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JAMES CUMMINGS AND DORSHKA WYLIE

Abstract. Jech and Shelah [2] studied full reflection below ℵω,
and produced a model in which the extent of full reflection is maxi-
mal in a certain sense. We produce a model in which full reflection
is maximised in a different direction.

1. Introduction

Recall that if κ is an uncountable regular cardinal and S is a sta-
tionary subset of κ, then S reflects at an ordinal α < κ if and only if
cf(α) > ω and S ∩ α is stationary in α. We will call the set of α < κ
to which S reflects the trace of S and will denote it by Tr(S).

The phenomenon of stationary reflection has been extensively stud-
ied. It plays an important role in combinatorial set theory, and is
closely tied to the theory of large cardinals.

Given S and T which are both stationary subsets of κ, S reflects
fully in T (S < T ) if and only if S reflects at almost every point of
T , that is to say there is C ⊆ κ club such that S reflects at every
point of C ∩ T . The relation < is known [3] to be a well-founded strict
partial ordering on the stationary subsets of κ, whose height measures
the degree of Mahloness of the cardinal κ.

We will study the following relation between stationary subsets of
an uncountable regular cardinal κ:

Definition 1. S <∗ T if and only if U < T for every stationary U ⊆ S.

Suppose that there are stationary subsets S and T of κ such that
that S <∗ T . By the Solovay splitting theorem, S can be partitioned
into κ many disjoint stationary pieces Si for i < κ. Fix for each i a
club set Ci ⊆ κ such that Si reflects at every γ ∈ Ci ∩ T . If C is the
diagonal intersection of the Ci, and γ ∈ C∩T , then Si∩γ is stationary
in γ for all i < γ. For each such γ we fix a club set in γ with order
type cf(γ), and observe that it meets each of the sets Si ∩ γ for i < γ,
so that cf(γ) ≥ |γ|. But clearly cf(γ) ≤ |γ| for any limit γ, and we
conclude that cf(γ) = |γ| for almost all γ ∈ T .

We now distinguish two cases. If κ is a successor cardinal, say κ =
µ+, then almost every γ < κ has cardinality µ, and so almost every
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ordinal in T must be of cofinality µ, in particular µ must be regular.
Since µ+∩cof(µ) is non-reflecting, it must also be the case that almost
every ordinal in S has cofinality less than µ. If on the other hand κ is a
limit cardinal then almost every γ < κ is a cardinal, and it follows that
almost every element of T is regular; in particular κ is weakly Mahlo.

Magidor [7] showed that consistently S <∗ T with S = ω2 ∩ cof(ω),
T = ω2 ∩ cof(ω1), starting with a weakly compact cardinal κ which is
collapsed to become ω2. This argument is easily adapted to show that
if λ < κ with λ regular and uncountable and κ weakly compact, there is
a generic extension in which κ = λ+ and S <∗ T for S = λ+∩cof(< λ),
T = λ+ ∩ cof(λ).

In an earlier version of this paper we falsely claimed that the relation
S <∗ T can only hold in successors of regular cardinals. After the
referee had pointed out this mistake, Magidor [9] (responding to a
question from the first author) showed that using a weakly compact
cardinal we may obtain a model in which κ is the least weakly Mahlo
cardinal and S <∗ T where S = κ ∩ cof(ω), T = κ ∩ REG. In the
remainder of this paper we will work in the context of successors of
regular cardinals.

Jech and Shelah [2] showed the surprising fact that stationary reflec-
tion at one cardinal can be an obstacle to full reflection at a smaller
cardinal. We will give a version of their argument in the next section
as Lemma 2.

Given m < n < ω, we define Snm = ωn ∩ cof(ωm). It will follow from
Lemma 2 that if every stationary subset of Sn+3

n+1 reflects at a point in
Sn+3
n+2 , then the relation Sn+2

n <∗ Sn+2
n+1 fails. In particular the relations

Sn+2
n <∗ Sn+2

n+1 and Sn+3
n+1 <

∗ Sn+3
n+2 can not hold simultaneously.

Jech and Shelah [2] produced by forcing a model in which S2
0 <

∗ S2
1 ,

and Sn+2
i <∗ Sn+2

n+1 for all n ≥ 1 and all i ≤ n − 1. In their model
there is necessarily no stationary reflection between Sn+2

n and Sn+2
n+1 for

n ≥ 1.
We will produce a model in which there are stationary sets Bn ⊆

Sn+2
n+1 such that Sn+2

i <∗ Bn for all i ≤ n. Given the limiting result
discussed above, it is clear that Bn must be co-stationary in Sn+2

n+1 , but
our proof will show that in a certain sense our set Bn is as large as
possible. We defer the precise statement of our main theorem till the
end of the next section, when we will be able to make the sense in
which Bn is maximal more precise.

