
CANONICAL STRUCTURE IN THE UNIVERSE OF SETTHEORY: PART TWOJAMES CUMMINGS, MATTHEW FOREMAN, AND MENACHEM MAGIDORAbstrat. We prove a number of onsisteny results omplementary to theZFC results from our paper [4℄. We produe examples of non-tightly sta-tionary mutually stationary sequenes, sequenes of ardinals on whih everysequene of sets is mutually stationary, and mutually stationary sequenes notonentrating on a �xed o�nality. We also give an alternative proof for theonsisteny of the existene of stationarily many non-good points, show thatdiagonal Prikry foring preserves ertain stationary reetion properties, andstudy the relationship between some simultaneous reetion priniples. Finallywe show that the least ardinal where square fails an be the least inaessi-ble, and show that weak square is inompatible in a strong sense with generisuperompatness.
1. IntrodutionIn our paper [4℄ we prove a number of ZFC results onerning PCF theory,mutual stationarity, square priniples and stationary reetion. In that paper wedisussed the informal notion of anonial struture. This notion is supposed toapture the idea of struture that is not arbitrarily determined by non-onstrutiveexistene assumption. For example, struture that requires the axiom of hoie toprove its existene may still be independent of any hoies made in proving it exists.Cardinals of unountable o�nality fall into this ategory. Other examples mightinlude �ne struture models of large ardinals. Large ardinal axioms are non-onstrutive assumptions (as opposed to e.g. the pairing axiom, where we knowexatly what the intended objet is). However, as a onsequene of their existenethere is various anonial struture, suh as U \ L[U ℄ for U a normal ultra�lter ona measurable ardinal �.The notion of anonial struture is di�erent from the notion of absoluteness. Weillustrate this with an example. Assuming the Axiom of Choie, the olletion ofreal numbers has some well-ordered ardinality  and this ardinality is independentof the hoies made to show it exists. Similarly, one needs the Axiom of Choie toprove that the least regular unountable ordinal (�1) exists. Both of these objetsare \anonial" in our sense, but it is independent of ZFC whether they are in fatidential. We would like to say that these distint examples of struture that mayor may not determine idential objets.1991 Mathematis Subjet Classi�ation. Primary 03E35, 03E55; Seondary 03E05.Key words and phrases. PCF theory, good ordinal, approahable ordinal, the ideal I[�℄, in-ternally approahable struture, tight struture, square sequene, overing properties, preipitousideal, mutual stationarity, stationary reetion.The �rst author was partially supported by NSF Grants DMS-9703945 and DMS-0070549.The seond author was partially supported by DMS-9803126 and DMS-0101155. The seond andthird authors were partially supported by the US-Israel Binational Siene Foundation.1



2 JAMES CUMMINGS, MATTHEW FOREMAN, AND MENACHEM MAGIDORIn this paper we ontinue to explore anonial struture by proving onsistenyresults omplementary to the ZFC results in [4℄.After some preliminaries in Setion 2, we show the following results.� In Setion 3, we give a foring onstrution for a sequene of stationary setswhih is mutually stationary but not tightly stationary. The proof involvesa ombinatorial priniple whih we dub Coherent Squares.� In Setion 4, we give another foring onstrution for a sequene of sta-tionary sets whih is mutually stationary but not tightly stationary. Theproof involves some lemmas about uniform strutures and mutual station-arity whih are of independent interest. We also show the onsisteny of asplitting property for mutually stationary sequenes.� In Setion 5 we show that on an inreasing !-sequene of measurable ar-dinals, any sequene of stationary sets is mutually stationary. We alsoshow that for any Prikry-generi sequene, a tail of the sequene has thisproperty.� In Setion 6 we give an alternative proof of a theorem by Shelah, thatthere an exist sequenes of stationary sets on the �n for n �nite whih aremutually stationary and do not onentrate on a �xed o�nality.� In Setion 7 we give an alternative onstrution for a model in whih theset of non-good points of o�nality �1 in �!+1 is non-stationary. We alsoshow that if we are given an inreasing !-sequene of measurable ardinalssuh that the suessor of their supremum exhibits a ertain stationaryreetion property, then the reetion property is preserved by diagonalPrikry foring.� In Setion 8 we show that the priniple saying that for all � any familyof fewer than � many stationary subsets of [�℄�0 reet does not implysimultaneous reetion of � many sets of !-o�nal ordinals. The proof usesMartin's Maximum.� In Setion 9 we show that it is onsistent that the least � for whih �� failsis inaessible.� In Setion 10 we show that if ��� holds for a singular ardinal � of o�nality!, then a ardinal-preserving ountably losed foring poset an not reateany instanes of superompatness below �. This shows that there is anessential problem in a result by Ben-David and Shelah [2℄.We would like to thank John Krueger for his areful reading of an earlier versionof this paper.
2. PreliminariesIn this setion we give some bakground material on mutual and tight station-arity and PCF theory. For more details we refer the reader to [4℄.The idea of mutual stationarity was introdued by Foreman and Magidor [12℄ intheir work on the non-saturation of the non-stationary ideal on P��.De�nition 2.1. Let hS� : � 2 Ki be suh that S� � � for all � 2 K, where K isa set of regular unountable ardinals.(1) If N is a set, then N meets hS� : � 2 Ki if and only if sup(N \ �) 2 S� forall � 2 N \K.



CANONICAL STRUCTURE 3(2) hS� : � 2 Ki is mutually stationary if and only if for every algebra A onsup(K) there exists N � A suh that N meets hS� : � 2 Ki.If S � P(X) then S is a stationary subset of P(X) if and only if for every algebraA on X there is B 2 S suh that B � A. The sequene hS� : � 2 Ki is mutuallystationary if and only if the set of subsets of sup(K) whih meet hS� : � 2 Ki is astationary subset of P(sup(K)). By standard fats [13, Lemma 0℄ about generalisedstationarity, if X is any set with sup(K) � X then hS� : � 2 Ki is mutually sta-tionary if and only if the set of subsets of X whih meet hS� : � 2 Ki is a stationarysubset of P(X).It is easy to see that if hS� : � 2 Ki is mutually stationary then S� is stationaryfor eah �. Foreman and Magidor showed that the onverse is false in general, butis true if S� � � \ of(!) for all �. In order to get versions of Solovay's splittingtheorem and Fodor's theorem Foreman and Magidor introdued the notion of tightstruture and tightly stationary sequene.De�nition 2.2. Let K be a set of regular ardinals, let � = f(�) > sup(K), andlet A = (H�;2; <�). Let M � A.Then M is tight for K if and only if(1) K 2M .(2) For all g 2Q�2M\K(M\�) there exists h 2M\QK suh that g(�) < h(�)for all � 2M \K.If jKj � M then K � M , and in this ase tightness has a simpler formulation.When K �M , M is tight for K exatly when M \QK is o�nal in Q�2K M \ �.De�nition 2.3. Let K be a set of regular ardinals and let M be a set. Theharateristi funtion of M (on K) is the funtion �KM with domain K given by�KM : � 7�! sup(M \ �).If a strutureM is suh thatK �M , then tightness ofM amounts to saying thatevery funtion inQK whih is pointwise dominated by �M is pointwise dominatedby some funtion in M \QK, that is to say M \QK is o�nal in QK below �KM .De�nition 2.4. Let K be a set of regular ardinals and let hS� : � 2 Ki be suhthat S� � � for all � 2 K. Let � = sup(K)+. The sequene hS� : � 2 Ki is tightlystationary if and only if for every algebra A on H� there is N � A suh that N istight for K and N meets hS� : � 2 Ki.PCF theory gives a very general tehnique for analysing singular ardinals, butfor our purposes in this paper we will restrit ourselves to the speial ase whenthe singular ardinal is �!. Shelah has shown that� There is an in�nite set A � ! and a sequene of funtions hf� : � < �!+1iwhih is a sale (that is to say an inreasing and o�nal sequene) inQn2A �n under the eventual domination ordering.� Modulo �nite sets there is a unique maximal hoie for the set A.For the rest of this disussion we �x A to be the maximal set as above, and also�x hf� : � < �!+1i a sale in Qn2A �n. A funtion g from A to the ordinals is saidto be an exat upper bound for hf� : � < �i i� f� <� g for all � < �, and for everyh < g there is � < � suh that h <� f�. For example the funtion n 7! �n is anexat upper bound for hf� : � < �!+1i.



4 JAMES CUMMINGS, MATTHEW FOREMAN, AND MENACHEM MAGIDORWithout loss of generality we assume that the sale hf� : � < �!+1i is ontinu-ous, whih means that whenever an exat upper bound for hf� : � < �i exists thenf� is suh an upper bound. It is easy to see that modulo �nite sets exat upperbounds are unique, so that if h is any exat upper bound for hf� : � < �i thenh =� f� .We will be espeially interested in the good points of this kind of sale. Anordinal � < �!+1 of unountable o�nality is good if there exists an exat upperbound h for hf� : � < �i suh that f(h(n)) = f(�) for all n with f(�) < !n. Theset of good points is stationary in every unountable o�nality and is an importantinvariant of the universe of set theory; see for example [11℄, [6℄ and [18℄.There is a useful alternative haraterization of good points. The point � isgood if and only if it has unountable o�nality and for every A unbounded in �there exist B � A unbounded in � and k < ! suh that hf�(n) : � 2 Bi is stritlyinreasing for all n > k.One reason for us to be interested in good ordinals is that they give a harater-ization of tight strutures. We showed [12℄ that if M � H�, 0 < m < ! and PCFis trivial (that is to say that A = !, so there is a sale of length �!+1 in Qn �nmodulo the ideal of �nite sets.) then the following are equivalent:(1) The struture M is tight for f�n : n < !g and f(M \ �n) = �m for alllarge n < !.(2) If  = sup(M \ �!+1) then  is a good point of o�nality �m and f(n) =�M (�n) for all large n < !.The kind of uniform o�nality assumption whih appears in the result we justquoted is ubiquitous enough to deserve a name. We will say that a struture M is�m-uniform if f(M \ �n) = �m for m < n < !.If 0 < m < ! then every internally approahable struture of length and ar-dinality �m is tight for f�n : n < !g, so there are stationarily many �m-uniformtight strutures. Zapletal [12℄ showed that there are stationarily many �m-uniformnon-tight strutures.Without the assumption that PCF is trivial, we an give a more ompliateddesription of the uniform tight strutures. We refer the reader to [4, Theorem 5.6℄for the missing details. Let K = f�n : n < !g, let ~B = hB� : � 2 pf(K)i be asequene of PCF generators for K and let ~f = hf�� : � < �; � 2 pf(K)i be suhthat hf�� : � < �i is an !-lub minimal sale in QB�=J<� for eah �. We showed[4℄ that if 0 < m < ! and M � (H�; ~B; ~f) is �m-uniform and tight for K then �KMan be written as the pointwise supremum of �nitely many funtions of the formf�sup(M\�).IfM is an �m-uniform substruture of some expansion A of (H�;2; <�), andM�is the Skolem hull in A ofM[�m, then as we see later in Lemma 6.3 sup(M\�n) =sup(M� \ �n) for m < n < !. So M� is �m-uniform and ontains �m. We showed[4℄ that for 0 < m < !, if N is �m-uniform and ontains �m then the set N \�! islosed under bounded suprema of length less than �m; in partiular for m < n < !there is a lub subset of N \�n whih has order type �n and is ontained in N \�n.3. A non-tight mutually stationary sequeneForeman and Magidor [12℄ raised the question as to whether every mutually sta-tionary sequene is tightly stationary. In this setion we give a foring onstrution



