _R� � _Q�k(�), where _R� is a term for the MP�;0partial ordering P �k(�)=P�;0. By the de�nition of P�;0, in M , k{ P�;0\The �eld of _Q is13




omposed of 
ardinals > �". Further, by the de�nition of P�;0 and the fa
t M� � M ,it is true that in V and M , k{ P�;0\Both _R� and _R� � _Q�k(�) are �-strategi
ally 
losedand � > 2[
℄<�". And, by our earlier remarks, in both V and M , k{ P�� \ _Q�� is for
ingequivalent to _Add(�++; 1) � _Add(�; �++), a �-dire
ted 
losed partial ordering having size�++". Therefore, V P��� _Q�� = V P�;0 j= \2� = �++", and the standard arguments (see,e.g., Lemma 2 of [A1℄) in turn show that MP�;0� _R� remains �-
losed with respe
t toV P�;0� _R� and that if G0 �G1 is V -generi
 over P �� � _Q�� = P�;0 and G2 is V [G0℄[G1℄-generi
over R�, in V [G0℄[G1℄[G2℄, we 
an �nd a master 
ondition q extending ea
h p 2 k00G1.If G3 is V [G0℄[G1℄[G2℄-generi
 over Qk(�) so that q 2 G3, in V [G0℄[G1℄[G2℄[G3℄, there isan elementary embedding k� : V [G0℄[G1℄ ! M [G0℄[G1℄[G2℄[G3℄ extending k. Sin
e in V ,k{ P�;0\ _R� � _Q�k(�) is �-strategi
ally 
losed", V [G0℄[G1℄ j= \� is 
 super
ompa
t". Thisproves Lemma 2. Lemma 2When the more 
ompli
ated version of P 1Æ;�[S℄ and the asso
iated versions of P 0Æ;�and P 2Æ;�[S℄ are employed as the building blo
ks of P �, instead of working with Æ++� , weuse Æ+++� , i.e., at ea
h non-trivial stage in our iteration, we for
e with either P 0Æ�;Æ+++� �P 1Æ�;Æ+++� [ _SÆ+++� ℄ or P 0Æ�;Æ+++� �(P 1Æ�;Æ+++� [ _SÆ+++� ℄�P 2Æ�;Æ+++� [ _SÆ+++� ℄). This is sin
e by Lemma6 of [AS97b℄, both of the just mentioned partial orderings will 
ollapse Æ+� . Ex
ept for thisdi�eren
e, however, the proof of Lemma 2 is the same as before, making the appropriatereferen
es to Lemmas 6 and 8 of [AS97b℄ as ne
essary.In 
on
lusion to this se
tion, we note that if we assume that � has no ina

essible
ardinals above it, no use of the Laver fun
tion f is needed in the de�nition of P�;0. Atea
h Æ� < � whi
h isn't Æ+� super
ompa
t, we 
an for
e as in Case 1 of the de�nition of14