We have tried to make our notation standard. We conclude this
introduction by reviewing a couple of definitions and facts that will
play a central role.
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• Let κ be an uncountable regular cardinal and let S ⊆ κ be
stationary in κ. Then we denote by CUB(κ, S) the forcing
poset whose conditions are closed bounded subsets c of κ with
c ⊆ S, ordered by end-extension. This poset will always add a
closed and unbounded subset of κ contained in S, but in general
it may very well collapse cardinals or add bounded subsets of
κ.
• Let κ be supercompact. Then f : κ→ Vκ is a Laver function (or

Laver diamond) if and only if for every cardinal λ and for every
x ∈ Hλ+ there is j : V → M witnessing κ is λ-supercompact
with j(f)(κ) = x. Laver [5] showed that every supercompact
cardinal has a Laver function.
• A special case of the Lévy-Solovay theorem [6] states that if κ

is supercompact and P is a forcing poset with cardinality less
than κ, then forcing with P preserves the supercompactness of
κ.
• A result of Magidor [7] states that if κ is regular and Q is a
κ-closed poset, then for large enough λ Q can be completely
embedded into the Lévy collapse Coll(κ, λ) in such a way that
the quotient forcing is κ-closed.

2. Partial squares

One of the main ideas in Jech and Shelah’s paper [2] is the use
of partial square sequences to put bounds on the extent of stationary
reflection. Square sequences were introduced by Jensen [4] in his work
on the fine structure of L; they need not always exist, but a remarkable
result by Shelah (which we state below as Fact 1) shows just in ZFC
that many “partial square sequences” always exist.

Definition 2. Let κ and λ be uncountable regular cardinals with κ < λ
and let S ⊆ λ ∩ cof(κ) with S stationary in λ. A partial square on S
is a sequence 〈Cβ : β ∈ S〉 such that

(1) Cβ is a club subset of β with order type κ for every β ∈ S.
(2) For all β, γ ∈ S and all α ∈ lim(Cβ)∩ lim(Cγ), Cβ∩α = Cγ∩α.

Fact 1. Let κ and λ be uncountable regular cardinals with κ < λ, and
let S ⊆ λ+ ∩ cof(κ) be stationary. Then S is the union of λ pairwise
disjoint stationary sets, each carrying a partial square sequence.

Jech and Shelah [2] showed that partial squares plus reflection can
impose an obstacle to reflection at smaller cardinals. Before making
this precise, we explain the main idea. By Fact 1 there is always a
stationary subset A of Sn+2

n which carries a partial square. If A reflects
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at a point in Sn+2
n+1 , then we can “pull back” the partial square in a

straightforward way to obtain a partial square on a stationary set B ⊆
Sn+1
n , which can then be used to generate non-reflecting stationary sets.

Lemma 1. [2] Let S ⊆ λ ∩ cof(κ) be a stationary set which carries a
partial square sequence. For every regular µ < κ there is a stationary
subset of λ ∩ cof(µ) which does not reflect at any point of S.

In conversation with the first author Magidor noted the following
strengthened version of Lemma 1.

Lemma 2. [8] Let S ⊆ λ ∩ cof(κ) be a stationary set which carries
a partial square sequence. Then for every regular µ < κ and every
stationary A ⊆ λ ∩ cof(µ), there is a stationary set B ⊆ A such that
B does not reflect at any point of S.

Proof. Let T be the set of δ ∈ S such that A ∩ δ is stationary in δ. If
T is non-stationary then fix C ⊆ λ which is club and disjoint from T ,
and set B = A ∩ C. Clearly B can only reflect at points of C, so B
reflects nowhere in S.

So we may now assume that T is stationary. In this case we define
A′ =

⋃
δ∈T lim(Cδ)∩A. We claim that A′ is stationary: for if E is club

in λ, we may first choose δ ∈ T ∩ lim(E), and then use the fact that
A ∩ δ is stationary in δ to choose a point in lim(Cδ) ∩ E ∩ A.

We define a function f : A′ → κ, by setting f(α) = ot(Cδ ∩ α)
for some δ ∈ S with α ∈ lim(Cδ). Since 〈Cδ : δ ∈ S〉 is a partial
square sequence, the value of f(α) is independent of the choice of δ.
We choose B ⊆ A′ on which f is constant, and claim that B reflects
at no point of S. To see this we fix δ ∈ S. If δ /∈ T then by definition
A ∩ δ is non-stationary in δ, and so since B ⊆ A we see that B ∩ δ
is non-stationary in δ. If on the other hand δ ∈ T then f is strictly
increasing on A′ ∩ lim(Cδ), so that B can meet the club set lim(Cδ) at
most once, hence B ∩ δ is non-stationary in δ. �

We can now state the main theorem of this paper in a precise way.

Theorem 1. If there exist infinitely many supercompact cardinals, then
in some generic extension the following holds: there are sets Bn ⊆ Sn+2

n+1

for every n < ω such that

(1) Both Bn and Sn+2
n+1 \Bn are stationary.

(2) Sn+2
i <∗ Bn for all i ≤ n.

(3) Sn+2
n+1 \Bn carries a partial square sequence.

The Bn are maximal in the following precise sense: as we saw in the
discussion following Fact 1, because Sn+3

n+1 <∗ Bn+1, some stationary
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subset of Sn+2
n+1 carries a partial square. By Lemma 2 it is hopeless to

demand any stationary reflection to such a set, so the most we can
hope for is strong reflection to the complement.

The structure of the proof is this: we will successively collapse su-
percompact cardinals so that the nth supercompact cardinal becomes
ωn+2. We will argue that in the generic extension there exist certain
generic elementary embeddings which will enforce the desired station-
ary reflection. A problem arises here, namely that earlier stages of the
construction must anticipate what happens later in the construction.
A similar issue arose in the first author’s construction (jointly with
Matt Foreman) of a model in which ωn has the tree property for all n
with 2 ≤ n < ω [1]; we will resolve the issue in the same way as in [1]
by using Laver functions at each stage to anticipate all possibilities for
the later stages.

