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x0 Introdution and PreliminariesAs is well-known, the notion of strong ompatness is a singularity in the hierarhyof large ardinals. The fundamental work of Magidor [Ma℄ shows that the least stronglyompat ardinal � an either be the least superompat ardinal or the least measurableardinal, in whih ase � isn't even 2� superompat. A generalization of this result byKimhi and Magidor [KiM℄ shows that the (possibly proper) lasses of superompat andstrongly ompat ardinals an oinide exept at measurable limit points or that the �rstn (for n 2 !) strongly ompat ardinals an be the �rst n measurable ardinals.The purpose of this paper is to show that the tehniques of [AS97a℄ and [AS97b℄ anbe ombined with unpublished ideas of Magidor to produe a model in whih the �rst n(for n 2 !) strongly ompat ardinals are not only the �rst n measurable ardinals, buteah is a little superompat. Spei�ally, we prove the following.Theorem 1. Con(ZFC + There are n 2 ! superompat ardinals) =) Con(ZFC +The �rst n strongly ompat ardinals �1; : : : ; �n are the �rst n measurable ardinals +2�i = �++i for i = 1; : : : ; n + Eah �i is �+i superompat for i = 1; : : : n).A bit of history is perhaps in order now. As was just noted, in the early 1970s,Magidor in [Ma℄ showed the onsisteny, relative to the existene of a strongly ompatardinal, of the least strongly ompat ardinal being the least measurable ardinal. Inthe spring of 1983, Woodin, in response to a question put to him by the �rst author,showed the onsisteny (see [CW℄), relative to the existene of a ardinal � whih is �+3superompat, of the least measurable ardinal � being so that 2� = �++ and � is �+superompat. In the mid 1980s, Kimhi and Magidor did the work of [KiM℄. In late1992, Shelah and the �rst author began the researh leading to the results of [AS97a℄ and2



[AS97b℄. The main theorem of [AS97a℄ showed, roughly speaking, the relative onsistenyof the lasses of strongly ompat and superompat ardinals oiniding level by level,exept where expliitly prohibited by ZFC. This strengthened the work of [KiM℄. Themain theorem of [AS97b℄ showed that Menas' result of [Me℄ that the least measurablelimit � of either strongly ompat or superompat ardinals isn't 2� superompat is bestpossible by onstruting, starting from a superompat limit of superompat ardinals, amodel in whih the least measurable limit � of both strongly ompat and superompatardinals is so that 2� = �++ and � is �+ superompat. The foring onditions of [AS97b℄were generalizations of the foring onditions of [AS97a℄, and both provided, among otherthings, an alternate way of proving Woodin's aforementioned 1983 theorem. This still leftopen the question of ombining Woodin's results with the results of Magidor and Kimhiand Magidor, i.e., obtaining a model in whih the least measurable ardinal � is boththe least strongly ompat ardinal and is �+ superompat, or in general, obtaining amodel in whih the �rst n measurable ardinals �1; : : : ; �n (for n 2 !) are the �rst nstrongly ompat ardinals, with eah measurable ardinal �i being �+i superompat.This question went unresolved for a number of years, despite several attempts at solvingit made by Shelah and the �rst author. Then, during the January 7-13, 1996 meetingin Set Theory held at the Mathematis Researh Institute, Oberwolfah, the �rst authorproved (see [A97a℄) Theorem 1 for n = 1. His proof, however, was non-iterative, and thequestion remained of proving Theorem 1 for arbitrary �nite n. This question was �nallyresolved by the two authors of this paper during their stay as Researh in Pairs fellows atthe Mathematis Researh Institute, Oberwolfah, June 8-21, 1997.3



We take the opportunity here to make two remarks about Theorem 1. The �rst isthat there is nothing speial about eah �i being �+i superompat in Theorem 1. In fat,eah �i an be �++i , �+++i , �+4i , et: superompat, so long as 2�i > �++i , 2�i > �+++i ,2�i > �+4i , et. After ompleting the proof of Theorem 1, interested readers are invited tolook at the statement of Theorem 3 of [AS97b℄ in order to determine for themselves whatvariants are possible. The seond is that no proof is urrently known, in both Theorem 1and the orresponding result of [KiM℄, when n is in�nite. This will be disussed furtherat the end of the paper.The struture of this paper is as follows. Setion 0 ontains our introdutory om-ments and preliminary remarks onerning notation, terminology, et. Setion 1 ontainsa disussion of a ertain modi�ation of the main foring notion of [AS97a℄ (given at theend of [AS97b℄) that will be ritial in the proof of Theorem 1. Setion 1 also ontains adisussion of the main foring notion of [AS97b℄, whih an be used as an alternative in theproof of Theorem 1. Setion 2 shows how the foring notions disussed in Setion 1 an beused to fore a superompat ardinal to have a ertain speial kind of superompatnessembedding that will be key in the proof of Theorem 1. Setion 3 then gives a proof ofTheorem 1 for n = 1. Setion 4 ontains a proof of Theorem 1 for arbitrary �nite n.Setion 5 has our onluding remarks.We give now some preliminary information onerning notation and terminology. Es-sentially, our notation and terminology are standard, and when this is not the ase, thiswill be learly noted. For � < � ordinals, [�; �℄; [�; �); (�; �℄, and (�; �) are as in standardinterval notation. If x is a set, then TC(x) is the transitive losure of x.4