P�;0, and at ea
h Æ� � � whi
h is Æ+� super
ompa
t, we 
an for
e as in Case 2 of thede�nition of P�;0. We leave it to any interested readers to verify that the proof of Lemma2 be
omes simpler under these 
ir
umstan
es. It is only when there are large enough
ardinals above � that the use of the Laver fun
tion f is required in the de�nition of P�;0.x3 The Case n = 1We present in this se
tion a proof of Theorem 1 when n = 1. We assume thatV j= \ZFC + � is super
ompa
t". By Lemma 2, we also assume that V j= \2� = �++"and that there is a �+ super
ompa
tness embedding k�0 : V ! M� generated by a �+super
ompa
t ultra�lter over P�(�+) so that M� j= \� isn't measurable". Further, weassume for the time being that there are no measurable 
ardinals in V above �.Fix now an arbitrary regular 
ardinal 
 < �. Let hÆ� : � < �i this time enumeratethe measurables < �. The partial ordering P�;1 we use in the proof of Theorem 1 whenn = 1 is the Easton support iteration hhP�� ; _Q��i : � < �i, where P�0 is trivial and k{ P�� \ _Q��adds a non-re
e
ting stationary set of ordinals of 
o�nality 
 to Æ�".Lemma 3. V P�;1 j= \No 
ardinal Æ < � is measurable".Proof of Lemma 3: Let Æ < � be so that V j= \Æ is measurable". It must therefore bethe 
ase that Æ = Æ� for some � < �. This allows us to write P�;1 = P�� � _Q��� _R = P��+1� _R.By the de�nition of P�;1 and the fa
t that any stationary subset of a measurable(or weakly 
ompa
t) 
ardinal must re
e
t, V P��+1 j= \Æ isn't measurable sin
e there isS � Æ whi
h is a non-re
e
ting stationary set of ordinals of 
o�nality 
". Sin
e by thede�nition of P�;1, k{ P��+1\ _R is Æ0-strategi
ally 
losed for Æ0 the least ina

essible above Æ",V P��+1� _R = V P�;1 j= \S � Æ is a non-re
e
ting stationary set of ordinals of 
o�nality 
,so Æ isn't measurable". Thus, V P�;1 j= \No V -measurable 
ardinal Æ < � is measurable".15



The proof of Lemma 3 will therefore be 
omplete on
e we have shown there is no 
ardinalÆ < � so that k{ P�;1\Æ is measurable".To do this, we give an argument similar to the one found in the last part of Lemma 8of [A97b℄, whi
h in turn is essentially the same as the arguments given in Theorem 2.1.5of [H℄ and Theorem 2.5 of [KiM℄. Assume that V P�;1 j= \Æ is measurable". Sin
e wehave just shown that no V -
ardinal is measurable in V P�;1 , we 
an write P�;1 = P�� � _R,where Æ 62 �eld(P�� ) and k{ P�� \ _R is Æ0-strategi
ally 
losed for Æ0 the least ina

essible aboveÆ". Thus, k{ P�� \Æ is measurable" i� k{ P�;1\Æ is measurable", so we show without loss ofgenerality that k{ P�� \Æ isn't measurable".Note now that sin
e V P�� j= \Æ is Mahlo", V j= \Æ is Mahlo". Next, let p 2 P�� be sothat pk{ \ _� is a measure over Æ". We show there is some q � p, q 2 P�� so that for everyX 2 (}(Æ))V , qk\X 2 _�". To do this, we build in V a binary tree T of height Æ, assumingno su
h q exists. The root of our tree is hp; Æi. At su

essor stages �+1, assuming hr;Xi ison the �th level of T , r � p, and X � Æ, X 2 V is so that rk{ \X 2 _�", we let X = X0[X1be su
h that X0; X1 2 V , X0\X1 = ;, and for r0 � r, r1 � r in
ompatible, r0k{ \X0 2 _�"and r1k{ \X1 2 _�". We 
an do this by our hypothesis of the non-existen
e of a q 2 P��as mentioned earlier. We pla
e both hr0; X0i and hr1; X1i in T at height � + 1 as thesu

essors of hr;Xi. At limit stages � < Æ, for ea
h bran
h B in T of height � �, we takethe interse
tion of all se
ond 
oordinates of elements along B. The result is a partition ofÆ into � 2� many sets, so sin
e Æ is Mahlo in V , 2� < Æ, i.e., the partition is into < Æ manysets. Sin
e V P�� j= \Æ is measurable", there is at least one element Y of this partitionresulting from a bran
h of height � and a 
ondition s � p so that sk{ \Y 2 _�". For all su
h16