3. Stationary set preservation

We will require several technical lemmas on the preservation of sta-
tionary sets by forcing. The first one is (a special case of) Lemma 2.8
in reference [2], and we refer the reader to that paper for the proof. It
is interesting to note that by work of Shelah we can remove the GCH
assumption, and that in the harder case m+ 1 < n the proof uses the
existence of partial squares.

Lemma 3. Let GCH hold. Let m < n < ω, let S ⊆ Snm be stationary
in ωn, and let P be ωm+1-closed. Then forcing with P preserves the
stationarity of S.

It follows from Lemma 3 that ωn+1-closed forcing will preserve the
stationarity of stationary subsets T ⊆ Sn+1

n and A ⊆ Sn+2
n . The point

of Lemma 4 is that the two stationary sets are preserved in a compatible
way. We will use it later (in the proof of Theorem 1) in combination
with Lemma 5, to preserve stationary sets in a setting where Lemma
3 can not be applied. The GCH assumption in the next result is more
than is needed, but somewhat simplifies the proof.

Lemma 4. Let GCH hold. Let T ⊆ Sn+1
n be stationary in ωn+1 and

let A ⊆ Sn+2
n be stationary in ωn+2. Let P be an ωn+1-closed poset

which collapses ωn+2. Let f : ωn+1 → ωVn+2 be a continuous and cofinal
map in the generic extension. Then in the generic extension the set
{α ∈ T : f(α) ∈ A} is stationary in ωn+1.

Proof. For each α < ωn+2 let Pα = [α]<ωn , so that easily |Pα| ≤ ωn+1

for all α and also |Pα| ≤ ωn for α < ωn+1. Let ~P = 〈Pα : α < ωn+2〉.
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Let p be a condition, let Ċ be a name for a club subset of ωn+1, and
let ḟ be a name for f . Notice that by the closure of P, f � η ∈ V
for all η < ωn+1. Fix θ a sufficiently large regular cardinal and <θ a
well-ordering of Hθ. Below we will abuse notation by writing “Hθ” for
the structure (Hθ,∈, <θ).

We build a continuous increasing chain 〈Mi : i < ωn+2〉 where

{p, Ċ, ḟ , ~P} ⊆M0 and for all i

(1) Mi ≺ Hθ.
(2) |Mi| = ωn+1 ⊆Mi (so that also Mi ∩ ωn+2 ∈ ωn+2).
(3) Mi ∩ ωn+2 < Mi+1 ∩ ωn+2.

It is easy to see that 〈Mi∩ωn+2 : i < ωn+2〉 is increasing, continuous
and cofinal in ωn+2. We find β < ωn+2 such that β = Mβ ∩ ωn+2 ∈ A,
and let M = Mβ. Note that for every α < β we have Pα ∈ M and so
Pα ⊆M . We choose D club in β of order type ωn.

The key point is that since
⋃
α<β Pα ⊆ M , every proper initial seg-

ment of D is an element of M . Let D∗ =def D∪{D∩α : α ∈ D}, so that
D∗ ⊆M . We build another continuous increasing chain 〈Nj : j < ωn+1〉
such that {p, Ċ, ḟ , ~P} ∪D∗ ⊆ N0 ⊆M and for every j

(1) Nj ≺M .
(2) |Nj| = ωn ⊆ Nj (so that also Nj ∩ ωn+1 ∈ ωn+1).
(3) Nj ∩ ωn+1 < Nj+1 ∩ ωn+1.

We choose α < ωn+1 so that α = Nα ∩ ωn+1 ∈ T , and let N = Nα.
Since D ⊆ N ⊆ M , and D is unbounded in M ∩ ωn+2, we see that
sup(N ∩ ωn+2) = sup(M ∩ ωn+2) = β. Note that Pγ ∈ N and so
Pγ ⊆ N for all γ < α. Now we choose E club in α of order type ωn,
and note that since

⋃
γ<α Pγ ⊆ N every proper initial segment of E lies

in N .
We pause to take stock of the construction so far. We have built

a structure N ≺ Hθ such that p, Ċ, ḟ ∈ N , β = sup(N ∩ ωn+2) ∈ A,
α = N ∩ ωn+1 ∈ T , and there are club sets D ⊆ β and E ⊆ α of order
type ωn, such that all proper initial segments of D and of E lie in N .
Enumerate D in increasing order as 〈δk : k < ωn〉, and enumerate E in
increasing order as 〈εk : k < ωn〉,

Now we build a decreasing chain of conditions pk ∈ P for k < ωn.
We start by setting p0 = p, and then recursively choose pk+1 to be the
<θ-least condition such that

(1) pk+1 ≤ pk.
(2) pk+1 determines the value of min(Ċ) \ εk.
(3) There exist η ≥ εk, ζ ≥ δk and g ∈ V such that pk+1 
 ḟ �

η + 1 = g and g(η) = ζ.
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At limits we take the <θ-least lower bound for the sequence so far.
The key point is that pk ∈ N for all k. It is easy to see that if pk ∈ N
then pk+1 ∈ N , since pk+1 is defined from parameters in N . If k < ωn
is limit then observe that the sequence 〈pi : i < k〉 can be computed
from p, Ċ and sufficiently long initial segments of D and E, so that
〈pi : i < k〉 ∈ N and hence pk ∈ N .