When foring, q � p will mean that q is stronger than p. For P a partial ordering, ' aformula in the foring language with respet to P , and p 2 P , pk' will mean p deides '.For G V -generi over P , we will use both V [G℄ and V P to indiate the universe obtainedby foring with P . If x 2 V [G℄, then _x will be a term in V for x. We may, from timeto time, onfuse terms with the sets they denote and write x when we atually mean _x,espeially when x is some variant of the generi set G, or x is in the ground model V .If � is a ardinal and P is a partial ordering, P is �-losed if given a sequene hp� :� < �i of elements of P so that � <  < � implies p� � p (an inreasing hain of length�), then there is some p 2 P (an upper bound to this hain) so that p� � p for all � < �.P is < �-losed if P is Æ-losed for all ardinals Æ < �. P is �-direted losed if for everyardinal Æ < � and every direted set hp� : � < Æi of elements of P (where hp� : � < Æi isdireted if for every two distint elements p�; p� 2 hp� : � < Æi, p� and p� have a ommonupper bound p�) there is an upper bound p 2 P . P is �-strategially losed if in the twoperson game in whih the players onstrut an inreasing sequene hp� : � � �i, whereplayer I plays odd stages and player II plays even and limit stages, then player II has astrategy whih ensures the game an always be ontinued. Note that if P is �-strategiallylosed and f : � ! V is a funtion in V P , then f 2 V . P is < �-strategially losedif P is Æ-strategially losed for all ardinals Æ < �. P is � �-strategially losed if inthe two person game in whih the players onstrut an inreasing sequene hp� : � < �i,where player I plays odd stages and player II plays even and limit stages, then player IIhas a strategy whih ensures the game an always be ontinued. Note that trivially, if P is< �-losed, then P is < �-strategially losed and � �-strategially losed. The onverseof both of these fats is false. 5



The usual partial ordering for adding � Cohen subsets to a regular ardinal � will bewritten as Add(�; �). Standard arguments show Add(�; �) is �-direted losed. See [J℄,Lemmas 19.7 and 19.8, pages 181-182, for further details.We mention that we are assuming omplete familiarity with the notions of measura-bility, strong ompatness, and superompatness. Interested readers may onsult [SRK℄,[Ka℄, or [KaM℄ for further details. We note only that all elementary embeddings witnessingthe � superompatness of � are presumed to ome from some �ne, �-omplete, normalultra�lter U over P�(�) = fx � � : jxj < �g, and all elementary embeddings witnessingthe � strong ompatness of � are presumed to ome from some �ne, �-omplete ultra�lterU over P�(�). An equivalent de�nition for � being � strongly ompat is that there is anelementary embedding j : V ! M having ritial point � so that for any x � M withjxj � �, there is some y 2M suh that x � y and M j= \jyj < j(�)".Finally, we mention that sine ideas and notions from [AS97a℄ and [AS97b℄ are usedthroughout the ourse of this paper, it would be most helpful to readers if opies of thesepapers were kept lose at hand. In fat, at many instanes during our exposition, wewill refer to proofs not given here but found in either [AS97a℄ or [AS97b℄. These papers,however, need not be read in their entirety to follow this paper. In order to failitate theunderstanding of readers, though, we will keep as muh as possible to the notations andterminology of [AS97a℄ and [AS97b℄.x1 The Foring Notions of [AS97a℄ and [AS97b℄Fix  < Æ < �, � > Æ+ regular ardinals in our ground model V , with Æ inaessibleand � either inaessible or the suessor of a ardinal of o�nality > Æ. We reall now thepartial orderings P 0Æ;� and P 2Æ;�[S℄ of [AS97a℄ and [AS97b℄ and both the version of P 1Æ;�[S℄6



given in Setion 4 of [AS97b℄ (whih is a modi�ation of the partial ordering P 1Æ;�[S℄ of[AS97a℄) and the version of P 1Æ;�[S℄ of [AS97b℄ used in the proof of Theorem 3 of thatpaper.We assume GCH holds for all ardinals � � Æ. As in Setion 4 of [AS97b℄, the �rstnotion of foring P 0Æ;� is just the standard notion of foring for adding a non-reetingstationary set of ordinals of o�nality  to �. Spei�ally, P 0Æ;� = fp : For some � < �,p : � ! f0; 1g is a harateristi funtion of Sp, a subset of � not stationary at itssupremum nor having any initial segment whih is stationary at its supremum, so that� 2 Sp implies � > Æ and of(�) = g, ordered by q � p i� q � p and Sp = Sq \ sup(Sp),i.e., Sq is an end extension of Sp. It is well-known that for G V -generi over P 0Æ;� (see [B℄ or[KiM℄), in V [G℄, sine GCH holds in V for all ardinals � � Æ, a non-reeting stationaryset S = S[G℄ = [fSp : p 2 Gg � � of ordinals of o�nality  has been introdued, thebounded subsets of � are the same as those in V , and ardinals, o�nalities, and GCHat ardinals � � Æ have been preserved. It is also virtually immediate that P 0Æ;� is -direted losed, and it an be shown (see [B℄, Lemma 4.15, page 436 or [KiM℄) that P 0Æ;�is � �-strategially losed.Work now in V1 = V P 0Æ;� , letting _S be a term always fored to denote the above set S.P 2Æ;�[S℄ is the standard notion of foring for introduing a lub set C whih is disjoint toS (and therefore makes S non-stationary). Spei�ally, P 2Æ;�[S℄ = fp : For some suessorordinal � < �, p : �! f0; 1g is a harateristi funtion of Cp, a lub subset of �, so thatCp \S = ;g, ordered by q � p i� Cq is an end extension of Cp. It is again well-known (see[MS℄) that for H V1-generi over P 2Æ;�[S℄, a lub set C = C[H℄ = [fCp : p 2 Hg � � whih7