CANONICAL STRUCTURE 5showing that a negative answer is onsistent; we do not know whether a negativeanswer follows from the axioms of ZFC. Given k > 0 we will onstrut by foringa sequene hTn : k < n < !i with Tn � �n \ of(�k), whih is mutually stationarybut not tightly stationary.We start by de�ning a ombinatorial priniple Coherent Squares (CS). The prin-iple asserts the existene of ��n -sequenes for 0 < n � !, together with a saleof length �!+1 in Qn<! �n whih relates the ��n -sequenes for n < ! to the ��! -sequene. We note that the sale involved in the priniple CS is a \Very GoodSale" in the sense of our paper [6℄. This priniple is losely related to some om-binatorial priniples of Donder, Jensen and Stanley [8℄ and Donder, Jensen andKoppelberg [7℄.De�nition 3.1. For eah n � ! let In = f � : �n < � < �n+1 g. The prinipleCS asserts that there exist sequeneshCn� : � 2 In \ LIM; 0 < n � !i; hf� : � 2 I! \ LIMi;suh that(1) For all n and all � in Sn \ LIM(a) The set Cn� is lub in �, and Cn� � In.If the o�nality of � is less than �n then the order type of Cn� is lessthan �n.(b) For every limit point � of Cn� , Cn� = Cn� \ �.(2) For all � in S! \ LIM , f� is a funtion suh that(a) There exists k < ! suh that dom(f�) = f n : k < n � ! g andot(C!� ) � �k .(b) For all n in dom(f�), f�(n) 2 In \ LIM .() For every limit point � of C!� , dom(f�) � dom(f�).(d) For all n in dom(f�),lim(Cnf�(n)) = f f�(n) : � 2 lim(C!� ) g:(3) The sequene hf� : � 2 I! \ LIMi forms a sale in Qn �n+1, that is to sayit is inreasing and o�nal in the eventual domination ordering.Remark 3.2. Notie that hCn� : � 2 In \ LIMi is essentially a ��n -sequene, withthe (purely osmeti) di�erene that the underlying set is In rather than �n+1.Remark 3.3. If hf� : � 2 I!i is the sale in Q�n modulo the ideal of �nite setsgiven by the priniple CS, then hf�i is ontinuous and !-lub minimal. Moreover,it is a very good sale in the sense of [6℄.All this follows from the observation that if � has unountable o�nality thenfor large n the sequene hf(n) :  2 lim(C!� )i is ontinuous and inreasing withsupremum f�(n).To motivate the priniple CS we show that it an be used to generate a sequeneof stationary sets whih is not tightly stationary. We suppose that hf�i and hCn�i areas in De�nition 3.1. Given k < ! and a sequene of limit ordinals hn : k � n < !isuh that n < �n for all n, we de�ne a sequene of sets byTn = f � 2 In \ LIM : f(�) = �k; ot(Cn�) � n g:The stationarity of the sets Tn follows from a general fat about ��-sequenesfor � regular.



6 JAMES CUMMINGS, MATTHEW FOREMAN, AND MENACHEM MAGIDORLemma 3.4. If � is regular and hC� : � < �+i is a ��-sequene, then for every� < � the set fÆ < �+ : ot(CÆ) > �g is stationary.Proof. Let C be lub in �+ and let � be a limit point of C with o�nality �. C� \Cis lub in � with order type �, and so we may �nd Æ a limit point of C� \ C suhthat ot(C� \ Æ) > �. Clearly Æ 2 C, and by the oherene property of the squaresequene C� \ Æ = CÆ and so ot(CÆ) > �. We showed fÆ < �+ : ot(CÆ) > �g meetsevery lub subset of �+ and so it is stationary. �Lemma 3.5. If hn : k � n < !i is unbounded in �! n < �n for every n, thenhTn : k � n < !i is not tightly stationary.Proof. Let N be a tight struture and for eah i � ! let �i+1 = sup(N \ �i+1).Suppose for a ontradition that �i 2 Ti for all i.The sequene hf� : � 2 I! \ LIMi forms a ontinuous sale, so by the hara-terization of uniform tight strutures in terms of PCF theory whih we disussedin Setion 2 there exists m < ! suh that f�! (n) = �n for all n � m. If n � mthen lim(Cn�n) = lim(Cnf�! (n)) = f f�(n) : � 2 lim(C!�!) g:Notie also that if �;  2 lim(C!�!) and � <  then � 2 lim(C! ), and so f�(n) 2lim(Cnf(n)) and in partiular f�(n) < f(n). It follows that ot(Cn�n) = ot(C!�!) forall n � m. Sine hn : k � n < !i is unbounded in �!, we may �nd n � m suhthat n > ot(C!�!). It follows that �n =2 Tn, whih is a ontradition. �We de�ne a foring iteration of length ! + 1 whih fores CS to hold. At stagen for n < ! we fore with a version of Jensen's poset for adding a square sequene~Cn, where onditions presribe an initial segment of ~Cn. At stage ! we fore withonditions whih presribe initial segments of ~C! and ~f .De�nition 3.6. For n < !, Q n is the set of sequenesq = hCq;n� : � 2 In \ LIM \ (� + 1)iwhere(1) The ordinal � is a limit ordinal in Sn. We refer to � as the length of q andwrite � = lh(q).(2) For all � in Sn \ LIM \ (� + 1)(a) The set Cq;n� is lub in � and Cq;n� � In.(b) The order type of Cq;n� is less than �n if the o�nality of � is less than�n.() For every limit point  of Cq;n� , Cq;n = Cq;n� \ .If q; r 2 Q n then q � r if and only if(1) The length of q is greater than or equal to the length of r.(2) For all � 2 In \ LIM \ (lh(r) + 1), Cq;n� = Cr;n� .Before stating the main fats about Q n we reall the onept of strategi losure.Let � be an in�nite ardinal. A poset Q is (� + 1)-strategially losed if and onlyif player Even has a winning strategy for the game in whih two players (Even andOdd) build a dereasing � + 1-sequene in Q , where Odd plays at all odd stagesand Even plays at all non-zero even stages inluding limit stages, and Even wins ifshe an move at stage �. We refer the reader to Foreman's paper on games [9℄ formore about strategi losure, noting here only that a (� + 1)-strategially losed



CANONICAL STRUCTURE 7poset adds no �-sequenes and hene preserves all ardinals less than or equal to�+.The following fats are standard, see for example [6℄.Fat 3.7. Let n < !.(1) The poset Q n is ountably losed.(2) The poset Q n is (�n + 1)-strategially losed.(3) If 2�n = �n+1 then jQ n j = �n+1, so in partiular Q n has the �n+2-..(4) If p 2 Q n ,  is a limit ordinal in Sn and lh(p) < , then there is q � p suhthat lh(q) = .(5) If ~Cn = hCn� : � 2 In \ LIMi is Q n-generi and Æ 2 (�n + 1)\LIM , thenV [ ~Cn℄ j= \ f � 2 In \ LIM : ot(Cn�) = Æ g is stationary in �n+1":We now assume that V satis�es GCH. We de�ne P! as an iteration with fullsupport, where at stage n we fore with Q n as de�ned in V Pn. As usual we let _Q nbe a Pn -name for Q n . In V P! let hCn� : � 2 In \ LIMi be the sequene added byQ n , and de�ne Q ! as follows.De�nition 3.8. The poset Q ! is the set of pairs of sequenesq = (hCq;!� : � 2 I! \ LIM \ (� + 1)i; hfq� : � 2 I! \ LIM \ (� + 1)i)where(1) The ordinal � is a limit ordinal in I!. We all � the length of q and write� = lh(q).(2) For all � 2 I! \ LIM \ (� + 1)(a) The set Cq;!� is lub in � and Cq;!� � I!.(b) The order type of Cq;!� is less than �!.() For every limit point  of Cq;!� , Cq;! = Cq;!� \ .(3) For all � in I! \ LIM \ (� + 1), f� is a funtion suh that(a) There exists k < ! suh that dom(f�) = f n : k < n � ! g andot(Cq;!� ) � �k.(b) For all n 2 dom(f�), f�(n) 2 In \ LIM .() For all limit points � of Cq;!� , dom(f�) � dom(f�).(d) For all n 2 dom(f�),lim(Cnf�(n)) = f f�(n) : � 2 lim(Cq;!� ) g:(4) If �1 < �2 � �, then f�1 <� f�2 .If q; r 2 Q ! then q � r if and only if(1) The length of q is greater than or equal to the length of r.(2) For all � in Sn \ LIM \ (lh(r) + 1), Cq;!� = Cr;!� and fq� = fr�.When we onstrut members of Q ! we will generally only verify that the \o-herene" lause 3d holds.Lemma 3.9. The foring poset Q ! is ountably losed in V P!.Proof. Let hqi : i < !i be a stritly dereasing !-sequene of onditions, and de�ne�i = lh(qi) and � = supi<! �i. We de�ne a ondition q as follows.(1) The length of q is �.(2) For all � 2 In \ LIM \ (lh(qi) + 1), Cq;!� = Cqi;!� and fq� = fqi� .(3) The set Cq;!� is o�nal in � with order type !.