Let q be a lower bound for 〈pi : i < ωn〉. By construction q de-

termines ḟ � α and forces that ḟ“α is cofinal in β, so q forces that
ḟ(α) = β. Also q forces that Ċ∩α is cofinal in α, so q forces that α ∈ Ċ.
Since α ∈ T and β ∈ A, q forces that Ċ meets {η ∈ T : f(η) ∈ A}, so
that this set is stationary as claimed. �

Lemma 5. Let GCH hold and let m < ω. Let S be an iteration with
ωm-supports such that for some stationary set B ⊆ Sm+1

m , every factor
is either ωm+1-closed or is of the form CUB(ωm+1, T ) where Sm+1

<m ∪B ⊆
T ⊆ ωm+1.

Then S is ωm-closed, adds no ωm-sequences of ordinals, and preserves
the stationarity of every stationary subset of B.

Proof. Every factor is ωm-closed, and the supports have size ωm, so
easily S is ωm-closed. Let U ⊆ B be stationary in ωm+1, and let τ̇
name a function from ωm to the ordinals. Let Ċ be a name for a club
set in ωm+1. We will show that any condition p ∈ S can be extended
to a condition q which forces that Ċ meets U , and also determines the
value of τ̇ .

Choose θ some very large regular cardinal and find X ≺ Hθ contain-
ing everything relevant such that δ =def X∩ωm+1 ∈ U and <ωmX ⊆ X.
Fix δj for j < ωm increasing and cofinal in δ.

We now build a decreasing ωm-sequence 〈pi : i < ωm〉 of conditions
in S ∩X such that

(1) p0 = p.
(2) pi+1 determines the values of min(Ċ) \ δi and τ̇(i).
(3) For every j ∈ supp(pi), where Qj is of the form CUB(ωm+1, T )

for some T , pi+1(j) names a set which contains an ordinal larger
than δi.

This is easy since S is ωm-closed, andX is closed under< ωm-sequences.
We now construct a lower bound p∞ for 〈pi : i < ωm〉, defining p∞(j)

by induction on j. There is no problem with the size of the support,
because S is an iteration with ωm-supports. Let j ∈

⋃
i supp(pi).

If p∞ � j forces that 〈pi(j) : i < ωm〉 is a decreasing sequence in an
ωm+1-closed poset, there is no problem in choosing p∞(j). Otherwise
p∞ � j forces that 〈pi(j) : i < ωm〉 is a sequence of closed bounded
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subsets of δ, and that the sequence of elements max pi(j) is increasing
and unbounded in δ. In this case we may take p∞(j) to be a name
for

⋃
i pi(j) ∪ {δ}, which is a safe choice because δ ∈ U ⊆ T . Now

p∞ 
 δ ∈ Ċ ∩ U and p∞ also determines every value of τ̇ . �

4. The main construction

We start by giving an outline of the construction. Our starting
hypothesis is that we have an increasing sequence 〈κn : 0 ≤ n < ω〉
of supercompact cardinals. By a suitable preparation forcing we may
assume in addition that GCH holds.

After round n of the construction we will be in a situation where
κi = ωi+2 for i ≤ n. We will begin round n + 1 of the construction by
adding a set Bn ⊆ Sn+2

n+1 , together with a partial square sequence on
Sn+2
n+1 \Bn.
The remainder of round n+1 consists of a certain iteration of length

κn+1 with ωn+1-supports. In the course of this iteration we will be
shooting club sets through certain subsets of κn (which is now ωn+2)
with a view to making Sn+2

≤n <∗ Bn, and will also be forcing with
various ωn+2-directed closed posets whose definition we postpone for
now. Round n+ 1 of the construction will be ωn+1-directed closed, will
add no < ωn+2-sequences and will collapse κn+1 to become ωn+3.

Before continuing with a more precise description of the construction,
we describe the forcing poset we will use to add the sets Bn and the
related partial squares.

Definition 3. Let κ be regular. Then P(κ) is the set of functions p
such that

(1) dom(p) is a successor ordinal less than κ+.
(2) p(β) = 0 if β ∈ dom(p) and β is either zero or a successor

ordinal.
(3) For every limit ordinal β ∈ dom(p), either p(β) = 1 or p(β) is

a closed unbounded subset of β with order type at most κ.
(4) If p(β) is a closed unbounded subset of β, then for every γ ∈

lim p(β), p(γ) = p(β) ∩ γ.

The conditions are ordered by extension.

Lemma 6. Let κ be regular. Then

(1) The poset P(κ) is κ-closed.
(2) Forcing with P(κ) adds no κ-sequences of ordinals.
(3) Let G be a P(κ)-generic filter. Let f = ∪G, B = {α ∈ κ+ ∩

cof(κ) : f(α) = 1}, B′ = (κ+ ∩ cof(κ)) \ B, and Cα = f(α)
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for α ∈ B′. Then in the generic extension B and B′ are both
stationary in κ+, and 〈Cα : α ∈ B′〉 is a partial square sequence.