is disjoint to S has been introdued, the bounded subsets of � are the same as those in V1,and ardinals, o�nalities, and GCH for ardinals � � Æ have been preserved.The following lemma is proven in both [AS97a℄ and [AS97b℄.Lemma 1 (Lemma 1 of [AS97a℄ and [AS97b℄). k{ P 0Æ;�\|( _S)", i.e., V1 j= \There is asequene hx� : � 2 Si so that for eah � 2 S, x� � � is o�nal in �, and for any A 2 [�℄�,f� 2 S : x� � Ag is stationary".We �x now in V1 a |(S) sequene X = hx� : � 2 Si. We are ready to de�ne in V1 inthe same manner as was done in Setion 4 of [AS97b℄ the partial ordering P 1Æ;�[S℄. First,sine eah element of S has o�nality , eah x 2 X an be assumed to be so that ordertype(x) = . Then, P 1Æ;�[S℄ is de�ned as the set of all 4-tuples hw;�; �r; Zi satisfying thefollowing properties.1. w 2 [�℄<Æ.2. � < Æ.3. �r = hri : i 2 wi is a sequene of funtions from � to f0; 1g, i.e., a sequene of subsetsof �.4. Z � fx� : � 2 Sg is a set so that if z 2 Z, then for some y 2 [w℄ , y � z and z � yis bounded in the � so that z = x� . In other words, for every x� 2 Z, w \ x� isobounded in x� .As in [AS97a℄, the de�nition of Z implies jZj < Æ.The ordering on P 1Æ;�[S℄ is given by hw1; �1; �r1; Z1i � hw2; �2; �r2; Z2i i� the followinghold.1. w1 � w2.2. �1 � �2. 8



3. If i 2 w1, then r1i � r2i .4. Z1 � Z2.5. If z 2 Z1 \ [w1℄ and �1 � � < �2, then jfi 2 z : r2i (�) = 0gj = jfi 2 z : r2i (�) =1gj = .The intuition behind the de�nition of P 1Æ;�[S℄ just given is essentially the same asin [AS97a℄. Spei�ally, we wish to be able simultaneously to make 2Æ = �, destroy themeasurability of Æ, and be able to resurret the < � superompatness of Æ if neessary.P 1Æ;�[S℄ has been designed so as to allow us to do all of these things.The proof that V P 1Æ;�[S℄1 j= \Æ is non-measurable" is as in Lemma 3 of [AS97a℄. Inpartiular, the argument of Lemma 3 of [AS97a℄ will show that Æ an't arry a -additiveuniform ultra�lter. We an then arry through the proof of Lemma 4 of [AS97a℄ to showP 0Æ;� � (P 1Æ;�[ _S℄ � P 2Æ;�[ _S℄) is equivalent to Add(�; 1) � _Add(Æ; �). The proofs of Lemma 5of [AS97a℄ and Lemma 6 of [AS97b℄ will then show P 0Æ;� � P 1Æ;�[ _S℄ preserves ardinals ando�nalities, is �+-.., is < Æ-strategially losed, and is so that V P 0Æ;��P 1Æ;�[ _S℄ j= \2� = �for every ardinal � 2 [Æ; �)".Although the above de�nition of P 1Æ;�[S℄ (heneforth to be referred to as the \simplerform") is perfetly adequate for our purposes, as mentioned at the end of [AS97b℄, itwill not suÆe to prove Theorem 3 of [AS97b℄. In order to do this, a more ompliatedform of P 1Æ;�[S℄ is required. Sine this version of P 1Æ;�[S℄ will also work for Theorem 1, forompleteness, we reall its de�nitions and properties here. First, we �x Æ < � as before.We then as was done in [AS97b℄ rede�ne P 0Æ;� as the partial ordering whih adds a non-reeting stationary set of ordinals S of o�nality Æ to �. The de�nition of P 2Æ;�[S℄ remains9



the same. Having �xed a |(S) sequene as before, P 1Æ;�[S℄ is then the set of all 5-tupleshw;�; �r; Z;�i satisfying the following properties.1. w � � is so that jwj = Æ.2. � < Æ.3. �r = hri : i 2 wi is a sequene of funtions from � to f0; 1g, i.e., a sequene of subsetsof �.4. Z is a funtion so that:a) dom(Z) � fx� : � 2 Sg and range(Z) � f0; 1g.b) If z 2 dom(Z), then for some y 2 [w℄Æ, y � z and z � y is bounded in the � so thatz = x�.5. � is a funtion so that:a) dom(�) = dom(Z).b) If z 2 dom(�), then �(z) is a losed, bounded subset of � suh that if  is inaessible, 2 �(z), and � is the th element of z, then � 2 w, and for some �0 2 � \ w \ z,r�0() = Z(z).Note that the de�nitions of Z and � imply jdom(Z)j = jdom(�)j � Æ.The ordering on P 1Æ;�[S℄ is given by hw1; �1; �r1; Z1;�1i � hw2; �2; �r2; Z2;�2i i� thefollowing hold.1. w1 � w2.2. �1 � �2.3. If i 2 w1, then r1i � r2i and jfi 2 w1 : r2i �j(�2 � �1) is not onstantly 0gj < Æ.4. Z1 � Z2:5. dom(�1) � dom(�2). 10



6. If z 2 dom(�1), then �1(z) is an initial segment of �2(z) and jfz 2 dom(�1) : �1(z) 6=�2(z)gj < Æ.The intuition behind the above de�nition of P 1Æ;�[S℄ is the same as in [AS97b℄. If Æ ismeasurable, then Æ must arry a normal measure. The foring P 1Æ;�[S℄ has spei�ally beendesigned to destroy this fat. (See Lemma 3 of [AS97b℄ for a proof.) It has been designed,however, to destroy the measurability of Æ \as lightly as possible", making little damage,assuming Æ is < � superompat. Spei�ally, if Æ is < � superompat, then the non-reeting stationary set S, having been added to �, does not kill the < � superompatnessof Æ by itself. The additional foring P 1Æ;�[S℄ is neessary to do the job and has been designedso as not only to destroy the < � superompatness of Æ but to destroy the measurabilityof Æ as well. The foring P 1Æ;�[S℄, however, has been designed so that if neessary, we anresurret the < � superompatness of Æ by foring further with P 2Æ;�[S℄.We onlude this setion by noting that there are additional properties of the moreompliated version of P 1Æ;�[S℄ that will be relevant to our work. These will be disussedin more detail in later setions.x2 A Superompat Cardinal with a Speial Kind of EmbeddingIn this setion, we fore and onstrut a superompat ardinal possessing a spe-ial sort of superompatness embedding. Suh ardinals will be ritial in the proof ofTheorem 1. Spei�ally, we prove the following.11