Y , we pla
e a pair of the form hs; Y i into T at level � as the su

essor of ea
h element ofthe bran
h generating Y .Work now in V P�� . Sin
e Æ is measurable in V P�� , V P�� j= \Æ is weakly 
ompa
t".By 
onstru
tion, T is a tree having Æ levels so that ea
h level has size < Æ. Thus, by theweak 
ompa
tness of Æ in V P�� , we 
an let B = hhr�; X�i : � < Æi be a bran
h of heightÆ through T . If we de�ne for � < Æ Y� = X� �X�+1, then sin
e hX� : � < Æi is so that0 � � < � < Æ implies X� � X�, for 0 � � < � < Æ, Y� \Y� = ;. Sin
e by the 
onstru
tionof T , at level � + 1, the two se
ond 
oordinate portions of the su

essor of hr�; X�i areX�+1 and Y� , for the s� so that hs�; Y�i is at level � + 1 of T , hs� : � < Æi must form inV P�� an anti
hain of size Æ in P�� .In V P�� , P�� is embeddable as a subordering of the Easton support produ
t Q�<�Q�� as
al
ulated in V P�� . As V P�� j= \Æ is Mahlo", this immediately implies that V P�� j= \P��is Æ-
.
.", 
ontradi
ting that hs� : � < Æi is in V P�� an anti
hain of size Æ. Thus, there issome q � p so that for every X 2 (}(Æ))V , qk\X 2 _�", i.e., Æ is measurable in V . This
ontradi
tion proves Lemma 3. Lemma 3Lemma 4. V P�;1 j= \� is both strongly 
ompa
t and �+ super
ompa
t".Proof of Lemma 4: The proof of Lemma 4 heavily uses unpublished ideas of Magidor(whi
h don't even appear in the 
ir
ulated manus
ript of [KiM℄). Let � > 2[�+℄<� = 2�+ =2� = �++ be an arbitrary 
ardinal, and let k1 : V !M be an embedding witnessing the �super
ompa
tness of �. � has been 
hosen large enough so that any ultra�lter over P�(�+)present in V is an element of M , so we may assume by the remarks in the �rst paragraph17



of this se
tion that k2 : M ! N is an embedding witnessing the �+ super
ompa
tnessof � de�nable in M so that N j= \� isn't measurable". It is easily veri�able using theembedding de�nition of � strong 
ompa
tness given in Se
tion 0 that j = k2 Æk1 is so thatj : V ! N is a � strongly 
ompa
t embedding that also witnesses the �+ super
ompa
tnessof �. We show that j extends to j� : V P�;1 ! N j�(P�;1), thus proving Lemma 4.To do this, write j(P�;1) as P�;1� _Q�� _R�, where _Q� is a term for the portion of j(P�;1)between � and k2(�) and _R� is a term for the rest of j(P�;1), i.e., the part above k2(�). Notethat sin
e N j= \� isn't measurable", � 62 �eld( _Q�). Also, sin
e M j= \� is measurable",by elementarity, N j= \k2(�) is measurable". Thus, the �eld of _Q� is 
omposed of allN -measurable 
ardinals in the interval (�; k2(�)℄ (so k2(�) 2 �eld( _Q�)), and the �eld of_R� is 
omposed of all N -measurable 
ardinals in the interval (k2(�); k2(k1(�))).Let G0 be V -generi
 over P�;1. We 
onstru
t in V [G0℄ an N [G0℄-generi
 obje
t G1over Q� and an N [G0℄[G1℄-generi
 obje
t G2 over R�. Sin
e P�;1 is an Easton supportiteration of length � with no for
ing done at stage �, the 
onstru
tion of G1 and G2automati
ally guarantees that j00G0 � G0 �G1 �G2, meaning that j : V ! N extends toj� : V [G0℄! N [G0℄[G1℄[G2℄.To build G1, note that sin
e k2 
an be assumed to be generated by an ultra�ler Uover (P�(�+))M = (P�(�+))V , and sin
e in both V and M , 2�+ = 2� = �++, jk2(�++)j =jk2(2�)j = jff : f : P�(�+) ! �++ is a fun
tiongj = j[�++℄�+ j = �++. Thus, as N [G0℄ j=\jQ�j = k2(2�)", we 
an let hD� : � < �++i enumerate in V [G0℄ the dense open subsetsof Q� present in N [G0℄. Sin
e the �+ 
losure of N with respe
t to either M or V impliesthe least element of the �eld of Q� is > �++, the de�nition of Q� as the Easton supportiteration whi
h adds a non-re
e
ting stationary set of ordinals of 
o�nality 
 to ea
h18