Proof. It is easy to see that any condition has arbitrarily long exten-
sions, and that if B′ is stationary then 〈Cα : α ∈ B′〉 is a partial square
sequence. To show that the poset is κ-closed, let us be given a strictly
decreasing sequence of conditions 〈pi : i < δ〉 where δ < κ. We form
q =

⋃
i<δ pi, so that q is a function with domain some limit ordinal

γ ∈ κ+ ∩ cof(< κ); let r be such that dom(r) = γ + 1, r � γ = q, and
r(γ) = 1. Then it is easy to check that r is a condition and r extends
each pi for i < δ.

For the rest, let Ċ name a club subset of κ+ and ḟ name a κ-sequence
of ordinals. Given a condition p, we build a decreasing sequence of
conditions pi for i < κ so that

(1) p0 = p.
(2) pi+1 ≤ pi.

(3) pi+1 determines ḟ(i), and forces that some ordinal between
max dom(pi) and max dom(pi+1) is in Ċ.

(4) For each limit ordinal i < κ, max dom(pi) = supj<i max dom(pj),
and pi(max dom(pi)) = {max dom(pj) : j < i}.

Let η = supi<κ max dom(pi). We may now find lower bounds q and
q′ for the sequence of pi, each with domain (η+ 1)∩ cof(κ), by setting
q(η) = 1 and q′(η) = {max dom(pj) : j < κ}. Either one will determine

the value of ḟ , and in addition q 
 η ∈ Ċ ∩B and q′ 
 η ∈ Ċ ∩B′. �

Now for the precise description of our forcing iteration: as usual each
poset is to be defined in the generic extension by the iteration of the
preceding posets. Round 0 is slightly different from the subsequent
rounds, and round n will be divided into two steps for n > 0. We will
write Rn for the forcing at round n, and for n > 0 we will break up Rn

as R1
n ∗ R2

n where Ri
n is step i.

• Round 0: We force with R0 =def Coll(ω1, < κ0).
• Round n step 1 for n > 0: We force with the poset R1

n =def

P(ωn) from Definition 3, which adds a set Bn−1 ⊆ Sn+1
n , and

also a partial square on the complement of Bn−1 in Sn+1
n .

• Round n step 2 for n > 0: By the Lévy-Solovay theorem κn
is still supercompact, and so there is a Laver function fn. We
perform an iteration R2

n of length κn with ωn-supports. At
stage γ we do nothing unless one of the following conditions is
satisfied:
(1) There is i ≤ n− 1 such that f(γ) is an R2

n � γ-name Ṡ for
a stationary subset of Sn+1

i .
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(2) f(γ) is an R2
n � γ-name Q̇ for an ωn+1-directed closed forc-

ing poset.
In this case we force with

CUB(ωn+1, S
n+1
<n ∪ (Sn+1

n \Bn−1) ∪ (Tr(S) ∩Bn−1))

if f(γ) names a stationary subset S of Sn+1
i for some i ≤ n −

1, and we force with Q if f(γ) names an ωn+1-directed closed
forcing poset Q.

Let P0 be the trivial forcing and Pn+1 = Pn ∗ Rn, and let Pω be the
inverse limit of the Pn. It is easy to see that Rn is κn-c.c. and ωn-
directed closed, and also by Lemma 5 that it adds no ωn-sequences of
ordinals. Our final model is the generic extension of the universe by
Pω. We note that by the closure and distributivity properties of Rn,
every ωn-sequence of ordinals in the final model is in the extension by
Pn. By Lemma 5, for n > 0 the set Sn+1

n \ Bn−1 is still stationary at
the end of round n, and so will still be stationary in the final model.

Because round 0 was so simple, the analysis for round 1 is a little
more straightforward than for subsequent rounds, and we will give it
separate treatment. This gives us a chance to introduce some of the
main ideas for later rounds. In everything that follows we assume that
Hω is Pω-generic over V , and that Gn is the induced Rn-generic filter.
For n > 0 we let Gn = G1

n ∗G2
n where Gi

n is Ri
n-generic.

Lemma 7.

(1) Forcing with R1 over V [G0] adds no ω1-sequences of ordinals.
(2) In V [G0 ∗G1], B0 is stationary.
(3) In V [G0 ∗ G1] every stationary subset of S2

0 reflects at almost
every point of B0.

(4) In V [Hω], B0 is stationary and every stationary subset of S2
0

reflects at almost every point of B0.

Proof. It follows from Lemma 5 that R1 adds no ω1-sequences of ordi-
nals. It is easy to check that every stationary subset of S2

0 in V [G0∗G1]
is named by f1(α) for some α, and so we added a club to witness that
the set reflects almost everywhere in B0. Every ω2-sequence of ordinals
from V [Hω] appears in V [G0 ∗ G1]. It remains only to show that B0

is stationary in V [G0 ∗ G1]. This we will do by producing a generic
elementary embedding j0 with domain V [G0 ∗ G1] and critical point
κ0 = ω2, such that κ0 ∈ j0(B0).