Lemma 2. Suppose V j= \ZFC + GCH + � is superompat". There is then a partialordering P�;0 2 V so that V P�;0 j= \� is superompat + 2� = �++". In addition, thereis an elementary embedding j� : V P�;0 !M j�(P�;0) de�nable in V P�;0 witnessing the �+superompatness of � so that M j�(P�;0) j= \� isn't measurable".Proof of Lemma 2: Fix f : �! V� a Laver funtion [L℄, i.e., f is so that for every x andevery � � jTC(x)j, there is a � superompat ultra�lter U�;x with assoiated embeddingjU�;x : V !M so that jU�;x(f)(�) = x. Also, let hÆ� : � � �i enumerate the inaessibles� �, and let  < Æ0 be a �xed but arbitrary regular ardinal.As Laver does in [L℄, we de�ne now simultaneously an Easton support iteration P�;0 =hhP ��; _Q��i : � � �i and a sequene of ordinals h�� : � < �i, where �� = [�<��� if � isa limit ordinal. We use here in our de�nition the simpler form of P 1Æ;�[S℄ of Setion 1de�ned using  and the assoiated P 0Æ;� and P 2Æ;�[S℄ and indiate at the end of the setionthe modi�ations needed when the more ompliated form of P 1Æ;�[S℄ is used. Spei�ally,the de�nition has P0 being trivial with �0 = 0, and P ��+1 = P �� � _Q��, where k{ P�\ _Q�� istrivial" and ��+1 = �� unless one of the following holds:1. If for all � < �, �� < � and Æ� < � is so that V j= \Æ� isn't Æ+� superompat", thenP ��+1 = P �� � _Q��, where _Q�� is a term for P 0Æ�;Æ++� � P 1Æ�;Æ++� [ _SÆ++� ℄, and _SÆ++� is a termfor the non-reeting stationary subset of Æ++� introdued by P 0Æa;Æ++� . If f(�) is anordinal and f(�) > ��, then ��+1 = f(�). If this ondition on f(�) doesn't hold,then ��+1 = ��.2. If for � < �, �� < � and Æ� � � is so that V j= \Æ� is Æ+� superompat", thenP ��+1 = P �� � _Q��, where _Q�� is a term for P 0Æ�;Æ++� � (P 1Æ�;Æ++� [ _SÆ++� ℄�P 2Æ�;Æ++� [ _SÆ++� ℄). If12



f(�) is an ordinal and f(�) > ��, then ��+1 = f(�). If this ondition on f(�) doesn'thold, then ��+1 = ��.Suppose now j : V !M is an embedding witnessing the �+ superompatness of � sothatM j= \� isn't �+ superompat". Lemma 9 of [AS97b℄ shows that if P�;0 = P �� � _Q�� =P �� � ( _P 0�;�++ � (P 1�;�++ [ _S�++ ℄�P 2�;�++ [ _S�++ ℄)) were an iteration as de�ned in the proofs ofTheorem 1 or Theorem 3 of [AS97b℄, then j : V ! M extends to j� : V P�;0 ! M j�(P�;0)witnessing the �+ superompatness of � in a manner de�nable in V P�;0 . The type ofiteration used in the proofs of Theorem 1 or Theorem 3 of [AS97b℄, however, is essentiallythe one just desribed here. The only real di�erene is that here, we use a Laver funtionto \spae out" the iteration at suessor stages below �. At stage � + 1 in V , however,the partial ordering used in the iteration is P 0�;�++ � (P 1�;�++ [ _S�++ ℄ � P 2�;�++ [ _S�++ ℄), andat stage � + 1 in M , the partial ordering used in the iteration is P 0�;�++ � P 1�;�++ [ _S�++ ℄.These ourrenes at stage �+1 in V andM in onjuntion with the de�nition of P�;0 willthen allow the arguments of Lemma 9 of [AS97b℄ to go through to yield that j extends toj� : V P�;0 !M j�(P�;0). Note that sine P 0�;�++ �P 1�;�++ [ _S�++ ℄ is used at stage �+1 in M ,Lemma 3 of [AS97a℄ and Lemma 8 of [AS97b℄ show thatM j�(P�;0) j= \� isn't measurable".We show now that V P�;0 j= \� is superompat". To do this, we give an argumentsimilar to the one given in the proof of Lemma 2 of [A1℄. Spei�ally, let  > �++ be anarbitrary ardinal, and let � > 2[℄<� be a ardinal so that for some embedding k : V !Mwitnessing the � superompatness of �, k(f)(�) = �. By the de�nition of P�;0 andthe properties of k, k(P�;0) = (P �� � (P 0�;�++ � (P 1�;�++ [ _S�++ ℄ � P 2�;�++ [ _S�++ ℄))) � _Q� =(P �� � _Q��) � _Q� = P�;0 � _Q� = P�;0 � _R� � _Q�k(�), where _R� is a term for the MP�;0partial ordering P �k(�)=P�;0. By the de�nition of P�;0, in M , k{ P�;0\The �eld of _Q is13



