DIAMOND AND ANTICHAINS

JAMES CUMMINGS AND ERNEST SCHIMMERLING

Abstract. It is obvious that \(\diamond \) implies the existence of an antichain of stationary sets of cardinality \(2^{\omega_1} \), which is the largest possible cardinality. We show that the obvious antichain is not maximal and find a less obvious extension of it by \(\aleph_2 \) more stationary sets.

Let \(A = \langle A_\alpha \mid \alpha < \omega_1 \rangle \) be a \(\diamond \)-sequence. For \(X \subseteq \omega_1 \), let

\[
S_X = \{ \alpha < \omega_1 \mid X \cap \alpha = A_\alpha \}.
\]

Then each \(S_X \) is stationary. Moreover, if \(X \neq Y \), then \(S_X \cap S_Y \) is bounded in \(\omega_1 \). Thus \(\langle S_X \mid X \subseteq \omega_1 \rangle \) is an antichain of stationary sets of cardinality \(2^{\omega_1} \). Part of what we will show is that \(\langle S_X \mid X \subseteq \omega_1 \rangle \) is not a maximal antichain.

First we record some easy observations. In the Boolean completion of \(P(\omega_1)/NS \), \(S_X \) is the Boolean value of the sentence

\[
\text{If } j_G : V \longrightarrow M \text{ is the generic ultrapower embedding (where the wellfounded part of } M \text{ is identified with its Mostowski collapse), then}
\]

\[
j_G(A)_{\omega_1^V} = X.
\]

Moreover, the Boolean value of the sentence

\[
j_G(A)_{\omega_1^V} \in V
\]

is precisely the join of the antichain \(\langle S_X \mid X \subseteq \omega_1 \rangle \).

If \(X \) is a set of countable ordinals, then we write \(\text{acc}(X) \) for the set of accumulation points of \(X \), that is \(\{ \alpha < \omega_1 \mid \sup(X \cap \alpha) = \alpha \} \).

Definition 1. Let \(T = \{ \alpha < \omega_1 \mid S_{A_\alpha} \cap \text{acc}(A_\alpha) = \{ \alpha \} \} \).

In other words, \(T \) is the collection of \(\beta < \omega_1 \) such that \(\beta = \sup(A_\beta) \) but there are no accumulation points \(\alpha < \beta \) of \(A_\beta \) such that \(A_\alpha = A_\beta \cap \alpha \).

1991 Mathematics Subject Classification. 03E.

The research of the authors is partially supported by the NSF.

The second author was partially supported by IHES during his June 5-25, 2002, visit. He thanks Stevo Todorcevic and Boban Velickovic for conversations during the visit on the main question answered in this report.
Lemma 2. T is stationary and $|T \cap S_X| \leq 1$ for all $X \subseteq \omega_1$. In particular, $(S_X \mid X \subseteq \omega_1)$ is not a maximal antichain in NS.

Proof. Consider an arbitrary club $C \subseteq \omega_1$. Then $\text{acc}(C)$ is a club subset of C and $S_C \cap \text{acc}(C)$ is stationary. Let α be the least element of $S_C \cap \text{acc}(C)$. Then α is the unique element of $T \cap S_C \cap \text{acc}(C)$. In particular, $\alpha \in T \cap C$. This shows that T is stationary.

Now let $X \subseteq \omega_1$ and $\alpha < \beta$ be elements of S_X. Then $A_\alpha = A_\beta \cap \alpha$. It is enough to show that if $\beta \in T$, then $\alpha \not\in T$. Assume $\beta \in T$. Because $\alpha \in \beta \cap S_{A_\beta}$ and $\beta \in T$, we may conclude that $\alpha \not\in \text{acc}(A_\beta)$. So $\alpha \not\in \text{acc}(A_\alpha)$. Hence $\alpha \not\in T$. □

Let us record the easy observation that T is the Boolean value of the sentence

$$j_G(A)_\omega^Y \text{ is unbounded in } \omega_1^Y \text{ but if } \alpha < \omega_1^Y \text{ is an accumulation point of } j_G(A)_\omega^Y, \text{ then } A_\alpha \neq j_G(A)_\omega^Y \cap \alpha.$$

We have shown that our \diamond-sequence is also a $\diamond\langle T^\prime \rangle$ sequence where $T^\prime = \omega_1 - T$. Many useful examples are obtained by the standard trick of redefining A_α for $\alpha \in T$. For example, if $\alpha \in T$, then let $\alpha' \subseteq \alpha$ be an unbounded subset of α of order type ω, while if $\alpha \in T^\prime$, then keep $\alpha' = \alpha$. Observe that T forces

$$j_G(A')_\omega^Y \text{ is unbounded in } \omega_1^Y \text{ and has order type } \omega.$$

Note that in this example, if T' is computed from A' the same way that T was computed from A, then $T \subseteq T'$.

