DIAMOND AND ANTICHAINS

JAMES CUMMINGS AND ERNEST SCHIMMERLING

ABSTRACT. It is obvious that \diamondsuit implies the existence of an antichain of stationary sets of cardinality 2^{\aleph_1} , which is the largest possible cardinality. We show that the obvious antichain is not maximal and find a less obvious extension of it by \aleph_2 more stationary sets.

Let
$$A = \langle A_{\alpha} \mid \alpha < \omega_1 \rangle$$
 be a \diamond -sequence. For $X \subseteq \omega_1$, let
 $S_X = \{ \alpha < \omega_1 \mid X \cap \alpha = A_{\alpha} \}.$

Then each S_X is stationary. Moreover, if $X \neq Y$, then $S_X \cap S_Y$ is bounded in ω_1 . Thus $\langle S_X | X \subseteq \omega_1 \rangle$ is an antichain of stationary sets of cardinality 2^{\aleph_1} . Part of what we will show is that $\langle S_X | X \subseteq \omega_1 \rangle$ is not a maximal antichain.

First we record some easy observations. In the Boolean completion of $\mathcal{P}(\omega_1)/\text{NS}$, S_X is the Boolean value of the sentence

> If $j_G : V \longrightarrow M$ is the generic ultrapower embedding (where the wellfounded part of M is is identified with its Mostowski collapse), then

$$j_G(A)_{\omega_1^V} = X.$$

Moreover, the Boolean value of the sentence

$$j_G(A)_{\omega^V} \in V$$

is precisely the join of the antichain $\langle S_X | X \subseteq \omega_1 \rangle$.

If X is a set of countable ordinals, then we write $\operatorname{acc}(X)$ for the set of accumulation points of X, that is $\{\alpha < \omega_1 \mid \sup(X \cap \alpha) = \alpha\}$.

Definition 1. Let $T = \{ \alpha < \omega_1 \mid S_{A_\alpha} \cap \operatorname{acc}(A_\alpha) = \{ \alpha \} \}.$

In other words, T is the collection of $\beta < \omega_1$ such that $\beta = \sup(A_\beta)$ but there are no accumulation points $\alpha < \beta$ of A_β such that $A_\alpha = A_\beta \cap \alpha$.

¹⁹⁹¹ Mathematics Subject Classification. 03E.

The research of the authors is partially supported by the NSF.

The second author was partially supported by IHES during his June 5-25, 2002, visit. He thanks Stevo Todorcevic and Boban Velickovic for conversations during the visit on the main question answered in this report.

Lemma 2. T is stationary and $|T \cap S_X| \leq 1$ for all $X \subseteq \omega_1$. In particular, $\langle S_X | X \subseteq \omega_1 \rangle$ is not a maximal antichain in NS.

Proof. Consider an arbitrary club $C \subseteq \omega_1$. Then $\operatorname{acc}(C)$ is a club subset of C and $S_C \cap \operatorname{acc}(C)$ is stationary. Let α be the least element of $S_C \cap \operatorname{acc}(C)$. Then α is the unique element of $T \cap S_C \cap \operatorname{acc}(C)$. In particular, $\alpha \in T \cap C$. This shows that T is stationary.

Now let $X \subseteq \omega_1$ and $\alpha < \beta$ be elements of S_X . Then $A_\alpha = A_\beta \cap \alpha$. It is enough to show that if $\beta \in T$, then $\alpha \notin T$. Assume $\beta \in T$. Because $\alpha \in \beta \cap S_{A_\beta}$ and $\beta \in T$, we may conclude that $\alpha \notin \operatorname{acc}(A_\beta)$. So $\alpha \notin \operatorname{acc}(A_\alpha)$. Hence $\alpha \notin T$.

Let us record the easy observation that T is the Boolean value of the sentence

 $j_G(A)_{\omega_1^V}$ is unbounded in ω_1^V but if $\alpha < \omega_1^V$ is an accumulation point of $j_G(A)_{\omega_1^V}$, then $A_{\alpha} \neq j_G(A)_{\omega_1^V} \cap \alpha$.