8 JAMES CUMMINGS, MATTHEW FOREMAN, AND MENACHEM MAGIDOR(4) For all n < !, fq�(n) � sup f fq�i(n) : i 2 ! g and ot(Cnfq�(n)) = !.The hoie of fq�(n) is possible beause ot(CnÆ ) = ! for a o�nal set of Æ < �n+1.The lause 3d of the de�nition of Q n is satis�ed trivially beause neither Cq;!� norany of the Cnfq�(n) has any limit points. �We now de�ne P!+1 = P! � Q ! . A standard argument shows thatP!+1 ' Pn � Rn ;where Rn is the full support iteration of length !+1 with fators hQ i : n � i � !i.For notational onveniene we will index the steps of Rn by the set f i : n � i � ! grather than ! + 1.For the next few lemmas we work in V Pn.Lemma 3.10. The set of p in Rn suh that p � i n n deides lh(p(i)) for all i withn � i � ! is dense.Proof. This is easy, as eah of the Q i is ountably losed. �From now on we will assume that all p 2 Rn have this property. Aordingly wewill write lhi(p) for the unique ordinal  suh that p � i  � = lh(p(i)).Notation: If p 2 Rn then we writep(i) = h _Cp;i� : � 2 Si \ LIM \ (lhi(p) + 1)ifor i < !, and let h _Cp;!� : � 2 I! \ LIM \ (lh!(p) + 1)i be the �rst omponent ofp(!) and h _fp� : � 2 I! \ LIM \ (lh!(p) + 1)i the seond omponent.De�nition 3.11. A ondition p 2 Rn is at if and only if p � ! n n fores that(1) dom( _fplh!(p)) = f i : n � i < ! g.(2) For all i 2 dom( _fplh!(p)), _fplh!(p)(i) = lhi(p).Lemma 3.12. The set of at onditions in Rn is dense.Proof. Given p we �rst �nd q � p suh that� lh!(q) = lh!(p).� q � ! n n deides fplh!(p).� lhi(q) > fplh!(p)(i) and ot(Cq;ilhi(q)) = ! for all i with n � i < !.Then we �nd r � q suh that(1) lhi(r) = lhi(q) for all i < !, and lh!(r) = lh!(q) + !.(2) ot(Cr;!lh!(r)) = !.(3) dom(frlh!(r)) = f i : n � i < ! g and frlh!(r)(i) = lhi(r) for all i.Clearly r is a ondition, r � p and r is at. �Lemma 3.13. For all n < !, Rn is (�n + 1)-strategially losed.Proof. We desribe a strategy for player Even in the game, where, without lossof generality, we may assume that Odd plays a at ondition at eah odd stage.Even's moves will also be at onditions. Suppose that  is even and that so farthe sequene hpi : i < i has been played. suessor: If  = Æ + 1, then Even de�nes p as follows.



CANONICAL STRUCTURE 9(1) lhi(p) = lhi(pÆ) + ! and Cp ;ilhi(p) = flhi(pÆ) + j : j < !g for n � i � !.(2) dom(fplh!(p)) = f i : n � i < ! g.(3) fplh!(p)(i) = lhi(p) for n � i < !. limit: Even de�nes p as follows.(1) lhi(p) = S�< lhi(p�) and Cp ;ilhi(p) = f lhi(p�) : � <  g for n � i � !.(2) dom(fplh!(p)) = f i : n � i < ! g.(3) fplh!(p)(i) = lhi(p) for n � i < !.As usual we only hek that p(!) satis�es lause 3d from the de�nition of Q ! .We observe �rst that if Æ 2 lim(Cp ;ilhi(p)) then Æ = lhi(p�) for some limit � < .At stage � player Even de�ned Cp� ;ilhi(p�) = f lhi(p�) : � < � g for n � i � !, andfp�lh!(p�)(i) = lhi(p�) for n � i < !.It follows that for n � i < !lim(Cp ;ilhi(p)) = f lhi(p�) : � 2  \ LIM g= f fp�lh!(p�)(i) : � 2  \ LIM g= f fpÆ (i) : Æ 2 lim(Cp ;!lh!(p)) g �Lemma 3.14. Let G!+1 be P!+1-generi and let G! be the indued P! -generi�lter. Then(1) The models V and V [G!+1℄ have the same ardinals and o�nalities up to�!+1.(2) The priniple CS holds in V [G!+1℄.(3) Every �!-sequene of ordinals from V [G!+1℄ is in V [G!℄.Proof. This is fairly routine. We only hek that hf� : � 2 I! \ LIMi forms asale. To see this let g 2 (Qn �n+1)V [G!+1℄, and observe that g 2 V beause P!+1is ountably losed. Now let p be an arbitrary ondition. Find q � p suh thatlh!(q) = lh!(p) and lhi(q) � g(i) for all i, and then �nd r � q suh that r is at. Byonstrution frlh!(r)(i) = lhi(r) � lhi(q) � g(i) for all i < !, and we are done. �We now work in V [G!+1℄. We reall that given k < ! and a sequene of limitordinals hn : k � n < !i suh that n < �n for all n, we de�ned a sequene of setsby Tn = f � 2 In \ LIM : f(�) = �k; ot(Cn�) � n g:We showed in Lemma 3.5 that a suitable hoie of hn : k � n < !i will generate asequene whih is not tightly stationary.Lemma 3.15. Let G!+1 � Q ! be generi. Then in V [G!+1℄, for all sequeneshn : k � n < !i the sequene hTn : k � n < !i is mutually stationary (where Tn isde�ned as above.)Proof. Let hn : k � n < !i be a sequene of ordinals in V [G!+1℄. Then, by thelosure of Q ! , hn : k � n < !i lies in V . We showed in Lemma 3.14 that themodels V [G!℄ and V [G!+1℄ have the same �!-sequenes of ordinals, so it is enoughto hek that this is so in V [G!℄. We use the fat thatP! ' Pk � Sk



10 JAMES CUMMINGS, MATTHEW FOREMAN, AND MENACHEM MAGIDORwhere Sk is the iteration of length ! with full support and fators Q n for k � n < !.We will do a density argument in Sk similar to the proof given above that R k isstrategially losed.Let _H be a name for a funtion from <!�! to �!. Let p0 2 Sn be arbi-trary. Extending p0 if neessary, we may assume without loss of generality thatot(Cp0;ilhi(p0)) = i.We will argue in the model V Pk , using the losure of Sk. In partiular we willnow understand _H as an Sk-name appropriate for foring over V Pk . We desribe anindutive onstrution of a dereasing hain of onditions hpj : j � �ki in Sk, andan inreasing hain of sets hAj : j � �ki suh that jAj j � �k.Stage zero: p0 has already been determined, and we set A0 = ;.Suessor stages: Suppose that pj , Aj have been de�ned. We start by hoosingBj+1 � �! suh that jBj+1j � �k, Aj � Bj+1, and lhi(pj) � sup(Bj+1 \ �i+1) fori � k. We then hoose qj � pj and Aj+1 so that qj fores the _H-losure of Bj+1 tobe Aj+1, and lhi(qj) � sup(Aj+1 \ �i+1) for i � k. We de�ne pj+1 as follows:(1) pj+1 � qj .(2) lhi(pj+1) = lhi(qj) + !.(3) Cpj+1;ilhi(pj+1) = f lhi(qj) + l : l < ! g.Limit stages: Suppose that j is limit and we have de�ned hpk : k < ji andhAk : k < ji. De�ne pj by(1) pj � pk for all k < j.(2) lhi(pj) = supk<j lhi(pk).(3) Cpj ;ilhi(pj) = Cp0;ilhi(p0) [ f lhi(pk) : k < j g.Let Aj = Sk<j Ak.If j is limit it is routine to hek that pj is a ondition, sup(Aj \�i+1) = lhi(pj),and that pj fores that Aj is losed under _H .Let A = A�k , p = p�k . Then p fores that sup(A\�i+1) = lhi(p) for all i, and palso fores that ot(Cilhi(p)) = i+�k for all i. It follows that p  8i sup(A\�i+1) 2Ti. �We summarise the main result of this setion in a theorem.Theorem 3.16. It is onsistent that for every integer k > 0 there exists a se-quene hTn : k < n < !i suh that Tn � �n \ of(�k), and the sequene is mutuallystationary but not tightly stationary.4. Another non-tight mutually stationary sequeneSteprans and Foreman found another onsisteny proof for the existene of asequene hSn : k < n < !i suh that Sn � �n \ of(�k), and the sequene is mutu-ally stationary but not tightly stationary. The model is easily desribed: �xing aninteger k > 0, we fore with the Cohen poset Add(�0;�!) for adding a subset Sof �! with �nite onditions and de�ne Sn = �n \ of(�k) \ S for eah n > k. Welaim that in V [S℄ the sequene hSn : k < n < !i is as required.We start by showing that hSn : k < n < !i is not tightly stationary. This partof the argument is due to Steprans (under the assumption that 2�! = �!+1).