Our next goal is to define sets $T_{\delta, \rho}$ so that

$$(T_{\delta, \rho} \mid \delta < \omega_2 \& \rho < \omega_1) \cap \langle S_X \mid X \subseteq \omega_1 \rangle$$

is an antichain of stationary sets. For $\omega_1 \leq \delta < \omega_2$, let e_δ map ω_1 onto δ with $e_\delta(0) = 0$. This choice will remain fixed for the rest of our note.

Definition 3. By recursion on $\delta < \omega_2$, define $\partial^\delta X$ for $X \subseteq \omega_1$ as follows. Let

$$\partial^0 X = \text{acc}(X).$$

If $\delta = \gamma + 1$, then let

$$\partial^\delta X = \{ \alpha < \omega_1 \mid \text{ot}(\alpha \cap S_X \cap \partial^\gamma X) = \alpha \}.$$

If δ is a countable limit ordinal, then let

$$\partial^\delta X = \bigcap_{\gamma < \delta} \partial^\gamma X.$$

If δ is an uncountable limit ordinal, then let

$$\partial^\delta X = \bigcup_{i < \omega_1} \partial^{\delta^{\langle i \rangle}} X.$$
We remark that there is an alternative approach in which the countable limit stages in the definition of $\partial^\delta X$ are handled using diagonal intersections instead of intersections. There is very little difference between the two approaches, and so we simply picked one randomly here.

Lemma 4. Let $\delta < \omega_2$.

1. For all $X \subseteq \omega_1$ and $\alpha < \omega_1$,
 \[\alpha \cap \partial^\delta X = \alpha \cap \partial^\delta (\alpha \cap X). \]
 If, in addition, $\alpha \in \text{acc}(X)$ and $A_\alpha = X \cap \alpha$, then
 \[\alpha \in \partial^\delta X \iff \alpha \in \partial^\delta A_\alpha. \]

2. For all unbounded $X \subseteq \omega_1$, $\partial^\delta X$ is club in ω_1.

3. For all ε such that $\delta \leq \varepsilon < \omega_2$, there exists $\iota < \omega_1$ such that
 \[(\partial^\delta X) - \varepsilon \subseteq \partial^\delta X \]
 whenever $X \subseteq \omega_1$.

4. If C is a club subset of ω_1, then
 \[\partial^\delta C \subseteq C. \]

The proof of Lemma 4 is standard. Let us write $\iota_{\delta, \varepsilon}$ for the least ι as in Part 3 of Lemma 4. Our requirement that $e_\delta(0) = 0$ was to ensure that $\iota_{0, \delta} = 0$.

Definition 5. For $\delta < \omega_2$ and $\rho < \omega_1$, let

\[T_{\delta, \rho} = \{ \alpha < \omega_1 \mid \alpha \in \partial^\delta A_\alpha \& \text{ot} (\alpha \cap S_{A_\alpha} \cap \partial^\delta A_\alpha) = \rho \}. \]

In other words, $T_{\delta, \rho}$ is the set of $\alpha < \omega_1$ such that $S_{A_\alpha} \cap \partial^\delta A_\alpha$ has order type $\rho + 1$ and greatest element α. Note that $T_{0, 0} = T$.

Theorem 6. $(T_{\delta, \rho} \mid \delta < \omega_2 \& \rho < \omega_1) \cap (S_X \mid X \subseteq \omega_1)$ is an antichain of stationary sets. Moreover, if P and Q are distinct elements of this antichain, then $P \cap Q$ is bounded in ω_1.

Theorem 6 follows immediately from Lemmas 7 – 12 below.

Lemma 7. For $\delta < \omega_2$ and $\rho < \omega_1$, $T_{\delta, \rho}$ is stationary in ω_1.