N [G0℄-measurable 
ardinal in the interval (�; k2(�)℄ implies that N [G0℄ j= \Q� is � �++-strategi
ally 
losed". By the fa
t the standard arguments show that for
ing with the �-
.
:partial ordering P�;1 preserves that N [G0℄ remains �+ 
losed with respe
t to either M [G0℄or V [G0℄, Q� is � �++-strategi
ally 
losed in both M [G0℄ and V [G0℄.We 
an now 
onstru
t G1 in either M [G0℄ or V [G0℄ as follows. Player I pi
ks p� 2 D�extending sup(hq� : � < �i) (initially, q�1 is the empty 
ondition) and player II respondsby pi
king q� � p� (so q� 2 D�). By the � �++-strategi
 
losure of Q� in both M [G0℄and V [G0℄, player II has a winning strategy for this game, so hq� : � < �++i 
an be takenas an in
reasing sequen
e of 
onditions with q� 2 D� for � < �++. Clearly, G1 = fp 2Q� : 9� < �++[q� � p℄g is our N [G0℄-generi
 obje
t over Q�.It remains to 
onstru
t in V [G0℄ the desired N [G0℄[G1℄-generi
 obje
t G2 over R�. Todo this, we �rst note that as � > 2�, M j= \� is measurable". This means we 
an writek1(P�;1) as P�;1 � _S� � _T�, where k{ P�;1\ _S� adds a non-re
e
ting stationary set of ordinalsof 
o�nality 
 to �", and _T� is a term for the rest of k1(P�;1). Sin
e we have assumedV j= \No 
ardinal Æ > � is measurable", the � 
losure of M with respe
t to V impliesM j= \No 
ardinal Æ 2 (�; �℄ is measurable". Thus, the �eld of _T� is 
omposed of allM -measurable 
ardinals in the interval (�; k1(�)), whi
h implies that in M , k{ P�;1� _S�\ _T�is � �+-strategi
ally 
losed". Further, sin
e we 
an assume � is regular, j[�℄<�j = �,and 2� = �+ (our ground model V is 
onstru
ted by for
ing over a model of GCH usinga set partial ordering), and sin
e, as before, k1 
an be assumed to be generated by anultra�lter U over P�(�), jk1(�+)j = jk1(2�)j = j2k1(�)j = jff : f : P�(�) ! �+ is afun
tiong = j[�+℄�j = �+. 19