CANONICAL STRUCTURE 11We observe that the poset Add(�0;�!) has the ountable hain ondition. Work-ing in V we �x a sequene of PCF generators hB� : � 2 pf(K)i and a familyhf�� : � 2 pf(K); � < �i of !-lub minimal sales, where K = f�n : n < !g. Bythe ountable hain ondition it is still the ase in V [S℄ that hB�i is a sequene ofgenerators and hf��i is a matrix of !-lub minimal sales.If N is a tight �k-uniform struture in V [S℄ then as we disussed in Setion2, it follows from [4, Theorem 5.6℄ that �N an be omputed in an absolute wayfrom �nitely many of the funtions f�� , and so �N 2 V . An easy density argumentshows that V \Qn Sn = ;, so that the tight struture N an not meet the sequenehSn : n < !i.It remains to be seen that the sequene hSn : n < !i is mutually stationary inV [S℄. Let F 2 V [S℄ be a funtion from <!�! to �!. We start by showing that itis enough to onsider strutures whih lie in the ground model.Lemma 4.1. Let P be a ... foring poset, let � be a ardinal and let _F be aP-name for a funtion from <!� to �. There is a funtion f 2 V from <!� to �suh that if G is P-generi and X 2 V [G℄ is a subset of � losed under f , then Xis losed under _FG.Proof. It follows from the ... that if x 2 <!� then there are only ountably manypossibilities for _F (x). Fix an enumeration of these possibilities as hg(x; n) : n < !iand then de�ne f as follows: if y 2 <!� and lh(y) = 2m(2n+ 1) then f(y) = g(y �m;n). �For the rest of this setion we mean by \struture" an elementary substrutureof (H�!+1 ;2; <; F ). Let F be the set of harateristi funtions of �k-uniformstrutures with respet to the set f�n : k < n < !g; for notational simpliity weonsider the domain of an element of F to be fn : k < n < !g. Let T be the treeonsisting of all proper initial segments of all elements of F . We prove two lemmasabout T , whih may have some independent interest.Lemma 4.2. Every in�nite branh of T is a member of F .Proof. Let � be a branh of T , and �nd strutures hMj : k < j < !i suh thatsup(Mj \ �n) = �(n) for all n and j with k < n � j. As we noted in Setion 2,we may as well assume that �k �Mj and then may �nd Cjn �Mj \ �(n) whih islub in �(n), for all n and j with k < n � j. For all n > k let Dn = Tj�nCjn, sothat Dn is lub in �(n). We note that if  2 Dn then  2Mj for all large j.Let M be the Skolem hull of Sn>kDn. We laim that M is a struture withharateristi funtion �. It is lear that �M (n) � �(n) for all n > k. To see thatthe reverse inequality holds, let � 2 M \ �n and �x s a �nite subset of Sn>kDnsuh that � is in the hull of s. Sine s is �nite we may �nd j so large that j � nand s �Mj , so that � 2Mj \�n and therefore � < �Mj (n) Sine �Mj (n) = �(n),we are done. �Remark 4.3. Notie that in any ardinal-preserving extension of V , the argumentworks to show that every in�nite branh of T is the harateristi funtion of some�k-uniform struture. In partiular this is true in V [S℄.We now show the tree T has a stationary branhing subtree U .Lemma 4.4. There is a tree U � T suh that for all j > k and t 2 U withdom(t) = fn : k < n < jg, f� < �j : t_� 2 Ug is stationary in �j .



12 JAMES CUMMINGS, MATTHEW FOREMAN, AND MENACHEM MAGIDORProof. We will use the Gale-Stewart theorem [19℄ on the determinay of gameswith open payo� sets. We denote by hh�0; : : : �j�1ii the funtion f with domainfn : k < n < k + j + 1g given by f(n) = �n�k�1.Consider the following two-player game of perfet information between two play-ers I and II. Player I's ith move is a set of ordinals Ai, player II's ith move is anordinal �i. We suppose that(1) hh�i : i < jii 2 T for all j.(2) Aj is a subset of f� < �k+j+1 : hh�0; : : : �j�1; �ii 2 Tg, and Aj is non-stationary in �k+j+1.(3) �j =2 Aj .The �rst player to violate these onditions loses, and if play ontinues for ! movesthen II wins.Intuitively the idea is that II is trying to build an in�nite branh of T , and thatplayer I is allowed to blok a non-stationary set of potential suessors at eahstage. Similar games appear in the game analysis of Namba foring by Shelah [21℄.We laim that II has a winning strategy. Sine the game is open for player I,it follows from the Gale-Stewart theorem that it suÆes to show I has no winningstrategy. Suppose for a ontradition that I has a winning strategy � , and �nd an�k-uniform struture M with � 2M .We will onstrut a run of the game where I plays aording to � but the wrongplayer (player II) wins. At her jth move player II will play �j = sup(M \ �k+j+1).We hek that this gives a win for player II.Suppose that I has played hAi : i � ji, II has played h�i : i < ji, and �i =2 Aifor i < j. In general Aj will not be in M . However if we de�ne B to be the unionof the set of all A suh that I plays A at stage j in some run of the game where Iplays aording to � , then B 2M beause � 2M . Sine B is the union of at most�k+j non-stationary subsets of �k+j+1, B is non-stationary.Let C 2 M be a lub subset of �k+j+1 whih is disjoint from B. Sine C isunbounded in �j by elementarity, �j 2 C and thus �j =2 B. By onstrutionAj � B, thus �j =2 Aj . It follows that II wins the game, ontradition!We now �x a winning strategy � for player II. We de�ne U to be the set of allhh�0; : : : �j�1ii suh that �0; : : : �j�1 is an initial segment of II's sequene of playsin some run of the game where II plays aording to �. To �nish the proof, weshow that U has stationary branhing.Let hh�0; : : : �j�1ii 2 U and suppose that it represents II's response to I's playingA0; A1; : : : Aj�1. LetB = f� < �k+j+1 : hh�0; : : : �j�1; �ii 2 Ug;and suppose for a ontradition that B is non-stationary. Let I play B as hisjth move and let � be the response ditated by �. Then by the de�nition of U ,hh�0; : : : �j�1; �ii 2 U and so � 2 B. This means that player II loses immediately,ontraditing the assumption that � was a winning strategy. �It is easy to hek that for every n > k, Sn meets every stationary subset of�n \ of(�k) from the ground model. Sine U has stationary branhing, we maybuild by indution a branh b of U whih is in Qn>k Sn. By Lemma 4.2 we mayonstrut a struture M suh that �M = b. This shows that the sequene hSni ismutually stationary.



CANONICAL STRUCTURE 13We summarise the main result of this setion in a theorem.Theorem 4.5. Let S � �! be V -generi for Add(�0;�!), and de�ne Sn = �n \of(�k) \ S for eah n > k. In V [S℄ the sequene hSn : k < n < !i is mutuallystationary but not tightly stationary.Remark 4.6. It is lear from the proof that a large lass of foring posets ouldbe used in plae of Add(�0;�!). To be more preise, essentially the same proof willwork for any foring poset P suh that(1) The poset P is �!-.. and ardinal-preserving.(2) Foring with P adds a sequene hSn : k < n < !i with Sn � �n \ of(�k)suh that(a) In the extension by P, V \Qn Sn = ;.(b) For all S 2 V suh that S � �n \ of(�k) and V j= \S is stationary",Sn \ S 6= ;.Similar ideas an be used to show that adding enough Cohen reals gives a modelin whih every mutually stationary sequene an be split.Lemma 4.7. Let 0 < k < ! and let hUn : k < n < !i be a mutually stationarysequene of sets with Un � �n\ of(�k). Let T � be the tree of funtions f suh that� dom(f) = fn : k < n � jg for some j > k.� There is a struture M suh that M meets hUn : k < n < !i and f(n) =sup(M \ �n) for k < n � j.Then there is a subtree U� � T � suh that for all j > k and t 2 U� withdom(t) = fn : k < n < jg, f� < �j : t_� 2 U�g is stationary in �j .Proof. The proof is very similar to that of Lemma 4.4. Two players I and IIollaborate to build a branh of T �, with player I bloking out a non-stationaryset of possible suessors of the urrent position and player II hoosing a suessorwhih was not bloked by player I.We need to hek that I does not win, and so we suppose that � is a strategy forplayer II. Sine hUn : k < n < !i is mutually stationary, we may �nd M suh thatM meets hUn : k < n < !i and � 2 M . As before, we may hek that II an winagainst � by playing sup(M \ �k+j+1) at move j of the game.By the Gale-Stewart theorem there is a winning strategy � for player II. As inLemma 4.4 we may use � to onstrut a suitable tree U�, onsisting of �nite initialsegments of runs of the game in whih II plays aording to �. �Lemma 4.8. Let 0 < k < ! and let hUn : k < n < !i be a mutually station-ary sequene of sets with Un � �n \ of(�k). Let G be Add(�0;�!)-generi overV . Then in V [G℄ the following is true: there are partitions hU in : i < !i of eahUn into ! disjoint stationary piees, suh that for all f : ! �! ! the sequenehUf(n)n : k < n < !i is mutually stationary.Proof. We an regard Add(�0;�!) as the �nite support produt of posets Pn fork < n < !, where Pn is the poset of �nite partial funtions from �n to �0. We maythen identify G with hgn : k < n < !i where gn is a map from �n to �0, and we setU in = f� 2 Un : gn(�) = ig.It is routine to hek that eah U in is stationary. We now use Lemma 4.7 toonstrut a suitable tree U�, and then given f we build a branh of U� whih lies in



14 JAMES CUMMINGS, MATTHEW FOREMAN, AND MENACHEM MAGIDORQn>k Uf(n)n . We may now �nish the argument exatly as in the proof of Theorem4.5. �Theorem 4.9. If G is generi for Add(�0;�!+1) then the following statementholds in V [G℄: for all k > 0 and all mutually stationary hUn : k < n < !i withUn � �n \ of(�k), there are partitions hU in : i < !i of eah Un into ! disjointstationary piees, suh that for all f : ! �! ! the sequene hUf(n)n : k < n < !i ismutually stationary.Proof. By a hain ondition argument the sequene hUn : k < n < !i lies in thegeneri extension of V by some proper initial segment Add(�0; �) of Add(�0;�!+1),where � < �!+1. Sine Add(�0;�!+1) ' Add(�0; �) � Add(�0;�!+1) we may aswell assume that hUn : k < n < !i 2 V . The theorem is now immediate fromLemma 4.8. �5. Models in whih every sequene is mutually stationaryForeman and Magidor [12℄ pointed out that in general the question of whihsequenes hSn : n < !i with Sn � �n are mutually stationary is onneted with theopen question whether �! an be a Jonsson ardinal. It is known that rather largesingular ardinals of o�nality ! an be Jonsson: in partiular Prikry proved thata singular limit of measurable ardinals is Jonsson and that a measurable ardinalremains Jonsson after doing Prikry foring [20℄.In this setion we mildly strengthen these lassial results by relating them tomutual stationarity. See the introdution to our previous paper [4℄ for more on theonnetion between mutual stationarity, Jonsson ardinals and Chang's onjeture.Remark 5.1. Baumgartner [1℄ proved Theorem 5.2 in the speial ase where Sn =�n \ of(�f(n)) for f : ! �! 2.Theorem 5.2. Let h�i : i < �i be an inreasing sequene of measurable ardinalswhere � = f(�) < �0. Let Si � �i be stationary for eah i < �, then hSi : i < �i ismutually stationary.Note that an immediate orollary is the well-known fat that sup h�i : i < �i isJonsson.Proof. Note that the hypothesis imply that for all i < �, �i > sup h�j : j < ii: Tosimplify the bookkeeping we assume � = !. Let � = supi �i, and �xM a strutureon H�. For eah i let Ui be a normal measure on �i.We will onstrut sets Ji 2 Ui suh that Ji+1 � (�i; �i+1) and the following indis-ernibility property holds: for any positive integer n and any sequene hkj : j < niof positive integers, if ti; ui 2 [Ji℄ki for i < n and � is any formula in the languageof M then M j= �(t0; : : : tn�1) () M j= �(u0; : : : un�1):To build the Ji, we de�ne for eah j < ! a sequene hIjn : n < !i suh that(1) Ijn 2 Un.(2) Ijn+1 � (�n; �n+1).(3) Ij+1n � Ijn.(4) For all s 2 [�n�1℄<! and all hti : i � ji with ti 2 [Ijn+i℄<!, the M-type of(s; t0; : : : tj) is determined by (s; jt0j; : : : jtj j).