omposed of ardinals > �". Further, by the de�nition of P�;0 and the fat M� � M ,it is true that in V and M , k{ P�;0\Both _R� and _R� � _Q�k(�) are �-strategially losedand � > 2[℄<�". And, by our earlier remarks, in both V and M , k{ P�� \ _Q�� is foringequivalent to _Add(�++; 1) � _Add(�; �++), a �-direted losed partial ordering having size�++". Therefore, V P��� _Q�� = V P�;0 j= \2� = �++", and the standard arguments (see,e.g., Lemma 2 of [A1℄) in turn show that MP�;0� _R� remains �-losed with respet toV P�;0� _R� and that if G0 �G1 is V -generi over P �� � _Q�� = P�;0 and G2 is V [G0℄[G1℄-generiover R�, in V [G0℄[G1℄[G2℄, we an �nd a master ondition q extending eah p 2 k00G1.If G3 is V [G0℄[G1℄[G2℄-generi over Qk(�) so that q 2 G3, in V [G0℄[G1℄[G2℄[G3℄, there isan elementary embedding k� : V [G0℄[G1℄ ! M [G0℄[G1℄[G2℄[G3℄ extending k. Sine in V ,k{ P�;0\ _R� � _Q�k(�) is �-strategially losed", V [G0℄[G1℄ j= \� is  superompat". Thisproves Lemma 2. Lemma 2When the more ompliated version of P 1Æ;�[S℄ and the assoiated versions of P 0Æ;�and P 2Æ;�[S℄ are employed as the building bloks of P �, instead of working with Æ++� , weuse Æ+++� , i.e., at eah non-trivial stage in our iteration, we fore with either P 0Æ�;Æ+++� �P 1Æ�;Æ+++� [ _SÆ+++� ℄ or P 0Æ�;Æ+++� �(P 1Æ�;Æ+++� [ _SÆ+++� ℄�P 2Æ�;Æ+++� [ _SÆ+++� ℄). This is sine by Lemma6 of [AS97b℄, both of the just mentioned partial orderings will ollapse Æ+� . Exept for thisdi�erene, however, the proof of Lemma 2 is the same as before, making the appropriatereferenes to Lemmas 6 and 8 of [AS97b℄ as neessary.In onlusion to this setion, we note that if we assume that � has no inaessibleardinals above it, no use of the Laver funtion f is needed in the de�nition of P�;0. Ateah Æ� < � whih isn't Æ+� superompat, we an fore as in Case 1 of the de�nition of14



P�;0, and at eah Æ� � � whih is Æ+� superompat, we an fore as in Case 2 of thede�nition of P�;0. We leave it to any interested readers to verify that the proof of Lemma2 beomes simpler under these irumstanes. It is only when there are large enoughardinals above � that the use of the Laver funtion f is required in the de�nition of P�;0.x3 The Case n = 1We present in this setion a proof of Theorem 1 when n = 1. We assume thatV j= \ZFC + � is superompat". By Lemma 2, we also assume that V j= \2� = �++"and that there is a �+ superompatness embedding k�0 : V ! M� generated by a �+superompat ultra�lter over P�(�+) so that M� j= \� isn't measurable". Further, weassume for the time being that there are no measurable ardinals in V above �.Fix now an arbitrary regular ardinal  < �. Let hÆ� : � < �i this time enumeratethe measurables < �. The partial ordering P�;1 we use in the proof of Theorem 1 whenn = 1 is the Easton support iteration hhP�� ; _Q��i : � < �i, where P�0 is trivial and k{ P�� \ _Q��adds a non-reeting stationary set of ordinals of o�nality  to Æ�".Lemma 3. V P�;1 j= \No ardinal Æ < � is measurable".Proof of Lemma 3: Let Æ < � be so that V j= \Æ is measurable". It must therefore bethe ase that Æ = Æ� for some � < �. This allows us to write P�;1 = P�� � _Q��� _R = P��+1� _R.By the de�nition of P�;1 and the fat that any stationary subset of a measurable(or weakly ompat) ardinal must reet, V P��+1 j= \Æ isn't measurable sine there isS � Æ whih is a non-reeting stationary set of ordinals of o�nality ". Sine by thede�nition of P�;1, k{ P��+1\ _R is Æ0-strategially losed for Æ0 the least inaessible above Æ",V P��+1� _R = V P�;1 j= \S � Æ is a non-reeting stationary set of ordinals of o�nality ,so Æ isn't measurable". Thus, V P�;1 j= \No V -measurable ardinal Æ < � is measurable".15



The proof of Lemma 3 will therefore be omplete one we have shown there is no ardinalÆ < � so that k{ P�;1\Æ is measurable".To do this, we give an argument similar to the one found in the last part of Lemma 8of [A97b℄, whih in turn is essentially the same as the arguments given in Theorem 2.1.5of [H℄ and Theorem 2.5 of [KiM℄. Assume that V P�;1 j= \Æ is measurable". Sine wehave just shown that no V -ardinal is measurable in V P�;1 , we an write P�;1 = P�� � _R,where Æ 62 �eld(P�� ) and k{ P�� \ _R is Æ0-strategially losed for Æ0 the least inaessible aboveÆ". Thus, k{ P�� \Æ is measurable" i� k{ P�;1\Æ is measurable", so we show without loss ofgenerality that k{ P�� \Æ isn't measurable".Note now that sine V P�� j= \Æ is Mahlo", V j= \Æ is Mahlo". Next, let p 2 P�� be sothat pk{ \ _� is a measure over Æ". We show there is some q � p, q 2 P�� so that for everyX 2 (}(Æ))V , qk\X 2 _�". To do this, we build in V a binary tree T of height Æ, assumingno suh q exists. The root of our tree is hp; Æi. At suessor stages �+1, assuming hr;Xi ison the �th level of T , r � p, and X � Æ, X 2 V is so that rk{ \X 2 _�", we let X = X0[X1be suh that X0; X1 2 V , X0\X1 = ;, and for r0 � r, r1 � r inompatible, r0k{ \X0 2 _�"and r1k{ \X1 2 _�". We an do this by our hypothesis of the non-existene of a q 2 P��as mentioned earlier. We plae both hr0; X0i and hr1; X1i in T at height � + 1 as thesuessors of hr;Xi. At limit stages � < Æ, for eah branh B in T of height � �, we takethe intersetion of all seond oordinates of elements along B. The result is a partition ofÆ into � 2� many sets, so sine Æ is Mahlo in V , 2� < Æ, i.e., the partition is into < Æ manysets. Sine V P�� j= \Æ is measurable", there is at least one element Y of this partitionresulting from a branh of height � and a ondition s � p so that sk{ \Y 2 _�". For all suh16



