DIAMOND AND ANTICHAINS
JAMES CUMMINGS AND ERNEST SCHIMMERLING

ABSTRACT. It is obvious that {5 implies the existence of an an-
tichain of stationary sets of cardinality 28!, which is the largest
possible cardinality. We show that the obvious antichain is not
maximal and find a less obvious extension of it by N, more sta-
tionary sets.

Let A= (A, | @ <wq) be a $-sequence. For X C wy, let
Sy ={a<w | XNa=A,}.

Then each Sx is stationary. Moreover, if X # Y, then Sx N Sy is
bounded in w;. Thus (Sx | X C w;) is an antichain of stationary sets
of cardinality 2%*. Part of what we will show is that (Sx | X C wy) is
not a maximal antichain.
First we record some easy observations. In the Boolean completion
of P(wy)/NS, Sx is the Boolean value of the sentence
If jo : V — M 1is the generic ultrapower embedding
(where the wellfounded part of M is is identified with its
Mostowski collapse), then

jG(A)wY = X.
Moreover, the Boolean value of the sentence
jG(A)wY eV

is precisely the join of the antichain (Sx | X C wy).
If X is a set of countable ordinals, then we write acc(X) for the set
of accumulation points of X, that is {a < w; | sup(X Na) = a}.

Definition 1. Let T = {a < wy | Sa, Nacc(Aq) = {a}}.

In other words, T is the collection of 8 < w; such that 8 = sup(Az)
but there are no accumulation points a < [ of Ag such that A, =
A5 Na.
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Lemma 2. T is stationary and [T N Sx| < 1 for all X C wy. In
particular, (Sx | X C wy) is not a mazimal antichain in NS.

Proof. Consider an arbitrary club C' C wy. Then acc(C) is a club
subset of C' and S¢ Nacc(C) is stationary. Let o be the least element
of So Nacc(C). Then a is the unique element of TN Se Nacc(C). In
particular, « € T'N C. This shows that T is stationary.

Now let X C w; and a < 8 be elements of Sx. Then A, = Ag Na.
It is enough to show that if 3 € T, then a ¢ T. Assume g € T.
Because a € f NSy, and B € T, we may conclude that o ¢ acc(Ap).
So a & acc(A,). Hence a ¢ T. O

Let us record the easy observation that T" is the Boolean value of the
sentence
jo(A)y is unbounded in wy but if a < wy is an accu-
mulation point of jg(A)w{/, then A, # jg(A)WY Na.

We have shown that our {-sequence is also a {(7°) sequence where
T°¢ = w; —T. Many useful examples are obtained by the standard trick
of redefining A, for a € T. For example, if @ € T, then let A/ be

an unbounded subset of a of order type w, while if & € T, then keep
Al = A,. Observe that T forces

ja(A")y is unbounded in wy and has order type w.
Note that in this example, if 7" is computed from A’ the same way that
T was computed from A, then T C T".
Our next goal is to define sets T, so that
(T5p | 0 <ws & p<wi) (Sx | X Cw)
is an antichain of stationary sets. For w; < d < wsy, let es map wy onto
0 with es(0) = 0. This choice will remain fixed for the rest of our note.

Definition 3. By recursion on § < w,, define 3°X for X C w; as
follows. Let

9°X = acc(X).
If 6 = v+ 1, then let

X ={a<w |ot(anSxNdX)=al.

If 0 is a countable limit ordinal, then let

X =(0X.

v<d

If § is an uncountable limit ordinal, then let

PX = v 050X,

<wi
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We remark that there is an alternative approach in which the count-
able limit stages in the definition of 9°X are handled using diagonal
intersections instead of intersections. There is very little difference
between the two approaches, and so we simply picked one randomly
here.

Lemma 4. Let § < wy.
(1) For all X C w; and o < wy,

andX =and(anX).
If, in addition, o € acc(X) and A, = X Na, then
a€X < acdA,.

(2) For all unbounded X C wy, 3°X is club in w.
(3) For all € such that § < & < ws, there exists L < wy such that

(°X) — 0 C O°X

whenever X C w;y.
(4) If C is a club subset of wy, then

2°C C C.

The proof of Lemma 4 is standard. Let us write ¢5. for the least ¢ as
in Part 3 of Lemma 4. Our requirement that es(0) = 0 was to ensure
that Lo, = 0.

Definition 5. For § < ws and p < wy, let
Ts, = {a<w1 | o €A, & ot (aﬁSAaﬁa‘sAa) :p}.

In other words, T, is the set of a < w; such that Sy, N d% A, has
order type p + 1 and greatest element o. Note that T = T

Theorem 6. (Tj, |0 <w: & p <wi)”(Sx | X Cwy) is an antichain
of stationary sets. Moreover, if P and @) are distinct elements of this
antichain, then P N Q) is bounded in w;.