CANONICAL STRUCTURE 15Base ase j = 0: We hoose I0n 2 Un as a set of order-indisernibles for thestruture obtained from M by adding a onstant symbol for eah element of �n�1.This is possible by Rowbottom's theorem.Suessor step: suppose we have onstruted Ijn. Let s 2 [�n�1℄<!, t 2 [Ijn℄<!and ui 2 Ijn+i for 1 � i � j + 1. By indution the M-type of (s; t; u1; : : : uj+1) isdetermined by (s; t; ju1j; : : : juj+1j). Using Rowbottom's theorem and the omplete-ness of Un we may �nd Ij+1n � Ijn suh that if t 2 [Ij+1n ℄<! then for all s; u1; : : : uj+1the M-type of (s; t; u1; : : : uj+1) is determined by (s; jtj; ju1j; : : : juj+1j).We now set Jn = Tj Ijn. To �nish the proof of the theorem, we hoose for eah na set zn � Jn with limit order-type suh that sup(zn) 2 Sn. Let N be the Skolemhull in M of the union of the sets zn. We laim that sup(N \ �n) = sup(zn) foreah n.Suppose that t is a Skolem term and that t(a0; : : : aj) < �i where an 2 [zn℄<! andwithout loss of generality j � i. Let � be the least element of zi with � > max(ai).It must be that t(a0; : : : aj) < �, for if not an appliation of indisernibility showsthat every element of Ji whih is greater than max(ai) is bounded by t(a0; : : : aj),and this is impossible sine Ji is unbounded in �i. This shows that t(a0; : : : aj) <sup(zi), so sup(N \ �i) = sup(zi) and we are done. �We now turn to the situation in whih h�n : n < !i is a Prikry-generi sequenein a measurable ardinal �.Remark 5.3. It is too muh to ask that every Prikry-generi !-sequene shouldhave the property that every sequene of stationary sets is mutually stationary. Forexample if the sequene begins with �1 and �2 and Chang's onjeture is false thenwe an not meet the sets S0 = �1, S2 = �2 \ of(�1).Theorem 5.4. Let � be measurable and let U be a normal measure on �. Let Pbe the Prikry foring de�ned from U . Then there is a ondition (;; A) 2 P whihfores that if h�n : n < !i is the generi o�nal !-sequene added by P, then everysequene hSn : n < !i with Sn stationary in �n for all n is mutually stationary.Proof. Suppose not. By the diret extension property for Prikry foring, there is aondition (;; A) and names _Sn and _A suh that (;; A) fores that� _A is an algebra on �.� _Sn is stationary in �n.� No substruture of _A meets h _Sn : n < !i.Let _F be a name for a funtion F : [�℄<! �! � whih is a Skolem funtion forA. That is to say, X � F\[X℄<! and F\[X℄<! � A for all in�nite X � �. De�nea funtion F � : [�℄<! � [�℄<! �! � as follows: F �(s; t) is equal to the unique �suh that there is E 2 U with the property (s; E)  _F (t) = � if suh an E exists,and 0 otherwise.By a standard appliation of Rowbottom's theorem and a diagonal intersetionargument, we may �nd B 2 U suh that for all Æ < � the set B n (Æ + 1) is aset of order-indisernibles for (�;<; F �; f :  � Æg). Now let D = f 2 A \ B :sup(B \ ) = g. It is easy to hek that D 2 U , sine U is normal.We now fore below the ondition (;; D) to get a generi inreasing !-sequeneG = h�n : n < !i. We use this to realise the names _Sn, _A and _F to get stationary



16 JAMES CUMMINGS, MATTHEW FOREMAN, AND MENACHEM MAGIDORsets Sn , an algebra A on � and a Skolem funtion F for A. Sine (;; D) re�nes(;; A) there an be no substruture of A whih meets hSn : n < !i.Working in V [G℄ we hoose for eah n a point n 2 Sn with sup(B \ n) = n.Let P = SnB \ [�n�1; n) and let N be the losure of P under F . We laim thatsup(N \ �n) = n for all n.To see this, suppose for a ontradition that F (w) = � for some w 2 [P ℄<! and� suh that n � � < �n.Find a ondition (s; E) 2 G suh that (s; E)  _F (w) = �, and notie that s mustbe a �nite initial segment of h�n : n < !i. Extending if neessary we may assumethat lh(s) = m > n. It is onvenient to break up w and s as follows;� t = w \ �n�1, u = w \ [�n�1; �n), v = w \ (� n �n).� sL = (�0; : : : �n�1), sH = (�n; : : : �m�1).By the de�nition of the funtion F �, we haveF �(s_L sH ; t_u_v) = � < �n:All points of B above sup(u) are hosen from a set of indisernibles for a struturewhih has symbols for F � and all ordinals below sup(u). Fix Æ; � 2 B \ �n with� < Æ and sup(w \ �n) < � < n. We may hoose a suitable Æ beause �n 2 D andso B \ �n is unbounded in �n.The key points are that� The sequenes sL, t and u onsist of ordinals below sup(u).� The sequenes sH and v onsist of ordinals in B above �n.� The ordinals Æ and � lie in B and are between sup(u) and �n.Sine F �(s; w) < Æ, it follows by indisernibility that F �(s; w) < �. This isa ontradition, so sup(N \ �n) = n as required. It follows that N meets thesequene hSn : n < !i, ontradition! �Corollary 5.5. If h�n : n < !i is any Prikry generi sequene, then there exists msuh that all sequenes hSm : m � n < !i with Sm stationary in �m for all m � nare mutually stationary.Proof. Let A be as in the onlusion of Theorem 5.4, and �nd m suh that �n 2 Afor all n � m. �6. Mutually stationary sequenes not onentrating on a fixedofinalityTheorems 5.2 and 5.4 show that if h�n : n < !i is an inreasing sequene ofreasonably large ardinals then every sequene of stationary sets an be mutuallystationary. We now return to the problem of mutual stationarity for small ardinals.Let 0 < l < !, let f : ! �! f0; lg be any funtion, and de�ne Sfn = f� < �n :f(�) = �f(n)g for n > l. We will onstrut a model in whih for every funtion fthe sequene hSfn : l < n < !i is mutually stationary, starting from the assumptionthat there are in�nitely many superompat ardinals. This was originally done byShelah, the simpler proof given here is due to Foreman and Magidor.We will use some fats about IA strutures. The �rst fat appears in in setion2 of [10℄.Lemma 6.1. Let N � A be a struture of some regular unountable ardinality �.Then the following are equivalent:



CANONICAL STRUCTURE 17(1) N is IA of length and ardinality �.(2) For every �-losed poset P 2 N there is a sequene of elements hp� : � < �iof N \P, suh that for every D 2 N a dense open subset of P there is � < �with p� 2 D.The next fat is impliit in Foreman, Magidor and Shelah's paper [13℄ on Martin'sMaximum.Lemma 6.2. Let N � A be internally approahable of length and ardinality �,where � is an unountable regular ardinal. Let � be an ordinal suh that � <sup(N \ ON) and let M = SkA(N [ f�g). Then M is internally approahable oflength and ardinality �.Proof. Let hN� : � < �i be an internally approahing hain of models with unionM . We may assume without loss of generality that � < sup(N0 \ ON). De�neM� = SkA(N� [ f�g), so that learly the M� form an inreasing ontinuous hainof models of size less than � whose union is M .We laim that M� = ff(�) : f 2 N�; � 2 dom(f)g. Clearly if f 2 N� thenf(�) 2 M�. Conversely if y 2 M� then y = t(x; �) for some Skolem term t andparameter x 2 N�. If  2 N0 \ON with � <  then the (partial) funtion f withdomain  whih maps � to t(x; �) is de�nable in H� from the parameters y;  sof 2 N�.Fix an ordinal � < �. � and hN� : � � �i are members of M�+1, so by the workof the last paragraph hM� : � � �i 2 M�+1. So M is internally approahable oflength and ardinality �, as laimed. �The onstrution will proeed by starting with a struture whih meets eah �nfor n > l in a set of o�nality �l, and judiiously adding ! many ordinals. Thefollowing well-known lemma [1℄ shows that adding an ordinal below �m does nodamage above �m.Lemma 6.3. Let A = (H�;2; <�) for some large regular �. Let N � A, wherejN j = �n � N for some n < !. Let n < m < !, let � be an ordinal withsup(N \ �m) < � < �m, and let N� = SkA(N \ f�g). Then sup(N� \ �j) =sup(N \ �j) for m < j < !.Proof. Let t be a Skolem term. For eah x 2 N , N an ompute the supremum ofthe set ft(x; Æ) : Æ < �mg \ �j . �For the rest of this setion we will make the following assumption:Assumption: there exists a sequene of ideals hIn : l + 2 � n < !i suh that(1) In is a uniform, �n-omplete, normal ideal on �n.(2) P(�n)=In has an �l+1-losed dense subset.This assumption is known to be onsistent relative to the existene of in�nitelymany superompat ardinals.We now �x some large regular ardinal � and a struture A whih is an expansionof (H�;2; <�; hIn : l + 2 � n < !i). If N � A has ardinality �l, and sup(N\�n) <� < �n for some n, we will say that � is In-generi for N if and only if the followingtwo onditions are satis�ed(1) For every C 2 N \ In, � =2 C.(2) The set fA 2 N \ P(�n) : � 2 Ag indues an N -generi �lter on N \P(�n)=In.