Y , we plae a pair of the form hs; Y i into T at level � as the suessor of eah element ofthe branh generating Y .Work now in V P�� . Sine Æ is measurable in V P�� , V P�� j= \Æ is weakly ompat".By onstrution, T is a tree having Æ levels so that eah level has size < Æ. Thus, by theweak ompatness of Æ in V P�� , we an let B = hhr�; X�i : � < Æi be a branh of heightÆ through T . If we de�ne for � < Æ Y� = X� �X�+1, then sine hX� : � < Æi is so that0 � � < � < Æ implies X� � X�, for 0 � � < � < Æ, Y� \Y� = ;. Sine by the onstrutionof T , at level � + 1, the two seond oordinate portions of the suessor of hr�; X�i areX�+1 and Y� , for the s� so that hs�; Y�i is at level � + 1 of T , hs� : � < Æi must form inV P�� an antihain of size Æ in P�� .In V P�� , P�� is embeddable as a subordering of the Easton support produt Q�<�Q�� asalulated in V P�� . As V P�� j= \Æ is Mahlo", this immediately implies that V P�� j= \P��is Æ-..", ontraditing that hs� : � < Æi is in V P�� an antihain of size Æ. Thus, there issome q � p so that for every X 2 (}(Æ))V , qk\X 2 _�", i.e., Æ is measurable in V . Thisontradition proves Lemma 3. Lemma 3Lemma 4. V P�;1 j= \� is both strongly ompat and �+ superompat".Proof of Lemma 4: The proof of Lemma 4 heavily uses unpublished ideas of Magidor(whih don't even appear in the irulated manusript of [KiM℄). Let � > 2[�+℄<� = 2�+ =2� = �++ be an arbitrary ardinal, and let k1 : V !M be an embedding witnessing the �superompatness of �. � has been hosen large enough so that any ultra�lter over P�(�+)present in V is an element of M , so we may assume by the remarks in the �rst paragraph17



of this setion that k2 : M ! N is an embedding witnessing the �+ superompatnessof � de�nable in M so that N j= \� isn't measurable". It is easily veri�able using theembedding de�nition of � strong ompatness given in Setion 0 that j = k2 Æk1 is so thatj : V ! N is a � strongly ompat embedding that also witnesses the �+ superompatnessof �. We show that j extends to j� : V P�;1 ! N j�(P�;1), thus proving Lemma 4.To do this, write j(P�;1) as P�;1� _Q�� _R�, where _Q� is a term for the portion of j(P�;1)between � and k2(�) and _R� is a term for the rest of j(P�;1), i.e., the part above k2(�). Notethat sine N j= \� isn't measurable", � 62 �eld( _Q�). Also, sine M j= \� is measurable",by elementarity, N j= \k2(�) is measurable". Thus, the �eld of _Q� is omposed of allN -measurable ardinals in the interval (�; k2(�)℄ (so k2(�) 2 �eld( _Q�)), and the �eld of_R� is omposed of all N -measurable ardinals in the interval (k2(�); k2(k1(�))).Let G0 be V -generi over P�;1. We onstrut in V [G0℄ an N [G0℄-generi objet G1over Q� and an N [G0℄[G1℄-generi objet G2 over R�. Sine P�;1 is an Easton supportiteration of length � with no foring done at stage �, the onstrution of G1 and G2automatially guarantees that j00G0 � G0 �G1 �G2, meaning that j : V ! N extends toj� : V [G0℄! N [G0℄[G1℄[G2℄.To build G1, note that sine k2 an be assumed to be generated by an ultra�ler Uover (P�(�+))M = (P�(�+))V , and sine in both V and M , 2�+ = 2� = �++, jk2(�++)j =jk2(2�)j = jff : f : P�(�+) ! �++ is a funtiongj = j[�++℄�+ j = �++. Thus, as N [G0℄ j=\jQ�j = k2(2�)", we an let hD� : � < �++i enumerate in V [G0℄ the dense open subsetsof Q� present in N [G0℄. Sine the �+ losure of N with respet to either M or V impliesthe least element of the �eld of Q� is > �++, the de�nition of Q� as the Easton supportiteration whih adds a non-reeting stationary set of ordinals of o�nality  to eah18



N [G0℄-measurable ardinal in the interval (�; k2(�)℄ implies that N [G0℄ j= \Q� is � �++-strategially losed". By the fat the standard arguments show that foring with the �-.:partial ordering P�;1 preserves that N [G0℄ remains �+ losed with respet to either M [G0℄or V [G0℄, Q� is � �++-strategially losed in both M [G0℄ and V [G0℄.We an now onstrut G1 in either M [G0℄ or V [G0℄ as follows. Player I piks p� 2 D�extending sup(hq� : � < �i) (initially, q�1 is the empty ondition) and player II respondsby piking q� � p� (so q� 2 D�). By the � �++-strategi losure of Q� in both M [G0℄and V [G0℄, player II has a winning strategy for this game, so hq� : � < �++i an be takenas an inreasing sequene of onditions with q� 2 D� for � < �++. Clearly, G1 = fp 2Q� : 9� < �++[q� � p℄g is our N [G0℄-generi objet over Q�.It remains to onstrut in V [G0℄ the desired N [G0℄[G1℄-generi objet G2 over R�. Todo this, we �rst note that as � > 2�, M j= \� is measurable". This means we an writek1(P�;1) as P�;1 � _S� � _T�, where k{ P�;1\ _S� adds a non-reeting stationary set of ordinalsof o�nality  to �", and _T� is a term for the rest of k1(P�;1). Sine we have assumedV j= \No ardinal Æ > � is measurable", the � losure of M with respet to V impliesM j= \No ardinal Æ 2 (�; �℄ is measurable". Thus, the �eld of _T� is omposed of allM -measurable ardinals in the interval (�; k1(�)), whih implies that in M , k{ P�;1� _S�\ _T�is � �+-strategially losed". Further, sine we an assume � is regular, j[�℄<�j = �,and 2� = �+ (our ground model V is onstruted by foring over a model of GCH usinga set partial ordering), and sine, as before, k1 an be assumed to be generated by anultra�lter U over P�(�), jk1(�+)j = jk1(2�)j = j2k1(�)j = jff : f : P�(�) ! �+ is afuntiong = j[�+℄�j = �+. 19