Work until otherwise spe
i�ed in M . Consider the \term for
ing" partial orderingT � (see [C℄, Se
tion 1.5, p: 8) asso
iated with _T�, i.e., � 2 T � i� � is a term in thefor
ing language with respe
t to P�;1 � _S� and k{ P�;1� _S�\� 2 _T�", ordered by � � �i� k{ P�;1� _S�\� � �". Clearly, T � 2 M . Also, sin
e k{ P�;1� _S�\ _T� is � �+-strategi
ally
losed", it 
an easily be veri�ed that T � itself is � �+-strategi
ally 
losed in M and, sin
eM� � M , in V as well. Therefore, as k{ P�;1� _S�\j _T�j = k1(�) and 2k1(�) = (k1(�))+ =k1(�+)", we 
an assume without loss of generality that in M , jT �j = k1(�). This meanswe 
an let hD� : � < �+i enumerate in V the dense open subsets of T � present in M andargue as before to 
onstru
t in V an M -generi
 obje
t H2 over T �.Note now that sin
e N 
an be assumed to be given by an ultrapower ofM via a normalmeasure U 2M over (P�(�+))M , Fa
t 2 of Se
tion 1.2 of [C℄ tells us that k002H2 generatesan N -generi
 obje
t G�2 over k2(T �). By elementariness, k2(T �) is the term for
ing whoseelements are names for elements of k2( _T�) = _R� in Nk2(P�;1� _S�). Therefore, sin
e G�2 isN -generi
 over k2(T �), and sin
e G0 �G1 is k2(P�;1 � _S�)-generi
 over N , Fa
t 1 of Se
tion1.5 of [C℄ tells us that for G2 = fiG0�G1(�) : � 2 G�2g, G2 is N [G0℄[G1℄-generi
 over R�.As G0 is a set of 
onditions in an Easton support iteration of length � in whi
h a dire
tlimit was taken at �, ea
h 
ondition in G0 has a support whi
h is bounded in �. It followsthat in V [G0℄, j : V ! N extends to j� : V [G0℄! N [G0℄[G1℄[G2℄. This proves Lemma 4.Lemma 4Sin
e V j= \jP�;1j = �", V P�;1 j= \2� = �++". Thus, Lemmas 3 and 4 
omplete theproof of Theorem 1 when n = 1. 20



Theorem 1 (n = 1)We remark that Magidor's unpublished ideas mentioned at the beginning of the proofof Lemma 4 were used in the 
ontext of a ground model V so that V j= \GCH + � issuper
ompa
t". The partial ordering used in this situation was, as now, the P�;1 of Lemma4. The embedding k1 in this 
ir
umstan
e was as des
ribed above, but the embedding k2was generated by a normal measure U 2 M 
on
entrating on non-measurable 
ardinals.The proof given in Lemma 4 then went through in this situation as well to show j = k2 Æk1extends, using that although N is only � 
losed with respe
t to V , GCH gives fewer denseopen sets to meet, i.e., in the 
onstru
tion of G1, only �+ instead of �++ dense opensubsets of Q� have to be met.In 
on
lusion to this se
tion, we note that the �rst author's non-iterative proof ofTheorem 1 for the 
ase n = 1 [A97a℄ used Magidor's notion of iterated Prikry for
ing [Ma℄to destroy all measurable 
ardinals found below the 
ardinal � produ
ed in Theorem 3 of[AS97b℄, thereby requiring an initial assumption of a super
ompa
t limit of super
ompa
t
ardinals. At the Oberwolfa
h meeting at whi
h this proof was dis
overed, Magidor andWoodin independently of one another told both authors a (non-iterative) proof of Theorem1 for the 
ase n = 1 
ould be given using Radin for
ing, starting from only one super-
ompa
t 
ardinal. Neither Woodin's nor Magidor's proof has been published (and bothproofs seem unlikely to be published anywhere in the foreseeable future), but our methodshere and the methods of [A97a℄ provide another non-iterative proof starting from only onesuper
ompa
t 
ardinal for the 
ase n = 1.An outline of this proof is as follows: First, start with a ground model V so thatV j= \GCH + � is super
ompa
t". Next, for
e using the partial ordering P�;0 of Lemma 221