18 JAMES CUMMINGS, MATTHEW FOREMAN, AND MENACHEM MAGIDORNotie that by the �rst of these two onditions, if A and A0 are subsets of �n whihboth lie in N and are equivalent modulo In, then � 2 A () � 2 A0.Lemma 6.4. If N is internally approahable of length and o�nality �l, then theset of � < �n whih are In-generi for N is In-positive.Proof. Let D be a dense �l+1-losed subset of P(�n)=In. By Lemma 6.1 we may�nd a dereasing sequene h[A�℄ : � < �li of elements of N \D, whih meets everydense open subset of P(�n)=In lying in N .Let [B℄ 2 D be a lower bound for the sequene h[A�℄ : � < �li. Sine the idealIn is �l+1-omplete, the set C = T f �nnX : X 2 N \ In g is in the dual of In.For all A 2 N \ P (�n); � 2 B \C we have � 2 A i� A is in the �lter generated bythe sequene h[A�℄ : � < �li. In partiular, all � 2 B \ C are generi over N . �The following lemma is the ruial one motivating our use of In-generi ordinals.It indiates that when we add a suitable In-generi ordinal we do not undo our workat ardinals below �n.Lemma 6.5. Let � be suh that sup(N \ �n) < � < �n and � is In-generi forN . Let N� = SkA(N [ f�g). Then N� \ �n�1 = N \ �n�1.Proof. By the same argument that we used in Lemma 6.2, N� = ff(�) : f 2 Ng.Let  2 N� \ �n�1 and �x f 2 N suh that f : �n �! �n�1 and  = f(�).The set of equivalene lasses [A℄ suh that f is onstant on A lies in N , and bynormality it is dense in P(�n)=In. Sine � is a generi ordinal there is A 2 N suhthat � 2 A and f is onstant on A. It follows that  2 N . �Remark 6.6. We may also give an essentially equivalent proof of Lemma 6.5phrased in the language of ultra�lters and elementary embeddings. Let M be thetransitive ollapse of N , let M� be the ollapse of N�, and let j :M �!M� be theelementary embedding from M to M� orresponding to the inlusion map from Nto N�. Let U be the M -ultra�lter on the ollapse of �n whih is indued by �.It is routine to hek that M� = Ult(M;U) and j is the assoiated elementaryembedding jMU . j has ritial point equal to the ollapse of �n, so in partiular j�xes the ollapse of �n�1. It follows that N \ �n�1 = N� \ �n�1.Theorem 6.7. Let f : ! �! f0; lg be any funtion and let Tn = f� < �n : f(�) =�f(n)g for n > l. The sequene hTn : l < n < !i is mutually stationary.Proof. It will suÆe to build a struture M � A suh that f(M \ �l+1) = �l andf(M \ �n) = f(n) for n > l + 1. If neessary we may then use Lemma 6.3 to addin ! ordinals below �l+1 and adjust f(M \ �l+1).Let A be some expansion of (H�;2; <�). Let N � A be an internally approah-able struture of length and ardinality �l. In partiular, sup(N \�n) has o�nality�l for every n > l.If f is onstant with value l there is nothing to do, so we assume that f takes thevalue 0 at least one. Let hnk : k < !i be a sequene of integers suh that nk > 2,f(nk) = 0 for all k, and for all n > l + 1 suh that f(n) = 0 there are in�nitelymany k suh that nk = n.We onstrut sequenes hNk : k < !i of strutures and h�k : k < !i of ordinalsby reursion on k.� N0 = N .



CANONICAL STRUCTURE 19� If nk = n then �k is some ordinal suh that sup(Nk \ �n) < �k < �n and�k is In-generi for Nk.� Nk+1 = SkA(Nk [ f�kg).The onstrution an proeed, beause by Lemma 6.2 the struture Nk is inter-nally approahable of length and o�nality �l for every k < !. Lemmas 6.3 and6.5 imply that sup(Nk+1 \ �j) = sup(Nk \ �j) for j 6= k, so if we set N! = SkNkthen we see that� N! � A.� f(N! \ �l+1) = �l.� f(N! \ �j) = �l if f(j) = l, j > l + 1.� f(N! \ �j) = �0 if f(l) = 0, j > l + 1.This shows that hTn : l < n < !i is mutually stationary. �If we are willing to leave gaps between the ardinals where we want o�nality !,then we an redue the hypothesis of Theorem 6.7 to in�nitely many measurableardinals. Expliitly: If there are in�nitely many measurable ardinals and A � !n2is suh that for all n 2 A; n + 1 =2 A, then there is a foring extension where �narries a normal �n-omplete ideal on �n with a dense set that is losed underdereasing sequenes of length �n�2. In the resulting model, it an be shown thatif f : ! ! f0; lg is suh that f�1(0) � A, then the sequene of sets hTn : l < n < !iis mutually stationary. The proof is exatly as above.7. Good points and diagonal Prikry foringIn this setion we reord two foring onstrutions involving large ardinals, PCFand reetion. The �rst onstrution gives a simple proof that it is onsistent forthere to be stationarily many non-good points in �!+1.7.1. Good points. As we mentioned in the introdution to this paper, variousmodels are known in whih the set of non-good points of o�nality �1 is stationaryin �!+1.� Levinski, Magidor and Shelah [16℄ have shown that the Chang's onjeture(�!+1;�!) � (�1;�0) is onsistent, and Foreman and Magidor [11℄ haveshown that if (�!+1;�!) � (�1;�0) then the set of non-good points ofo�nality �1 is stationary.� In unpublished work Magidor [17℄ has shown that the same onlusionfollows from Martin's Maximum.In this setion we reord the remark that Shelah's onstrution [14℄ for makingthe set of non-approahable points of o�nality �1 stationary also makes the set ofnon-good points stationary.We start by assuming that � is superompat and that the GCH holds. It fol-lows from GCH that there exists a sale hf� : � < �+!+1i in Qn<! �+n under theeventual domination ordering; to see this enumerateQn<! �+n as hg� : � < �+!+1i,write eah � < �!+1 as an inreasing union SnX�n with jX�n j < �+n, and indu-tively hoose f� so that f�(n) is greater than f�(n) and g�(n) for all � 2 X�n .The basi idea is that this sale ontains many non-good points of o�nality lessthan �, and that we will \miniaturise" this situation by some judiious ardinalollapsing. Fix j : V �! M witnessing that � is �+!+1-superompat, and notethat j is disontinuous at �+n for n < ! and also at �+!+1. Let  = sup(j\�+!+1)



20 JAMES CUMMINGS, MATTHEW FOREMAN, AND MENACHEM MAGIDORand let H 2Q j(�+n) be given by H(n) = sup(j\�+n). Let j(hf� : � < �+!+1i) =hg� : � < j(�+!+1)i, and observe that by the elementarity of j and the losureof M the sequene hg� : � < j(�+!+1)i is a sale in Qn j(�+n) under eventualdomination. It is easy to see that H is an exat upper bound for hg� : � < i.We laim that there is an inaessible Æ < � suh that for stationarily many � 2�+!+1\of(Æ+!+1) there an exat upper bound h for hf� : � < �i, with f(h(n)) =Æ+n for all n. If the laim fails then �x for eah Æ a lub CÆ witnessing the non-stationarity of the relevant set, and let C = TÆ CÆ. Sine C is lub we see that 2 j(C), and sine f() = �+!+1 and hg� : � < i has an exat upper bound Hwith f(H(n)) = �+n for all n we get a ontradition by elementarity.We now �x a suitable inaessible Æ < � and let S be the stationary set of� 2 �+!+1\ of(Æ+!+1) suh that there is an exat upper bound h for hf� : � < �i,with f(h(n)) = Æ+n for all n. We fore with P � Q where P = Col(!; Æ+!) andQ = Col(Æ+!+2; < �). Let G�H be P � Q -generi.The usual hain ondition and losure arguments tell us that Æ+!+1V is the new�1, �+nV = �n+3 and �+!+1V = �!+1. By Easton's lemma all Æ+!+1V -sequenesof ordinals from V [G℄[H℄ lie in V [G℄. Sine P � Q is �-.. it is also routine tohek that S is still stationary in V [G℄[H℄ and that hf� : � < �+!+1i is a sale inQn<! �+nV .To �nish we laim that if � 2 S then � is not a good point in V [G℄[H℄. Supposefor a ontradition that suh an � is good, and �x an unbounded set A � � of ordertype Æ+!+1V and k < ! suh that hf�(n) : � 2 Ai is stritly inreasing for n > k. Aswe pointed out above, A 2 V [G℄. Sine P has ardinality Æ+! it follows that thereis B � A with B 2 V and B unbounded in �.The set B will serve as a witness that in V the point � is good of o�nalityÆ+!+1. This implies that an exat upper bound g for hf� : � < �i exists withf(g(n)) = Æ+!+1 for all n, ontraditing the fat that � 2 S and that exat upperbounds are unique modulo �nite alteration.To summarise we have proved the following result.Theorem 7.1. If � is �+!+1-superompat then in some generi extension the setof non-good points of o�nality �1 in �!+1 is stationary.If we ould make Æ+!+1 into �2 by some small foring we ould get the onsis-teny of the set of non-good points of o�nality �2 being stationary. Unfortunatelythis kind of ardinal ollapse is provably very diÆult and onjetured to be im-possible [3℄.7.2. Diagonal Prikry foring. We showed in a previous paper [6℄ that Prikryforing at a measurable ardinal � preserves some of the stationary reetion prop-erties of �+. Here we prove a similar result for diagonal Prikry foring, using arather similar argument.We start by �xing some notation that we will use through this setion. Supposethat we are given an inreasing !-sequene of measurable ardinals �n togetherwith a normal measure Un on eah �n. A ondition in the diagonal Prikry foringdetermined by these data is a sequene (�0; : : : �m�1; Bm; Bm+1; : : :) where �i�1 <�i < �i and Bi 2 Ui. Given onditions p = (�0; : : : �m�1; Bm; Bm+1; : : :) andq = (�0; : : : �n�1; Cn; Cn+1; : : :), q extends p when n � m, �i = �i for i < m and�i 2 Bi for m � i < n.