Proof. Let C be an arbitrary club subset of ω_1. Then $\partial^\delta C$ is a club subset of C and $S_C \cap \partial^\delta C$ is stationary. Let α be the ρ-th element in the increasing enumeration of $S_C \cap \partial^\delta C$. Then α is the unique element of $T_{\delta, \rho} \cap S_C \cap \partial^\delta C$. In particular, $\alpha \in T_{\delta, \rho} \cap C$. \(\square\)

Lemma 8. Let $\delta < \omega_2$ and $\rho < \sigma < \omega_1$. Then
\[T_{\delta, \rho} \cap T_{\delta, \sigma} = \emptyset. \]
Proof. Otherwise, there would be an ordinal \(\alpha \) such that \(\alpha \) is both the \(\rho \)-th and the \(\sigma \)-th element of \(S_{A_\alpha} \cap \partial^\delta A_\alpha \). This is absurd. \(\square \)

Lemma 9. Let \(\delta < \omega_2 \) and \(\rho < \omega_1 \). Then

\[
|T_{\delta,\rho} \cap S_X| \leq 1
\]

whenever \(X \subseteq \omega_1 \).

Proof. Let \(\alpha < \beta \) be elements of \(S_X \). Then \(A_\alpha = A_\beta \cap \alpha \). For contradiction, suppose that both \(\alpha \) and \(\beta \) are elements of \(T_{\delta,\rho} \). Then, for some \(\sigma < \rho \), \(\alpha \) is the \(\sigma \)-th element of \(\beta \cap S_{A_\beta} \cap \partial^\delta A_\beta \). By Part 1 of Lemma 4 and the fact that \(A_\alpha = A_\beta \cap \alpha \), we have that that \(\alpha \in T_{\delta,\rho} \). This contradicts Lemma 8. \(\square \)

Lemma 10. Let \(\delta < \varepsilon < \omega_2 \) and \(\rho, \sigma < \omega_1 \). Suppose that \(\varepsilon \) is a limit ordinal. If \(\varepsilon \) is countable, then

\[
T_{\delta,\rho} \cap T_{\varepsilon,\sigma} \subseteq (\delta + 1) \cup \{\rho\}.
\]

If, on the other hand, \(\varepsilon \) is uncountable and \(\epsilon_\varepsilon (\varepsilon) = \delta + 1 \), then

\[
T_{\delta,\rho} \cap T_{\varepsilon,\sigma} \subseteq \varepsilon \cup \{\rho\}.
\]

Proof. First suppose that \(\varepsilon \) is uncountable. Let

\[
\alpha \in T_{\delta,\rho} \cap T_{\varepsilon,\sigma}
\]

such that \(\alpha > \nu \). Because \(\alpha \in T_{\varepsilon,\sigma} \),

\[
\alpha \in \partial^{\delta+1} A_\alpha.
\]

So

\[
\text{ot}(\alpha \cap S_{A_\alpha} \cap \partial^\delta A_\alpha) = \alpha.
\]

Because \(\alpha \in T_{\delta,\rho} \),

\[
\text{ot}(\alpha \cap S_{A_\alpha} \cap \partial^\delta A_\alpha) = \rho.
\]

Thus \(\alpha = \rho \).

The proof when \(\varepsilon \) is countable is essentially the same, so we omit it. \(\square \)

Lemma 11. Let \(\gamma < \omega_2 \) and \(\rho, \sigma < \omega_1 \). Then

\[
T_{\gamma,\rho} \cap T_{\gamma+1,\sigma} \subseteq \{\rho\}.
\]

Proof. Let \(\alpha \in T_{\gamma,\rho} \cap T_{\gamma+1,\sigma} \). Then \(\alpha \) is both the \(\rho \)-th and the \(\alpha \)-th element of \(S_{A_\alpha} \cap \partial^\delta A_\alpha \). So \(\alpha = \rho \). \(\square \)

Lemma 12. Suppose that \(\delta < \varepsilon \) and \(\rho, \sigma < \omega_1 \). Then \(T_{\delta,\rho} \cap T_{\varepsilon+1,\sigma} \) is bounded in \(\omega_1 \).
Proof. Assume for contradiction that $T_{\delta,\rho} \cap T_{\varepsilon+1,\sigma}$ is unbounded in ω_1. Consider an arbitrary $\alpha \in T_{\delta,\rho} \cap T_{\varepsilon+1,\sigma}$. Then α is the ρ-th element of

$$S_{A_{\alpha}} \cap \partial^\varepsilon A_{\alpha}$$

and the σ-th element of

$$S_{A_{\alpha}} \cap \partial^{\varepsilon+1} A_{\alpha}.$$ So α is the α-th element of

$$S_{A_{\alpha}} \cap \partial A_{\alpha}$$

by the definition of $\partial^{\varepsilon+1} A_{\alpha}$.