Work until otherwise spei�ed in M . Consider the \term foring" partial orderingT � (see [C℄, Setion 1.5, p: 8) assoiated with _T�, i.e., � 2 T � i� � is a term in theforing language with respet to P�;1 � _S� and k{ P�;1� _S�\� 2 _T�", ordered by � � �i� k{ P�;1� _S�\� � �". Clearly, T � 2 M . Also, sine k{ P�;1� _S�\ _T� is � �+-strategiallylosed", it an easily be veri�ed that T � itself is � �+-strategially losed in M and, sineM� � M , in V as well. Therefore, as k{ P�;1� _S�\j _T�j = k1(�) and 2k1(�) = (k1(�))+ =k1(�+)", we an assume without loss of generality that in M , jT �j = k1(�). This meanswe an let hD� : � < �+i enumerate in V the dense open subsets of T � present in M andargue as before to onstrut in V an M -generi objet H2 over T �.Note now that sine N an be assumed to be given by an ultrapower ofM via a normalmeasure U 2M over (P�(�+))M , Fat 2 of Setion 1.2 of [C℄ tells us that k002H2 generatesan N -generi objet G�2 over k2(T �). By elementariness, k2(T �) is the term foring whoseelements are names for elements of k2( _T�) = _R� in Nk2(P�;1� _S�). Therefore, sine G�2 isN -generi over k2(T �), and sine G0 �G1 is k2(P�;1 � _S�)-generi over N , Fat 1 of Setion1.5 of [C℄ tells us that for G2 = fiG0�G1(�) : � 2 G�2g, G2 is N [G0℄[G1℄-generi over R�.As G0 is a set of onditions in an Easton support iteration of length � in whih a diretlimit was taken at �, eah ondition in G0 has a support whih is bounded in �. It followsthat in V [G0℄, j : V ! N extends to j� : V [G0℄! N [G0℄[G1℄[G2℄. This proves Lemma 4.Lemma 4Sine V j= \jP�;1j = �", V P�;1 j= \2� = �++". Thus, Lemmas 3 and 4 omplete theproof of Theorem 1 when n = 1. 20



Theorem 1 (n = 1)We remark that Magidor's unpublished ideas mentioned at the beginning of the proofof Lemma 4 were used in the ontext of a ground model V so that V j= \GCH + � issuperompat". The partial ordering used in this situation was, as now, the P�;1 of Lemma4. The embedding k1 in this irumstane was as desribed above, but the embedding k2was generated by a normal measure U 2 M onentrating on non-measurable ardinals.The proof given in Lemma 4 then went through in this situation as well to show j = k2 Æk1extends, using that although N is only � losed with respet to V , GCH gives fewer denseopen sets to meet, i.e., in the onstrution of G1, only �+ instead of �++ dense opensubsets of Q� have to be met.In onlusion to this setion, we note that the �rst author's non-iterative proof ofTheorem 1 for the ase n = 1 [A97a℄ used Magidor's notion of iterated Prikry foring [Ma℄to destroy all measurable ardinals found below the ardinal � produed in Theorem 3 of[AS97b℄, thereby requiring an initial assumption of a superompat limit of superompatardinals. At the Oberwolfah meeting at whih this proof was disovered, Magidor andWoodin independently of one another told both authors a (non-iterative) proof of Theorem1 for the ase n = 1 ould be given using Radin foring, starting from only one super-ompat ardinal. Neither Woodin's nor Magidor's proof has been published (and bothproofs seem unlikely to be published anywhere in the foreseeable future), but our methodshere and the methods of [A97a℄ provide another non-iterative proof starting from only onesuperompat ardinal for the ase n = 1.An outline of this proof is as follows: First, start with a ground model V so thatV j= \GCH + � is superompat". Next, fore using the partial ordering P�;0 of Lemma 221



to preserve the superompatness of �, make 2� = �++, and onstrut a �+ superompatembedding j� : V P�;0 ! M j�(P�;0) so that M j�(P�;0) j= \� isn't measurable". Finally,fore over V P�;0 using Q�, Magidor's notion of iterated Prikry foring of [Ma℄, to destroyall measurable ardinals below �. Magidor's arguments of [Ma℄ yield V P�;0� _Q� j= \� isboth strongly ompat and the least measurable ardinal", and the exat same argumentas given in the Lemma of [A97a℄ shows V P�;0� _Q� j= \� is �+ superompat". Also, sinek{ P�;0\j _Q�j = �", V P�;0� _Q� j= \2� = �++".The advantage of the non-iterative proof just given and the earlier non-iterative proofspreviously mentioned is that the large ardinal struture above � an be arbitrary in any ofthese proofs. The proof of Lemma 4 and the proofs to be given in the next setion requiresevere restritions on the large ardinal struture of the universe. We will omment moreupon this in the onluding remarks of the paper.x4 The Case of Arbitrary Finite nIn this setion, we give a proof of Theorem 1 for arbitrary �nite n.Proof of Theorem 1: Let V0 j= \ZFC + GCH + �1 < �2 < � � � < �n are the �rst n(for n 2 !) superompat ardinals + No ardinal � > �n is measurable". Let P � 2 V0be a partial ordering so that V = V P�0 j= \Eah �i for i = 1; : : : ; n is indestrutible under�i-direted losed foring". The existene of this sort of generalized version of Laver'spartial ordering of [L℄ is easy to show and is found in many plaes, e.g., [A83℄, [A98℄, or[CFM℄. Note that sine as in [L℄, P � an be de�ned as an iteration so that for P ��i theportion of P � up through stage �i, jP ��ij = �i, and sine also we an assume that theportion of P � de�ned beyond stage �i is at least �i-direted losed, where for the rest ofthis setion, �i is the least inaessible above �i, V j= \2�i = �+i for i = 1; : : : ; n". Also, by22