Fix j0 : V → M0 an embedding which witnesses that κ0 is κ1-
supercompact in V . We may extend the identity embedding id :
R0 → j0(R0) to an embedding of R0 ∗ R1 into j0(R0) with an ω1-
closed quotient. So then as usual we may lift j0 to an embedding
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j0 : V [G0]→ M0[G0 ∗G1 ∗H], where H is generic over V [G0 ∗G1] for
countably closed forcing. Working in M0[G0 ∗G1 ∗H], we define m0 to
be the condition in j0(R1

1) such that dom(m0) = κ0+1, m0 � κ0 =
⋃
G1

1,
m0(κ0) = 1. This is a legitimate condition: after forcing with j0(R0)
the cofinality of κ0 is ω1, and the club sets appearing in m0 are coherent.

It is easy to see that m0 is a strong master condition for j0 : V [G0]→
M0[G0 ∗ G1 ∗ H] and G1

1, in the sense that m0 is a lower bound for
j0“G

1
1. We may now force over V [G0 ∗G1 ∗H] to get a generic filter K

for j0(R1
1) with j0“G

1
1 ⊆ K, and then lift again to get j0 : V [G0 ∗G1

1]→
M0[G0 ∗G1 ∗H ∗K]. Note that by the choice of m0, κ0 ∈ j0(B0).

Now we construct by induction conditions m∗β ∈ j0(R2
1 � β) for β ≤

κ1, such that supp(m∗β) = j0“β, m∗β is a strong master condition for

j0 : V [G0∗G1
1]→M0[G0∗G1∗H ∗K] and G2

1 � β, and m∗β � j0(γ) = m∗γ
for γ < β. There is no problem with the size of the supports because κ1
has been collapsed to have cardinality ω1 by j0(R0). The coordinates in
j0“κ1 are the only ones that need attention because R2

1 is an iteration
with ω1-supports, and so supp(j0(r)) = j0“supp(r) for all r ∈ R2

1.
We will need to make sure that each of the objects m∗β is a member

of M0[G0 ∗ G1 ∗ H ∗K]. To do this we will first prove that j0 � G2
1 ∈

M0[G0 ∗G1 ∗H ∗K], and then show that m∗β can be constructed from

j0 � G2
1 by a uniform procedure which is definable in M0[G0∗G1∗H∗K].

To show that j0 � G2
1 ∈ M0[G0 ∗ G1 ∗ H ∗ K], we will use the hy-

pothesis that j0 : V → M0 witnesses the κ1-supercompactness of κ0.
In particular we know that V |= κ1M0 ⊆ M0. By a routine chain con-
dition argument, working in V we may find a set of terms Z ⊆ Vκ1
such that every condition in R2

1 is of the form iGo∗G1
1
(τ̇) for some

τ̇ ∈ Z. By closure j0 � Z ∈ M0. By definition if p = iGo∗G1
1
(τ̇) ∈ R2

1

then j(p) = iG0∗G1∗H∗K(j(τ̇)). Since j0 � Z ∈ M0, and both G2
1

and G0 ∗ G1 ∗ H ∗ K are in M0[G0 ∗ G1 ∗ H ∗ K], it follows that
j0 � G2

1 ∈M0[G0 ∗G1 ∗H ∗K].
For each β < κ1, there is in V [G0 ∗ G1

1 ∗ (G2
1 � β)] a function LBβ

such that

(1) dom(LBβ) = V
V [G0∗G1

1∗(G2
1�β)]

κ1 .
(2) For every pair (a, b) ∈ dom(LBβ) such that a is ω2-directed

closed and b ⊆ a is a directed set of size less than ω2, LBβ(a, b)
is a lower bound for b.

Working in V [G0 ∗G1
1] we choose a sequence 〈 ˙LBβ : β < κ1〉 such that

˙LBβ is a R2
1-name for a suitable function LBβ.

After these preliminaries, we may finally describe the inductive con-
struction of the conditions m∗β. At limit stages λ we let m∗λ be the
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unique sequence such that supp(m∗λ) = j0“λ and m∗λ � j0(β) = m∗β for
β < λ. We will argue shortly that m∗λ ∈ M0[G0 ∗ G1 ∗H ∗K], and in
particular it is a condition in j0(R2

1 � λ). Before giving that argument
we describe the successor step.

Suppose that we have defined m∗β. We force below this condition to

get Lβ with j0“G
2
1 � β ⊆ Lβ, and then lift to get j0 : V [G0 ∗G1

1 ∗G2
1 �

β]→M0[G0∗G1∗H∗K∗Lβ]. There is nothing to do unless the iteration
R2

1 is non-trivial at stage β, so suppose that it is. We distinguish the
two cases: the Laver function f1 guesses a stationary subset of S2

0 or
an ω2-directed closed forcing poset.

Case 1: f1(β) is an R2
1 � β name for a stationary set S ⊆ S2

0 .

S is a stationary set of cofinality ω ordinals, and the forcing at stage
β adds a club set C with C ⊆ S2

0 ∪ (S2
1 \B0) ∪ (Tr(S) ∩B0).

The rest of the iteration R2
1 is countably closed, so S is still stationary

in V [G0 ∗ G1]. Similarly H ∗ K ∗ Lβ is generic over V [G0 ∗ G1] for
countably closed forcing, so S is still stationary in V [G0∗G1∗H∗K∗Lβ],
and hence in M0[G0 ∗G1 ∗H ∗K ∗ Lβ].