to preserve the super
ompa
tness of �, make 2� = �++, and 
onstru
t a �+ super
ompa
tembedding j� : V P�;0 ! M j�(P�;0) so that M j�(P�;0) j= \� isn't measurable". Finally,for
e over V P�;0 using Q�, Magidor's notion of iterated Prikry for
ing of [Ma℄, to destroyall measurable 
ardinals below �. Magidor's arguments of [Ma℄ yield V P�;0� _Q� j= \� isboth strongly 
ompa
t and the least measurable 
ardinal", and the exa
t same argumentas given in the Lemma of [A97a℄ shows V P�;0� _Q� j= \� is �+ super
ompa
t". Also, sin
ek{ P�;0\j _Q�j = �", V P�;0� _Q� j= \2� = �++".The advantage of the non-iterative proof just given and the earlier non-iterative proofspreviously mentioned is that the large 
ardinal stru
ture above � 
an be arbitrary in any ofthese proofs. The proof of Lemma 4 and the proofs to be given in the next se
tion requiresevere restri
tions on the large 
ardinal stru
ture of the universe. We will 
omment moreupon this in the 
on
luding remarks of the paper.x4 The Case of Arbitrary Finite nIn this se
tion, we give a proof of Theorem 1 for arbitrary �nite n.Proof of Theorem 1: Let V0 j= \ZFC + GCH + �1 < �2 < � � � < �n are the �rst n(for n 2 !) super
ompa
t 
ardinals + No 
ardinal � > �n is measurable". Let P � 2 V0be a partial ordering so that V = V P�0 j= \Ea
h �i for i = 1; : : : ; n is indestru
tible under�i-dire
ted 
losed for
ing". The existen
e of this sort of generalized version of Laver'spartial ordering of [L℄ is easy to show and is found in many pla
es, e.g., [A83℄, [A98℄, or[CFM℄. Note that sin
e as in [L℄, P � 
an be de�ned as an iteration so that for P ��i theportion of P � up through stage �i, jP ��ij = �i, and sin
e also we 
an assume that theportion of P � de�ned beyond stage �i is at least �i-dire
ted 
losed, where for the rest ofthis se
tion, �i is the least ina

essible above �i, V j= \2�i = �+i for i = 1; : : : ; n". Also, by22



the L�evy-Solovay results [LS℄, sin
e V0 j= \No 
ardinal � > �n is measurable", V j= \No
ardinal � > �n is measurable" as well.We take now V as our ground model and let �0 = !. P will be de�ned as the 
artesianprodu
t Q1�i�nP�i where P�i for i = 1; : : : ; n 
an be de�ned in two ways, depending uponwhether the simpler or more 
ompli
ated version of the partial ordering P 1Æ;�[S℄ is used.If the simpler version of P 1Æ;�[S℄ is used, then P�i = P�i;0 � _P�i;1, where P�i;0 is de�nedas in Se
tion 2, using only those ina

essibles in the interval (�i�1; �i℄ satisfying GCH inits �eld and �xing �i�1 as the 
o�nality of the non-re
e
ting stationary sets added byea
h P 0Æ;� (sin
e V j= \2�i = �+i ", re
e
tion shows that unboundedly many 
ardinals in(�i�1; �i) will be in the �eld of P�i;0), and P�i;1 also adds non-re
e
ting stationary sets ofordinals of 
o�nality �i�1 to every V P�i;0 -measurable 
ardinal in the interval (�i�1; �i). Ifthe more 
ompli
ated version of P 1Æ;�[S℄ is used, then P�i;0 is de�ned as in Se
tion 2, usingonly those ina

essibles in the interval (�i�1; �i℄ in its �eld satisfying GCH, and P�i;1 isas just de�ned when the simpler version of P 1Æ;�[S℄ is used.For i = 1; : : : ; n, write P = Pi � P�i � P i, where Pi = Q1�j�i�1P�j and P i =Qi+1�j�nP�j . When the simpler version of P 1Æ;�[S℄ is used, it easily follows that P i is�i-dire
ted 
losed. This is sin
e by the remarks in the middle of p: 108 of [AS97a℄, ea
hP 1Æ;�[S℄ used in the de�nition of ea
h P�j ;0 for j = i+1; : : : ; n is at least �i-dire
ted 
losed,so as the 
o�nalities of the ordinals present in the non-re
e
ting stationary sets added byP�j ;1 for j = i+1; : : : ; n are at least �i, P�j for j = i+1; : : : ; n and P i = Qi+1�j�nP�j areall �i-dire
ted 
losed. Also, when the more 
ompli
ated version of P 1Æ;�[S℄ is used, it is the
ase that a V -generi
 obje
t for P i is V -generi
 over a �i-dire
ted 
losed partial ordering.This follows by the argument of Lemma 14 of [AS97b℄ 
ombined with the fa
t that any23