the L�evy-Solovay results [LS℄, sine V0 j= \No ardinal � > �n is measurable", V j= \Noardinal � > �n is measurable" as well.We take now V as our ground model and let �0 = !. P will be de�ned as the artesianprodut Q1�i�nP�i where P�i for i = 1; : : : ; n an be de�ned in two ways, depending uponwhether the simpler or more ompliated version of the partial ordering P 1Æ;�[S℄ is used.If the simpler version of P 1Æ;�[S℄ is used, then P�i = P�i;0 � _P�i;1, where P�i;0 is de�nedas in Setion 2, using only those inaessibles in the interval (�i�1; �i℄ satisfying GCH inits �eld and �xing �i�1 as the o�nality of the non-reeting stationary sets added byeah P 0Æ;� (sine V j= \2�i = �+i ", reetion shows that unboundedly many ardinals in(�i�1; �i) will be in the �eld of P�i;0), and P�i;1 also adds non-reeting stationary sets ofordinals of o�nality �i�1 to every V P�i;0 -measurable ardinal in the interval (�i�1; �i). Ifthe more ompliated version of P 1Æ;�[S℄ is used, then P�i;0 is de�ned as in Setion 2, usingonly those inaessibles in the interval (�i�1; �i℄ in its �eld satisfying GCH, and P�i;1 isas just de�ned when the simpler version of P 1Æ;�[S℄ is used.For i = 1; : : : ; n, write P = Pi � P�i � P i, where Pi = Q1�j�i�1P�j and P i =Qi+1�j�nP�j . When the simpler version of P 1Æ;�[S℄ is used, it easily follows that P i is�i-direted losed. This is sine by the remarks in the middle of p: 108 of [AS97a℄, eahP 1Æ;�[S℄ used in the de�nition of eah P�j ;0 for j = i+1; : : : ; n is at least �i-direted losed,so as the o�nalities of the ordinals present in the non-reeting stationary sets added byP�j ;1 for j = i+1; : : : ; n are at least �i, P�j for j = i+1; : : : ; n and P i = Qi+1�j�nP�j areall �i-direted losed. Also, when the more ompliated version of P 1Æ;�[S℄ is used, it is thease that a V -generi objet for P i is V -generi over a �i-direted losed partial ordering.This follows by the argument of Lemma 14 of [AS97b℄ ombined with the fat that any23



partial ordering of the form P 0Æ;� � (P 1Æ;�[ _S℄ � P 2Æ;�[ _S℄) used in the de�nition of P�j;0 forj = i+ 1; : : : ; n is �i-direted losed. (See Lemma 4 of [AS97b℄ for a proof.) Thus, by theindestrutibility properties of �i and the fat P i is �i-strategially losed, V P i j= \�i issuperompat and 2�i = �+i ".By the de�nition of P�i+1 , V P i j= \No ardinal Æ 2 (�i; �i+1) is measurable", fori = 1; : : : ; n�1. When i = n, we take (�i; �i+1) as all ordinals > �i and P i as being trivial,so our initial assumptions on V one more give us V P i j= \No ardinal Æ 2 (�i; �i+1) ismeasurable". Therefore, the arguments of Lemmas 2 - 4 apply to show V P i�P�i j= \�i is< �i+1 strongly ompat, �i is �+i superompat, 2�i = �++i , and no ardinal Æ 2 (�i�1; �i)is measurable", taking when i = n \< �i strongly ompat" as meaning \Æ stronglyompat for all ardinals Æ > �n", i.e., as meaning fully strongly ompat. Sine by thede�nition of Pi, jPij < �i�1, the results of [LS℄ tell us V P i�P�i�Pi = V P j= \�i is < �i+1strongly ompat, �i is �+i superompat, 2�i = �++i , and no ardinal Æ 2 (�i�1; �i) ismeasurable". Therefore, sine a result of DiPriso [DH℄ tells us that if Æ is <  stronglyompat and  is � strongly ompat, then Æ is � strongly ompat, and sine we areworking with �nitely many ardinals �1; : : : ; �n, we an apply �nitely often the result of[DH℄ to infer V P j= \�i is strongly ompat, �i is �+i superompat, 2�i = �++i , and noardinal Æ 2 (�i�1; �i) is measurable". This ompletes the proof of Theorem 1 for arbitrary�nite n. 24



Theorem 1x5 Conluding RemarksIn onlusion to this paper, we note that for the moment, we are restrited to provingTheorem 1, as was Magidor, only to �nite values of n. The proof of Theorem 1, and Magi-dor's original proof of the onsisteny of the �rst n 2 ! strongly ompat ardinals beingthe �rst n measurable ardinals, both heavily use that the ground model ontains only�nitely many superompat ardinals and no measurable ardinals beyond their supre-mum. This is evident in the proof of Lemma 4, its equivalent form in Magidor's originalproof, and in the proof given in Setion 4. Although it is possible to give alternate proofs,in both our situation and Magidor's, by omposing superompat embeddings either withembeddings generated by normal measures over measurable ardinals of Mithell order 0in Magidor's ase or with a �+ superompat embedding as onstruted in Lemma 2 inour ase, the proofs still require the initial assumption of only �nitely many superompatardinals with no measurable ardinals above their supremum. (See the end of [A95℄ fora further disussion of this problem.) Thus, the prime question of the relative onsistenyof the �rst ! measurable and strongly ompat ardinals oiniding, with or without anyadditional degrees of superompatness, remains open.
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