Since j0(S)∩κ0 = S and S is stationary, we see that κ0 ∈ j0(Tr(S)∩
B0). It follows that C ∪ {κ0} is a condition in j0(CUB(ω2, S

2
0 ∪ (S2

1 \
B0) ∪ (Tr(S) ∩ B0)). It is now easy to see that if we prolong m∗β
by adding C ∪ {κ0} at coordinate j(β), we obtain a suitable master
condition m∗β+1.

Case 2: f1(β) is an R2
1 � β name for an ω2-directed closed forcing poset

Q.

At stage β the forcing R2
1 adds a filter F which is generic for Q.

By the supercompactness assumption, an argument similar to the one
we gave that j0 � G2

1 ∈ M0[G0 ∗ G1 ∗ H ∗ K] shows that j0“F ∈
M0[G0 ∗ G1 ∗ H ∗ K ∗ Lβ]. Also j0“F is a directed set of size less

than j0(κ0) in the poset j0(Q), and if we let LBβ = iG2
1�β

( ˙LBβ) then

q =def j0(LBβ)(j0“F ) is a lower bound for j0“F . We prolong m∗β by
adding a name for q at coordinate j(β), to obtain m∗β+1.

We have defined the objects m∗β in a uniform way from j0 � G2
1 and

j0(〈 ˙LBβ : β < κ1〉), so by a straightforward induction they all lie in
M0[G0 ∗G1 ∗H ∗K].

At the end of the construction we let m = m0 ∗m∗κ1 . Forcing below
m we can lift to get j0 : V [G0 ∗G1

1 ∗G2
1]→M0[G0 ∗G1 ∗H ∗K ∗L]. �
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Now we prove a similar lemma for the subsequent rounds of the
iteration. The general outline is similar, but we have to work harder
at certain points. As before we will extend a certain embedding jn−1
witnessing the κn-supercompactness of κn−1, and embed Rn−1 ∗Rn into
jn−1(Rn−1).

The main new technical issue is that the closure of the relevant posets
is no longer sufficient to preserve the stationarity of the relevant sta-
tionary sets. For example we will need to know that stationary subsets
of Sn+1

n−1 are preserved by a final segment of jn−1(Rn−1), which is only
ωn−1-closed.

Lemma 8. Let n > 1.

(1) Forcing with Rn over V [G0 ∗ . . . ∗ Gn−1] adds no ωn-sequences
of ordinals.

(2) In V [G0 ∗ . . . ∗Gn], Bn−1 is still stationary.
(3) In V [G0 ∗ . . . ∗Gn], every stationary subset of Sn+1

≤n−1 reflects at
almost every point of Bn−1.

(4) In V [Hω], Bn−1 is stationary and every stationary subset of
Sn+1
≤n−1 reflects at almost every point of Bn−1.

Proof. It follows from Lemma 5 that Rn adds no ωn-sequences of ordi-
nals. Since every name for a stationary subset of Sn+1

≤n−1 appears in the
course of the iteration, it follows from the definition of the iteration
that after forcing with Rn every stationary subset of Sn+1

≤n−1 reflects at
almost every point of Bn−1. We will finish by producing a generic em-
bedding jn−1 with critical point ωn+1 and domain V [G0 ∗ . . .∗Gn], such
that ωn+1 ∈ jn−1(Bn−1).

Let W = V [G0 ∗ . . . Gn−2]. Recall that in the course of the con-
struction we observed that (by the Lévy-Solovay theorem) κn−1 is still
supercompact in W , and we used this to choose a Laver function fn−1,
which then dictated the course of the iteration Rn−1.

As we have already observed, Rn is ωn-directed closed in W [Gn−1],
in particular cardinals up to ωn are preserved. We define R∗n =def

Rn ∗ Coll(ωn, ωn+1). Using the Laver property of fn−1 we then choose
jn−1 : W → Mn−1 such that jn−1 witnesses the κn-supercompactness
of κn−1, and j(fn−1)(κn−1) is a name in WRn−1 for the poset R∗n.

Since the poset R∗n is ωn-directed closed, it is the forcing which will be
used at stage κn−1 in the iteration jn−1(Rn−1). So then as usual we may
lift jn−1 to an embedding jn−1 : W [Gn−1]→Mn−1[Gn−1∗G∗n∗H], where
G∗n = Gn ∗C for C which is Coll(ωn, ωn+1)-generic over W [Gn−1 ∗Gn].

By the properties which we have already established for Rn−1, forcing
with jn−1(Rn−1) preserves the cardinals ωk for k ≤ n, and jn−1(κn−1)
becomes the new ωn+1, while κn−1 is collapsed and becomes an ordinal
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of cofinality ωn. Working in Mn−1[Gn−1 ∗ G∗n ∗ H], we define mn−1
to be the condition in jn−1(R1

n) such that dom(mn−1) = κn−1 + 1,
mn−1 � κn−1 =

⋃
G1
n, and mn−1(κn−1) = 1.

Easily mn−1 is a strong master condition for jn−1 : W [Gn−1] →
Mn−1[Gn−1 ∗ G∗n ∗ H] and G1

n. Using this master condition we force
over W [Gn−1 ∗G∗n ∗H] to get a suitable generic filter K for jn−1(R1

n),
and lift to get jn−1 : W [Gn−1 ∗ G1

n] → Mn−1[Gn−1 ∗ G∗n ∗ H ∗K]. We
have arranged that κn−1 ∈ jn−1(Bn−1).