partial ordering of the form P 0Æ;� � (P 1Æ;�[ _S℄ � P 2Æ;�[ _S℄) used in the de�nition of P�j;0 forj = i+ 1; : : : ; n is �i-dire
ted 
losed. (See Lemma 4 of [AS97b℄ for a proof.) Thus, by theindestru
tibility properties of �i and the fa
t P i is �i-strategi
ally 
losed, V P i j= \�i issuper
ompa
t and 2�i = �+i ".By the de�nition of P�i+1 , V P i j= \No 
ardinal Æ 2 (�i; �i+1) is measurable", fori = 1; : : : ; n�1. When i = n, we take (�i; �i+1) as all ordinals > �i and P i as being trivial,so our initial assumptions on V on
e more give us V P i j= \No 
ardinal Æ 2 (�i; �i+1) ismeasurable". Therefore, the arguments of Lemmas 2 - 4 apply to show V P i�P�i j= \�i is< �i+1 strongly 
ompa
t, �i is �+i super
ompa
t, 2�i = �++i , and no 
ardinal Æ 2 (�i�1; �i)is measurable", taking when i = n \< �i strongly 
ompa
t" as meaning \Æ strongly
ompa
t for all 
ardinals Æ > �n", i.e., as meaning fully strongly 
ompa
t. Sin
e by thede�nition of Pi, jPij < �i�1, the results of [LS℄ tell us V P i�P�i�Pi = V P j= \�i is < �i+1strongly 
ompa
t, �i is �+i super
ompa
t, 2�i = �++i , and no 
ardinal Æ 2 (�i�1; �i) ismeasurable". Therefore, sin
e a result of DiPris
o [DH℄ tells us that if Æ is < 
 strongly
ompa
t and 
 is � strongly 
ompa
t, then Æ is � strongly 
ompa
t, and sin
e we areworking with �nitely many 
ardinals �1; : : : ; �n, we 
an apply �nitely often the result of[DH℄ to infer V P j= \�i is strongly 
ompa
t, �i is �+i super
ompa
t, 2�i = �++i , and no
ardinal Æ 2 (�i�1; �i) is measurable". This 
ompletes the proof of Theorem 1 for arbitrary�nite n. 24



Theorem 1x5 Con
luding RemarksIn 
on
lusion to this paper, we note that for the moment, we are restri
ted to provingTheorem 1, as was Magidor, only to �nite values of n. The proof of Theorem 1, and Magi-dor's original proof of the 
onsisten
y of the �rst n 2 ! strongly 
ompa
t 
ardinals beingthe �rst n measurable 
ardinals, both heavily use that the ground model 
ontains only�nitely many super
ompa
t 
ardinals and no measurable 
ardinals beyond their supre-mum. This is evident in the proof of Lemma 4, its equivalent form in Magidor's originalproof, and in the proof given in Se
tion 4. Although it is possible to give alternate proofs,in both our situation and Magidor's, by 
omposing super
ompa
t embeddings either withembeddings generated by normal measures over measurable 
ardinals of Mit
hell order 0in Magidor's 
ase or with a �+ super
ompa
t embedding as 
onstru
ted in Lemma 2 inour 
ase, the proofs still require the initial assumption of only �nitely many super
ompa
t
ardinals with no measurable 
ardinals above their supremum. (See the end of [A95℄ fora further dis
ussion of this problem.) Thus, the prime question of the relative 
onsisten
yof the �rst ! measurable and strongly 
ompa
t 
ardinals 
oin
iding, with or without anyadditional degrees of super
ompa
tness, remains open.
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