CANONICAL STRUCTURE 21We refer to the �nite sequene (�0; : : : �m�1) as the lower part of the ondition(�0; : : : �m�1; Bm; Bm+1; : : :). It is well-known that diagonal Prikry foring has thePrikry property, in the sense that any question about the foring extension an bedeided by shrinking the measure one sets in a ondition, or to put it another waywithout hanging the lower part.We now let � = Sn �n and suppose that �+ has the following reetion property:for all n, any stationary susbet of �+\of(< �n) reets at some point in �+\of(<�n). This will be the ase for example if all of the �n are strongly ompat. Welaim that this reetion property is preserved by the diagonal Prikry foring.To see this �x n, a ondition p and a name _T for a stationary subset of �+\of(<�n). By extending p if neessary we may assume that the lower part of p has lengthat least n. For eah lower part x whih extends the lower part of p we let Tx bethe set of � suh that some extension of p with lower part x fores � into _T ; sinethere are only � possibilities for x, we may �nd x suh that Tx is stationary.By hypothesis there is  < �+ with f() < �n suh that Tx \  is stationary.We now �x C �  with order type f(), and then use the ompleteness of themeasures Uj for j � n to �nd a single ondition q with lower part x suh that qfores that C \ Tx � _T . Then q fores that _T reets at  and we are done.We summarise the results of this disussion in a theorem.Theorem 7.2. Let h�n : n < !i be an inreasing sequene of measurable ardinalswith supremum �, and suppose that for every n every stationary susbet of �+\of(<�n) reets at some point in �+\of(< �n). Then this reetion property still holdsin the generi extension by any diagonal Prikry foring de�ned from some sequeneof normal measures on the �n.Gitik and Magidor have devised several foring posets for adding many diagonalPrikry sequenes simultaneously. It would be interesting to ombine their methodswith those of Theorem 7.2.8. Refletion and Martin's maximum revisitedForeman, Magidor and Shelah [13℄ showed that Martin's Maximum implies thatfor all � � �2, every stationary subset of [H�℄�0 reets to a struture of sizeand uniform o�nality �1. We showed in the last setion of [6℄ that foring overa model of MM+ we an get the onsisteny of this kind of reetion with theexistene of two stationary subsets of a regular ardinal � � �2 whih do notreet simultaneously, and Larson [15℄ independently obtained similar results. Thefollowing result generalises and sharpens these theorems: note in partiular thatwe are reeting to an IA struture and that we are only using MM (rather thanMM+) in the ground model.Theorem 8.1. Assume Martin's Maximum. Let � be a regular ardinal with � > �1and let � be a (possibly �nite) ardinal with � � �1. Then there is a foring posetP whih adds no bounded subsets of � and suh that in V P(1) There are � stationary subsets of � \ of(!) whih do not reet simulta-neously.(2) For every � > �1, every set of fewer than � stationary subsets of [H�℄�0simultaneously reets to an internally approahable set in [H�℄�1 .In partiular, every olletion of less than � stationary subsets of �\ of(!) simul-taneously reets.



22 JAMES CUMMINGS, MATTHEW FOREMAN, AND MENACHEM MAGIDORProof. We let P be the natural poset for partitioning � \ of(!) into � many sta-tionary sets whih do not reet simultaneously. Conditions in P are funtions psuh that p : ��(�\of(!)) �! 2 for some � < �, with the properties that for eahi we have p(�; i) = 1 for exatly one � < �, and that for every � 2 (�+1)\ of(�1)there are � < � and C lub in � suh that f � f�g � C is identially zero.It is easy to see that P is ountably losed and is �-strategially losed (a winningstrategy for player II is to pik a oordinate � < � and to write zero at thatoordinate whenever it is her turn to play). It is also easy to see that P adds apartition of � \ of(!) into � stationary sets whih do not reet simultaneously.By Martin's Maximum the non-stationary ideal on �1 is �2-saturated in V . Welaim that this is also the ase in V P. To see this let h _Ai : i < �2i be a P-name fora ounterexample to saturation, and note that V and V P have the same subsetsof �1; in partiular they agree on the question of whether a subset of �1 is lub,stationary or non-stationary. Sine � � �2 we may use the strategi losure of P tobuild a dereasing hain hpi : i < �2i of onditions in P suh that pi  _Ai = �Bi forsome Bi 2 V . Then hBi : i < �2i is a ounterexample to saturation in V , whih isa ontradition.We let hTj : j < �i be the sequene of stationary subsets of � added by P. Let� < � be a ardinal, let � be a ardinal in V P and let h _Si : i < �i be a sequene ofP-names for stationary subsets of [H�℄�0 . (So there are at most ountably manysets Si.) Let � be the maximum of � and �. We work towards showing that Pfores that the sets Si reet simultaneously.We now work in V P. For eah i < � we will say that Si is soial if there existsj < � suh that for stationarily many N 2 [H�℄�0 , N\H� 2 Si and sup(N\�) 2 Tj .In this ase we let j(i) be the least j with this property. If Si is not soial we saythat Si is antisoial. If � < �1 then all Si are soial, but if � = �1 this is notneessarily the ase.Let j� < � be least suh that j� 6= j(i) for any soial Si. Sine there are onlyountably many sets Si we may �x a lub set Cbad in [H�℄�0 suh that if Si isantisoial, then sup(N \ �) =2 Tj� for every N 2 Cbad suh that N \H� 2 Si.We now use a fat from [13℄:Claim. Suppose that the non-stationary ideal on !1 is �2-saturated and S � [H�℄�0is stationary. Then there is a losed unbounded set C � [H�℄�0 suh that for allstationary T � f N \ !1 : N 2 C \ S g there are stationarily many N 2 C \ Ssuh that N \ !1 2 T .Proof. (Sketh) First note that if C;D are lub sets in [H�℄�0 and there is a � 2 !1suh that for all N 2 C if � 2 N then N 2 D, then fN \ !1 : N 2 Cg � fN \ !1 :N 2 Dg modulo the non-stationary ideal on !1.Now build a sequene of losed unbounded sets hC� : � < ��i for some �� � !2by indution. Let C0 = [H�℄�0 and given C� hoose C�+1 � C� if possible so thatf N \ !1 : N 2 C�+1 g ( f N \ !1 : N 2 C� g modulo the non-stationary ideal.If this is not possible, then we set �� = � + 1. At limit stages we take diagonalintersetions.Sine the non-stationary ideal on !1 is �2-saturated, there is a �� < !2 wherethis sequene stops. If �� = �+1, then C = C� satis�es the onlusion of the laim.�By the laim we an �x for eah i < � a stationary set Ui � �1 suh that



CANONICAL STRUCTURE 23(1) If Si is soial then for every stationary T � Ui there are stationarily manyN 2 [H�℄�0 suh that N \H� 2 Si, sup(N \ �) 2 Tj(i) and N \ �1 2 T .(2) If Si is antisoial then for every stationary T � Ui there are stationarilymany N 2 [H�℄�0 suh that N \H� 2 Si and N \ �1 2 T .Thinning out if neessary we arrange that the Ui are pairwise disjoint. By thelosure of P we see that hUi : i < �i 2 V , and so working below a suitable onditionin P we may assume that we have a �xed sequene hUi : i < �i whih is in V .Still working in V P we de�ne Q to be Col(�1; HV� ). If F : �1 ' HV� is thebijetion added by Q then in V P�Q we let si = fÆ < �1 : F\Æ \ H� 2 Sig andtj = fÆ < �1 : sup(F\Æ \ �) 2 Tjg. Working in V P�Q we de�ne a poset R ;onditions in R are losed bounded subsets of �1 onsisting of ordinals Æ suh thatÆ =2 tj� , and suh that Æ 2 Ui implies F\Æ \H� 2 Si for eah i. The ordering on Ris end-extension.With a view to applying Martin's Maximum, we laim that P�Q �R is stationaryset preserving. Let S be a stationary subset of �1. It is lear by the strategi losureof P that S is still stationary in V P, and we will work in V P to argue that Q � Rpreserves the stationarity of S. Let _C be a Q � R -name for a lub subset of �1 andlet (q0; 0) 2 Q � R . As usual when we are proving the preservation of stationarity,our goal is to �nd (q; ) � (q0; 0) foring that _C meets S.Shrinking S if neessary, and using the fat that there are only ountably manysets Ui, we may assume that either S is disjoint from every Ui or S � Ui for somei. We will treat these ases separately, and will also break up the seond aseaording to the soiality or otherwise of Si. We start by �xing some large regularardinal �.Case 1: S is disjoint from every Ui. In this ase we will hoose a ountableM � H�ontaining everything relevant suh that Æ =def M \�1 2 S and sup(M \ �) =2 Tj� .We then build a hain h(qn; n) : n < !i of onditions in M \ Q � R whih meetsevery dense subset of Q � R lying in M , and let q = S qn and  = S n.It is lear that q 2 Q and q fores that F\Æ =M \HV� . Sine sup(M \�) =2 Tj� ,q fores that Æ =2 tj� and so (q; [fÆg) is a ondition in Q �R . This ondition foresthat Æ 2 _C and we are done.Case 2a: S � Ui for a soial Si. In this ase we hoose a ountable M � H� suhthat Æ =def M \ �1 2 S, M \H� 2 Si and sup(M \ �) 2 Tj(i); this is possible bythe hoie of j(i) and Ui. We de�ne q and  as in ase 1, and again q fores thatF\Æ = M \HV� .Sine j(i) 6= j�, q fores that Æ =2 tj� . By the hoie of M we also see that qfores Æ 2 si. Thus (q;  [ fÆg) is a ondition in Q � R and we are done.Case 2b: S � Ui for an antisoial Si. In this ase we hoose M � H� suh thatÆ =def M \ �1 2 S, M \H� 2 Si and M \H� 2 Cbad. It follows from the hoieof Cbad that sup(M \ �) =2 Tj� , and we may now proeed as in Case 2a.We note that in the ourse of proving the laim, we also showed that if C is thelub set added by R then C \ Ui is stationary for every i.To �nish the argument we will now apply Martin's Maximum to P � Q � R as inthe last setion of [6℄. Meeting suitable dense sets we produe p, F and C togetherwith j� < � and disjoint stationary Ui � �1 suh that(1) dom(p) = � � � for some � < � of o�nality �1, with p : � � � �! 2.