Just as in the proof of Lemma 7 we build conditions m∗β ∈ jn−1(R2
n �

β) such that supp(m∗β) = jn−1“β, m∗β is a strong master condition for

jn−1 : W [Gn−1 ∗ G1
n] → Mn−1[Gn−1 ∗ G∗n ∗ H ∗ K] and G2

n � β, and
m∗β � jn−1(γ) = m∗γ for γ < β. Arguments similar to those in the proof

of Lemma 7 show that jn−1 � G2
n ∈Mn−1[Gn−1 ∗G∗n ∗H ∗K], and just

as in that proof we will build the conditions m∗β in a uniform way which
is definable in Mn−1[Gn−1 ∗G∗n ∗H ∗K].

The limit stage is exactly as in Lemma 7. The difference in the suc-
cessor step will be that it takes more work to show that a stationary set
S ⊆ Sn+1

≤n−1 arising in the course of the iteration Rn remains stationary
out to the point where it can be used in the construction of the master
condition.

Given m∗β we force to get Lβ with jn−1“G
2
n � β ⊆ Lβ, and then lift to

get jn−1 : W [Gn−1 ∗G1
n ∗G2

n � β]→Mn−1[Gn−1 ∗G∗n ∗H ∗K ∗Lβ]. The
interesting cases arise when fn−1 guesses a stationary subset of Sn+1

≤n−1
or an ωn+1-directed closed forcing poset.

Case 1a: fn−1(β) is an Rn
1 � β name for a stationary set S ⊆ Sn+1

j for
j < n− 1.

S is stationary in W [Gn−1 ∗ G1
n ∗ G2

n � β]. By the resemblance
between W and Mn−1, S ∈ Mn−1[Gn−1 ∗G1

n ∗G2
n � β] and a fortiori it

is stationary in that model.
We now observe that Mn−1[Gn−1 ∗ G∗n ∗ H ∗ K ∗ Lβ] is a generic

extension of Mn−1[Gn−1 ∗G1
n ∗G2

n � β] by ωn-closed forcing, and so by
Lemma 3 the set S is still stationary in Mn−1[Gn−1 ∗G∗n ∗H ∗K ∗Lβ].

Let C be the club set in κn−1 which was added by the iteration
Rn at stage β, and prolong m∗β by adding C ∪ {κn−1} at coordinate
j(β). Exactly as in the proof of Lemma 7 we obtain a suitable master
condition m∗β+1.

Remark 1. This is precisely the argument used by Jech and Shelah
[2].

Case 1b: fn−1(β) is an Rn
1 � β name for a stationary set S ⊆ Sn+1

n−1 .
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As in case 1a, S ∈ Mn−1[Gn−1 ∗G1
n ∗G2

n � β] and it is stationary in
that model. The key point is again to show that S remains stationary
in Mn−1[Gn−1 ∗G∗n ∗H ∗K ∗Lβ], but this time it is harder because we
do not have enough closure for an appeal to Lemma 3.

The factor forcing to prolong G2
n � β to G∗n is ωn-closed and collapses

ωn+1, so we may fix F ∈ Mn−1[Gn−1 ∗ G∗n] with F : ωn → ωn+1 in-
creasing, continuous and cofinal. As we remarked earlier Snn−1 \ Bn−2
is stationary in the universe Mn−1[Gn−1], so by ωn-closure it is still
stationary in Mn−1[Gn−1 ∗G∗n]. It is easy to see that GCH holds in this
universe, and so we may apply Lemma 4 to conclude that

U = {α ∈ Snn−1 −Bn−2 : F (α) ∈ S}

is stationary in Mn−1[Gn−1 ∗G∗n]. Notice that in any further extension
in which U is a stationary subset of ωn, S will also remain stationary.

We know that Rn−1 adds no ωn−1-sequences, and by elementarity the
same is true of jn−1(Rn−1). So from the point of view of the universe
Mn−1[Gn−1 ∗ G∗n], H is a generic object for an iteration S with ωn−1-
supports in which at every stage we either force with some ωn-directed
closed forcing poset or shoot a club set through a stationary subset of
ωn which contains Sn<n−1∪Bc

n−2. By Lemma 5, forcing with S preserves
the stationarity of U .

Finally Rn is ωn-closed, and so by elementarity jn−1(Rn) is also ωn-
closed. So U is stationary in Mn−1[Gn−1∗G∗n∗H∗K∗Lβ], and therefore
S is stationary in this universe.

We finish as in Case 1a: let C be the club set in κn−1 which was added
by the iteration Rn at stage β, and prolong m∗β by adding C ∪ {κn−1}
at coordinate j(β).

Case 2: fn−1(β) is an R2
n � β name for an ωn+1-directed closed forcing

poset Q.

In this case the argument is just like that for Case 2 in Lemma 7.
Now we let m = mn−1 ∗m∗κn . By Lemma 5 Rn adds no ωn-sequences

of ordinals. Forcing below m we lift to get jn−1 : W [Gn−1 ∗ Gn] →
Mn−1[Gn−1 ∗G∗n ∗H ∗K ∗ L]. �

This concludes the proof of Theorem 1.

Note: The authors would like to thank the anonymous referee for an
exceptionally thorough and helpful report on the first version of this
paper.
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