Recall that by Part 3 of Lemma 4, there is an ordinal $\iota = \iota_{\delta,\varepsilon}$ such that for all $\alpha > \iota$,

$$\partial A_{\alpha} - \iota \subseteq \partial^\varepsilon A_{\alpha}.$$ Let us assume that α is large enough that $\alpha > \iota$ and $\iota + \alpha = \alpha$. Then α is the α-th element of

$$(S_{A_{\alpha}} \cap \partial^\varepsilon A_{\alpha}) - \iota.$$ Hence α is the α-th element of

$$S_{A_{\alpha}} \cap \partial^\varepsilon A_{\alpha}.$$ Therefore $\alpha = \rho$. \qed

That completes the proof of Theorem 6. We close with some remarks and a conjecture.

It is natural to consider the sets $T_{\delta,\rho}$ as being ordered lexicographically according to the index (δ, ρ). The reader may wonder why we have been listing sets of the form S_X after all those of the form $T_{\delta,\rho}$. The reason is as follows. Let X be unbounded in ω_1. Recall that forcing below S_X produces a generic ultrapower in which

$$X = j_G(A)_{\omega_1^V}.$$ Observe that ω_1 is the ω_1-st element of $\partial^\varepsilon X$ for all $\delta < \omega_2$. Thus, in the obvious sense,

$$\omega_1 \in \partial^{\omega_2} j_G(A)_{\omega_1^V},$$

which goes beyond what happens if we force below any of the sets $T_{\delta,\rho}$.

We conjecture that the join of the antichain

$$\langle T_{\delta,\rho} \mid \delta < \omega_2 \& \rho < \omega_1 \rangle$$

is the Boolean value of the sentence

$$j(A)_{\omega_1^V} \not\in V \text{ and } j(A)_{\omega_1^V} \text{ is unbounded in } \omega_1^V,$$
perhaps under one of the familiar hypotheses on the canonical functions.

It is easy to see that $(\mathcal{T}_{\delta,\rho} \mid \delta < \omega_2 \land \rho < \omega_1)^{V} \cap \langle S_X \mid X \subseteq \omega_1 \rangle$ is not necessarily a maximal antichain. The example we have in mind involves redefining A on T again as follows. Let A''_α be a subset of ω that codes a wellorder of type α whenever $\alpha \in T$, while if $\alpha \in T^c$, then let $A''_\alpha = A_\alpha$. Then T forces

$$j(A'')_{\omega_1} \notin V \text{ and } j(A''_\alpha) \subseteq \omega.$$

Let $R_\beta = \{ \alpha < \omega_1 \mid \text{sup}(A_\alpha) = \beta \}$ for $\beta < \omega_1$. It is obvious that $\langle R_\beta \mid \beta < \omega_1 \rangle$ is an antichain the join of which is the the Boolean value of

$$j(A)_{\omega_1} \text{ is bounded in } \omega^V_1.$$

Thus our conjecture above says exactly that

$$\langle T_{\delta,\rho} \mid \delta < \omega_2 \land \rho < \omega_1 \rangle \cap \langle S_X \mid X \subseteq \omega_1 \land \text{sup}(X) = \omega_1 \rangle \cap \langle R_\beta \mid \beta < \omega_1 \rangle$$

is a maximal antichain. Even if the conjecture turns out to be true, we still would not know how to describe the Boolean value of

$$j(A)_{\omega_1} \notin V \text{ and } j(A)_{\omega_1} \text{ is bounded in } \omega^V_1.$$

as the join of a specific antichain.

E-mail address: jcumming@andrew.cmu.edu
E-mail address: eschimme@andrew.cmu.edu

Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213-3890, USA