Theorem 6 follows immediately from Lemmas 7 — 12 below.
Lemma 7. For § < wy and p < wi, Tj, is stationary in w;.

Proof. Let C be an arbitrary club subset of w;. Then 3°C is a club
subset of C' and S¢ N @°C is stationary. Let a be the p-th element in
the increasing enumeration of S¢ N@°C. Then « is the unique element
of T5, N Sc N 9°C. In particular, o € T5,NC. O

Lemma 8. Let § < ws and p < 0 < wy. Then
Ts5,NT5, = 0.
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Proof. Otherwise, there would be an ordinal « such that « is both the
p-th and the o-th element of S4_ N 9% A,. This is absurd. O

Lemma 9. Let 0 < wq and p < wy. Then
T5,NSx| <1
whenever X C w;.

Proof. Let o < 3 be elements of Sx. Then A, = Az N a. For con-
tradiction, suppose that both o and 3 are elements of Tj,. Then, for
some 0 < p, a is the o-th element of 3N Sy, N 9°Ag. By Part 1 of
Lemma 4 and the fact that A, = Ag N, we have that that o € T5,,.
This contradicts Lemma 8. U

Lemma 10. Let 0 < € < wy and p,0 < wy. Suppose that € is a limit
ordinal. If € is countable, then

Ts5,NT., C (6 +1)U{p}.
If, on the other hand, € is uncountable and e.(t) = 0 + 1, then
T5,NT., CoU{p}.
Proof. First suppose that ¢ is uncountable. Let
acTls,NT,,
such that o > ¢. Because o € T, ,,
a € A,

So

ot(aN Sy, N°A,) = a.
Because a € T,

ot(aNSa, NA°A,) = p.

Thus a = p.
The proof when ¢ is countable is essentially the same, so we omit
it. O

Lemma 11. Let v < wsy and p,o0 < wy. Then
T’y,p N T’y+1,o g {p}

Proof. Let o € T, , N T,41,,. Then « is both the p-th and the a-th
element of Sy, N9"A,. So a = p. O

Lemma 12. Suppose that 6 < ¢ and p,oc < wi. Then T5, N T, 41, is
bounded in w;.
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Proof. Assume for contradiction that 75, N7, is unbounded in w;.
Consider an arbitrary o € T5, NT;11,,. Then « is the p-th element of

Sa. N A,
and the o-th element of
Sy, NOA,.
So « is the a-th element of
Sa, N0 A,

by the definition of 971 A,
Recall that by Part 3 of Lemma 4, there is an ordinal ¢ = ¢5. such
that for all a > ¢,
OFAy—1 CO°A,.
Let us assume that « is large enough that o > ¢ and ¢« + @ = a. Then
« is the a-th element of

(Sa, NO°A,) — ¢
Hence « is the a-th element of
Sa, NO°A,.
Therefore a = p. ]

That completes the proof of Theorem 6. We close with some remarks
and a conjecture.

It is natural to consider the sets Tj, as being ordered lexicograph-
ically according to the index (d,p). The reader may wonder why we
have been listing sets of the form Sx after all those of the form Tj .
The reason is as follows. Let X be unbounded in w;. Recall that forcing
below Sx produces a generic ultrapower in which

X = ja(A)y.

Observe that w; is the wi-st element of 3°X for all § < w,. Thus, in
the obvious sense,

wy € aW2jG(A)wY )

which goes beyond what happens if we force below any of the sets Tj ,.
We conjecture that the join of the antichain

(T5p | 0 <wo & p <wi)

is the Boolean value of the sentence
J(A),y €V and j(A),y is unbounded in Wy,
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perhaps under one of the familiar hypotheses on the canonical func-
tions.

It is easy to see that (Ts, | 6 < ws & p < wi)"(Sx | X C wy) is
not necessarily a maximal antichain. The example we have in mind
involves redefining A on T again as follows. Let A” be a subset of w
that codes a wellorder of type o whenever a € T', while if a € T, then
let A? = A,. Then T forces

HA)uy £V and (A" C w.

Let Rg = {a < wy | sup(A4,) = B} for f < wy. It is obvious that
(Rp | B < wy) is an antichain the join of which is the the Boolean value
of

j(A)yy is bounded in wy .
Thus our conjecture above says exactly that
(T5p | 0 <wr & p <wi) (Sx | X Cwy & sup(X) =wi) (Rg | f <wi)
is a maximal antichain. Even if the conjecture turns out to be true, we
still would not know how to describe the Boolean value of

§(A)uy €V and j(A),y is bounded in wy .
as the join of a specific antichain.
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