We have shown that our \diamond -sequence is also a $\diamond(T^c)$ sequence where $T^c = \omega_1 - T$. Many useful examples are obtained by the standard trick of redefining A_{α} for $\alpha \in T$. For example, if $\alpha \in T$, then let A'_{α} be an unbounded subset of α of order type ω , while if $\alpha \in T^c$, then keep $A'_{\alpha} = A_{\alpha}$. Observe that T forces

 $j_G(A')_{\omega_1^V}$ is unbounded in ω_1^V and has order type ω .

Note that in this example, if T' is computed from A' the same way that T was computed from A, then $T \subseteq T'$.

Our next goal is to define sets $T_{\delta,\rho}$ so that

$$\langle T_{\delta,\rho} \mid \delta < \omega_2 \& \rho < \omega_1 \rangle^\frown \langle S_X \mid X \subseteq \omega_1 \rangle$$

is an antichain of stationary sets. For $\omega_1 \leq \delta < \omega_2$, let e_{δ} map ω_1 onto δ with $e_{\delta}(0) = 0$. This choice will remain fixed for the rest of our note.

Definition 3. By recursion on $\delta < \omega_2$, define $\partial^{\delta} X$ for $X \subseteq \omega_1$ as follows. Let

$$\partial^0 X = \operatorname{acc}(X).$$

If $\delta = \gamma + 1$, then let

$$\partial^{\delta} X = \{ \alpha < \omega_1 \mid \operatorname{ot}(\alpha \cap S_X \cap \partial^{\gamma} X) = \alpha \}.$$

If δ is a countable limit ordinal, then let

$$\partial^{\delta} X = \bigcap_{\gamma < \delta} \partial^{\gamma} X.$$

If δ is an uncountable limit ordinal, then let

$$\partial^{\delta} X = \underset{\iota < \omega_1}{\bigtriangledown} \partial^{e_{\delta}(\iota)} X$$

We remark that there is an alternative approach in which the countable limit stages in the definition of $\partial^{\delta} X$ are handled using diagonal intersections instead of intersections. There is very little difference between the two approaches, and so we simply picked one randomly here.

Lemma 4. Let $\delta < \omega_2$.

(1) For all
$$X \subseteq \omega_1$$
 and $\alpha < \omega_1$,
 $\alpha \cap \partial^{\delta} X = \alpha \cap \partial^{\delta} (\alpha \cap X).$
If, in addition, $\alpha \in \operatorname{acc}(X)$ and $A_{\alpha} = X \cap \alpha$, then
 $\alpha \in \partial^{\delta} X \iff \alpha \in \partial^{\delta} A_{\alpha}.$

- (2) For all unbounded $X \subseteq \omega_1$, $\partial^{\delta} X$ is club in ω_1 .
- (3) For all ε such that $\delta \leq \varepsilon < \omega_2$, there exists $\iota < \omega_1$ such that

$$(\partial^{\varepsilon} X) - \iota \subseteq \partial^{\delta} X$$

whenever $X \subseteq \omega_1$.

(4) If C is a club subset of ω_1 , then

 $\partial^{\delta} C \subseteq C.$

The proof of Lemma 4 is standard. Let us write $\iota_{\delta,\varepsilon}$ for the least ι as in Part 3 of Lemma 4. Our requirement that $e_{\delta}(0) = 0$ was to ensure that $\iota_{0,\delta} = 0$.

Definition 5. For $\delta < \omega_2$ and $\rho < \omega_1$, let

$$T_{\delta,\rho} = \left\{ \alpha < \omega_1 \mid \alpha \in \partial^{\delta} A_{\alpha} \& \text{ ot } \left(\alpha \cap S_{A_{\alpha}} \cap \partial^{\delta} A_{\alpha} \right) = \rho \right\}.$$

In other words, $T_{\delta,\rho}$ is the set of $\alpha < \omega_1$ such that $S_{A_{\alpha}} \cap \partial^{\delta} A_{\alpha}$ has order type $\rho + 1$ and greatest element α . Note that $T_{0,0} = T$.

Theorem 6. $\langle T_{\delta,\rho} | \delta < \omega_2 \& \rho < \omega_1 \rangle^{\frown} \langle S_X | X \subseteq \omega_1 \rangle$ is an antichain of stationary sets. Moreover, if P and Q are distinct elements of this antichain, then $P \cap Q$ is bounded in ω_1 .

Theorem 6 follows immediately from Lemmas 7 - 12 below.

Lemma 7. For $\delta < \omega_2$ and $\rho < \omega_1$, $T_{\delta,\rho}$ is stationary in ω_1 .

Proof. Let C be an arbitrary club subset of ω_1 . Then $\partial^{\delta} C$ is a club subset of C and $S_C \cap \partial^{\delta} C$ is stationary. Let α be the ρ -th element in the increasing enumeration of $S_C \cap \partial^{\delta} C$. Then α is the unique element of $T_{\delta,\rho} \cap S_C \cap \partial^{\delta} C$. In particular, $\alpha \in T_{\delta,\rho} \cap C$.

Lemma 8. Let $\delta < \omega_2$ and $\rho < \sigma < \omega_1$. Then

$$T_{\delta,\rho} \cap T_{\delta,\sigma} = \emptyset$$

Proof. Otherwise, there would be an ordinal α such that α is both the ρ -th and the σ -th element of $S_{A_{\alpha}} \cap \partial^{\delta} A_{\alpha}$. This is absurd. \Box

Lemma 9. Let $\delta < \omega_2$ and $\rho < \omega_1$. Then

$$|T_{\delta,\rho} \cap S_X| \le 1$$

whenever $X \subseteq \omega_1$.

Proof. Let $\alpha < \beta$ be elements of S_X . Then $A_{\alpha} = A_{\beta} \cap \alpha$. For contradiction, suppose that both α and β are elements of $T_{\delta,\rho}$. Then, for some $\sigma < \rho$, α is the σ -th element of $\beta \cap S_{A_{\beta}} \cap \partial^{\delta}A_{\beta}$. By Part 1 of Lemma 4 and the fact that $A_{\alpha} = A_{\beta} \cap \alpha$, we have that that $\alpha \in T_{\delta,\sigma}$. This contradicts Lemma 8.

Lemma 10. Let $\delta < \varepsilon < \omega_2$ and $\rho, \sigma < \omega_1$. Suppose that ε is a limit ordinal. If ε is countable, then

$$T_{\delta,\rho} \cap T_{\varepsilon,\sigma} \subseteq (\delta+1) \cup \{\rho\}.$$

If, on the other hand, ε is uncountable and $e_{\varepsilon}(\iota) = \delta + 1$, then

$$T_{\delta,\rho} \cap T_{\varepsilon,\sigma} \subseteq \iota \cup \{\rho\}$$

Proof. First suppose that ε is uncountable. Let

$$\alpha \in T_{\delta,\rho} \cap T_{\varepsilon,\sigma}$$

such that $\alpha > \iota$. Because $\alpha \in T_{\varepsilon,\sigma}$,

$$\alpha \in \partial^{\delta+1} A_{\alpha}.$$

So

$$\operatorname{ot}(\alpha \cap S_{A_{\alpha}} \cap \partial^{\flat} A_{\alpha}) = \alpha.$$

Because $\alpha \in T_{\delta,\rho}$,

$$\operatorname{ot}(\alpha \cap S_{A_{\alpha}} \cap \partial^{\delta} A_{\alpha}) = \rho.$$

Thus $\alpha = \rho$.

The proof when ε is countable is essentially the same, so we omit it. \Box

Lemma 11. Let $\gamma < \omega_2$ and $\rho, \sigma < \omega_1$. Then

$$T_{\gamma,\rho} \cap T_{\gamma+1,\sigma} \subseteq \{\rho\}.$$

Proof. Let $\alpha \in T_{\gamma,\rho} \cap T_{\gamma+1,\sigma}$. Then α is both the ρ -th and the α -th element of $S_{A_{\alpha}} \cap \partial^{\gamma} A_{\alpha}$. So $\alpha = \rho$.

Lemma 12. Suppose that $\delta < \varepsilon$ and $\rho, \sigma < \omega_1$. Then $T_{\delta,\rho} \cap T_{\varepsilon+1,\sigma}$ is bounded in ω_1 .

 $\mathbf{4}$

Proof. Assume for contradiction that $T_{\delta,\rho} \cap T_{\varepsilon+1,\sigma}$ is unbounded in ω_1 . Consider an arbitrary $\alpha \in T_{\delta,\rho} \cap T_{\varepsilon+1,\sigma}$. Then α is the ρ -th element of

$$S_{A_{\alpha}} \cap \partial^{\delta} A_{\alpha}$$

and the σ -th element of

$$S_{A_{\alpha}} \cap \partial^{\varepsilon+1} A_{\alpha}.$$

So α is the α -th element of

$$S_{A_{\alpha}} \cap \partial^{\varepsilon} A_{\alpha}$$

by the definition of $\partial^{\varepsilon+1} A_{\alpha}$.

Recall that by Part 3 of Lemma 4, there is an ordinal $\iota = \iota_{\delta,\varepsilon}$ such that for all $\alpha > \iota$,

$$\partial^{\varepsilon} A_{\alpha} - \iota \subseteq \partial^{\delta} A_{\alpha}$$

Let us assume that α is large enough that $\alpha > \iota$ and $\iota + \alpha = \alpha$. Then α is the α -th element of

$$(S_{A_{\alpha}} \cap \partial^{\varepsilon} A_{\alpha}) - \iota.$$

Hence α is the α -th element of

 $S_{A_{\alpha}} \cap \partial^{\delta} A_{\alpha}.$

Therefore $\alpha = \rho$.

That completes the proof of Theorem 6. We close with some remarks and a conjecture.

It is natural to consider the sets $T_{\delta,\rho}$ as being ordered lexicographically according to the index (δ, ρ) . The reader may wonder why we have been listing sets of the form S_X after all those of the form $T_{\delta,\rho}$. The reason is as follows. Let X be unbounded in ω_1 . Recall that forcing below S_X produces a generic ultrapower in which

$$X = j_G(A)_{\omega_1^V}.$$

Observe that ω_1 is the ω_1 -st element of $\partial^{\delta} X$ for all $\delta < \omega_2$. Thus, in the obvious sense,

$$\omega_1 \in \partial^{\omega_2} j_G(A)_{\omega_1^V}$$

which goes beyond what happens if we force below any of the sets $T_{\delta,\rho}$. We conjecture that the join of the antichain

$$\langle T_{\delta,
ho} \mid \delta < \omega_2 \ \& \
ho < \omega_1
angle$$

is the Boolean value of the sentence

 $j(A)_{\omega_1^V} \notin V$ and $j(A)_{\omega_1^V}$ is unbounded in ω_1^V ,

5

perhaps under one of the familiar hypotheses on the canonical functions.

It is easy to see that $\langle T_{\delta,\rho} | \delta < \omega_2 \& \rho < \omega_1 \rangle^{\frown} \langle S_X | X \subseteq \omega_1 \rangle$ is not necessarily a maximal antichain. The example we have in mind involves redefining A on T again as follows. Let A''_{α} be a subset of ω that codes a wellorder of type α whenever $\alpha \in T$, while if $\alpha \in T^c$, then let $A''_{\alpha} = A_{\alpha}$. Then T forces

 $j(A'')_{\omega_1^V} \notin V \text{ and } j(A'')_{\omega_1^V} \subseteq \omega.$

Let $R_{\beta} = \{\alpha < \omega_1 \mid \sup(A_{\alpha}) = \beta\}$ for $\beta < \omega_1$. It is obvious that $\langle R_{\beta} \mid \beta < \omega_1 \rangle$ is an antichain the join of which is the Boolean value of

 $j(A)_{\omega_1^V}$ is bounded in ω_1^V .

Thus our conjecture above says exactly that

 $\langle T_{\delta,\rho} \mid \delta < \omega_2 \& \rho < \omega_1 \rangle^{\frown} \langle S_X \mid X \subseteq \omega_1 \& \sup(X) = \omega_1 \rangle^{\frown} \langle R_\beta \mid \beta < \omega_1 \rangle$ is a maximal antichain. Even if the conjecture turns out to be true, we still would not know how to describe the Boolean value of

 $j(A)_{\omega_1^V} \notin V$ and $j(A)_{\omega_1^V}$ is bounded in ω_1^V .

as the join of a specific antichain.

E-mail address: jcumming@andrew.cmu.edu *E-mail address*: eschimme@andrew.cmu.edu

DEPARTMENT OF MATHEMATICAL SCIENCES, CARNEGIE MELLON UNIVER-SITY, PITTSBURGH, PA 15213-3890, USA

6