24 JAMES CUMMINGS, MATTHEW FOREMAN, AND MENACHEM MAGIDOR(2) F : �1 �! H� and F\�1 is internally approahable (this approahabilityis easy to arrange, observing that for eah  < �1 the set of (p; q; r) suhthat q �  2 range(q) is dense)(3) supF\�1 \ � = �.(4) C is lub in �1 and C \ Ui is stationary for every i.(5) p(j�; sup(F\Æ \ �)) = 0 for every Æ 2 C.(6) For every �� < �, p � � � �� 2 P.(7) For every Æ 2 C \ Ui, there is some �� < � suh that p � � � �� fores thatF\Æ \H� 2 Si.Sine we have arranged that p(j�; �) = 0 for a lub set of � < �, p is itself aondition in P. For eah i we have arranged that C \ Ui is stationary and that pfores fF\Æ \H� : Æ 2 C \ Uig � Si, so that p fores Si to reet to F\�1. �9. The least ardinal where square failsWe showed [4℄ that if ��n holds for every n < ! and CH holds then a ertainweakening of ��! holds. We then showed [5℄ that it is onsistent for the full ��!to fail under these irumstanes. In this setion we show that the least ardinalwhere square fails an be the least inaessible.Theorem 9.1. It is onsistent from large ardinals that the least � where �� failsis the least inaessible ardinal.Zeman pointed out that onsisteny that square �rst fails at the �rst inaessibleis a Mahlo ardinal. The model he onstruts is the \usual" model V Col(�;�), where� is the �rst inaesible ardinal. The \usual" arguments show that square fails at� in this model, and moreover, that if square held below � in the ground model, itholds below � in this model. Nonetheless we give the proof below as it seems thatit may be useful in some other ontext.Proof. (Sketh) Let GCH hold, let � be superompat and let � be the least ina-essible ardinal greater than �. Fore that �� holds for every � with � < � by aReverse Easton iteration P of length �. Note that P preserves ardinals, preservesthe inaessibility of � and has ardinality �. Now let Q be the Cohen foringAdd(�0; �), so that in V P�Q the ardinal � is the least inaessible ardinal.We show that �� fails in V P�Q by showing that every stationary subset of �+reets. Let T be a stationary subset of �+ in V P�Q , and use the fat that P � Qhas size � to �nd a set U � T suh that U 2 V and U is stationary in V . Sine �is superompat U reets to some point � of o�nality Æ+, for some inaessible Æwith Æ < �. We �nish by showing that P �Q preserves the stationarity of stationarysubsets of Æ+, from whih it follows that T \ � is stationary in V P�Q .We fator P as PÆ � PÆ , where PÆ adds the �� sequenes for � < Æ and PÆ addsthem for � � Æ. Sine PÆ is Æ+-.. and PÆ is < Æ+-strategially losed in V PÆ ,foring with P preserves stationary subsets of Æ+; sine Q is is .. the same is trueof P � Q . �10. A limiting resultIn this last setion of the paper we prove a result whih limits the possibilities forreating a superompat ardinal by foring in the presene of weak squares. This



CANONICAL STRUCTURE 25result was motivated by the question \to what extent are weak squares ompatiblewith stationary reetion?" A natural senario for making a model with weaksquare at � and some reetion is to make a model of ��� where some � with� < � an be made superompat by \mild" foring. Ben-David and Shelah [2℄attempted to give a proof of the onsisteny of weak square with reetion inwhih a generi superompat embedding is resurreted by ountably losed foring,but the theorem that follows shows that their approah to the problem annotwork. See our paper on squares and reetion [6℄ for a onsisteny proof that usesthe tehnique of resurreting superompat ardinals, but where the foring whihresurrets superompatness is stationary set preserving for more deliate reasons.A ardinal � is generially �- superompat by ountably losed foring i� thereis a ountable losed foring P suh that in V P, there is an elementary embeddingj : V !M with M a transitive lass and j\� 2M .Theorem 10.1. Let � < � be ardinals with � regular, � strong limit and f(�) = !.If ��� holds then � is not generially �+-superompat by a ountably losed foringwhih preserves � and �+.Proof. We wish to �x a sequene whih witnesses ��� and has some additionalproperties. Starting with an arbitrary ���-sequene, we �rst replae eah set C� byits losure under the power set operation; sine � is strong limit and the elementsof C have order type less than �, the resulting set still has size at most �. We haveprodued a sequene hC� : � < �+i suh that for all �(1) C� is a set of subsets of � and jC�j � �.(2) If C is in C� then(a) P(C) � C�.(b) For every � < � with sup(C \ �) = �, C \ � 2 C� .(3) C� ontains at least one set whih is lub in � and has order-type f(�).Now let P be some ountably losed foring poset whih preserves � and �+,let V1 be some generi extension by P. Suppose that in V1, the generi �+-superompatness of � is witnessed by j : V �!M .Let  = sup j\�+, so that f() = fM () = �+ and  < j(�+). Let the image ofour original ���-sequene under j be hCj� : � < j(�+)i, and �x C 2 Cj whih is lubin  and has order-type �+. The embedding j is ontinuous at points of o�nality!, so that j\�+ \ C is !-lub in . Let _C name C.Claim. There do not exist p 2 P and an unbounded subset D of �+ suh thatp  j\D � _C.Proof. If suh p and D exist, let � be an aumulation point of D suh that f(�) =! and ot(D \ �) � �. The embedding j must be ontinuous at �, so p fores thatj(�) is an aumulation point of j( _C), and so by oherene that j( _C)\j(�) 2 Cjj(�).If x is any ountable subset of D \ � then p fores that j(x) = j\x and thatj\x � j( _C) \ j(�), so p fores that j(x) 2 Cjj(�). By elementarity x 2 C�. This isimpossible beause there are �! possibilities for x and �! � �+ > jC�j. �Given � < �+, let �� be a term for the least � > � with j(�) 2 _C; we say thatp bounds �� if and only if there is  < �+ suh that p  �� � . Not that if p doesnot bound �� and � > � then p does not bound ��.Claim. For every p there is an � < �+ suh that p does not bound ��.



26 JAMES CUMMINGS, MATTHEW FOREMAN, AND MENACHEM MAGIDORProof. Suppose that p bounds �� for every �, and de�ne D to be the !-lub set ofpoints � suh that f(�) = ! and p  �� < � for every � < �. If � 2 D then it isfored that j is ontinuous at �, so that p fores j(�) to be a limit point of _C andhene p  j(�) 2 _C. This ontradits the previous laim. �Claim. There exist a tree of onditions hps : s 2 <!�i and an inreasing sequeneh�i : i < !i of ordinals from �+ suh that(1) If t extends s then pt � ps.(2) The ondition ps does not bound ��lh(s).(3) For eah i < �, ps_i deides ��lh(s) as some ordinal �(s_i) with �(s_i) <�lh(s)+1.(4) If i 6= j then �(s_i) 6= �(s_j).Proof. We observe that if p does not bound �� and � > � then p does not bound��. We start by setting p0 = 1P and hoosing �0 suh that p0 does not bound��0. Having de�ned �n and ps for lh(s) = n, we use the fat that no ps bounds ��nto hoose the ps_i and �(s_i) appropriately; we then hoose �n+1 above all the�(t) for lh(t) = n+ 1, with the property that ��n+1 is not bounded by any pt withlh(t) = n+ 1. �Let �! = supi<! �i. For eah f 2 !� let pf be a lower bound for hpf�n : n < !iand let xf = f �(f � n) : n < ! g. By onstrution eah pf fores that j(�!) is alimit point of C, so that arguing as in the proof of our �rst laim pf  j(xf ) 2 Cjj(�!)and hene xf 2 C�! .By onstrution the xf are all distint, and there are �! possibilities for f .Therefore jC�! j > �, ontradition! It follows that j an not be a generi �+-superompat embedding in V P. �Referenes[1℄ J. E. Baumgartner. On the size of losed unbounded sets. Annals of Pure and Applied Logi,54(3):195{227, 1991.[2℄ S. Ben-David and S. Shelah. The two-ardinals transfer property and resurretion of super-ompatness. Proeedings of the Amerian Mathematial Soiety, 124(9):2827{2837, 1996.[3℄ J. Cummings. Collapsing suessors of singulars. Proeedings of the Amerian MathematialSoiety, 125(9):2703{2709, 1997.[4℄ J. Cummings, M. Foreman, and M. Magidor. Canonial invariants for models of ZFC: PartOne. Submitted.[5℄ J. Cummings, M. Foreman, and M. Magidor. The non-ompatness of square. To appear inJournal of Symboli Logi.[6℄ J. Cummings, M. Foreman, and M. Magidor. Squares, sales and stationary reetion. Journalof Mathematial Logi, 1(1):35{99, 2001.[7℄ D. Donder, R. B. Jensen, and B. J. Koppelberg. Some appliations of the ore model. In Settheory and model theory (Bonn, 1979), volume 872 of Leture Notes in Math., pages 55{97.Springer, Berlin, 1981.[8℄ H. Donder, R. Jensen, and L. Stanley. Condensation-oherent global square systems. In Re-ursion theory (Ithaa, N.Y., 1982), pages 237{258. Amer. Math. So., Providene, R.I.,1985.[9℄ M. Foreman. Games played on boolean algebras. Journal of Symboli Logi, 48:714{723, 1983.[10℄ M. Foreman and M. Magidor. Large ardinals and de�nable ounterexamples to the ontin-uum hypothesis. Annals of Pure and Applied Logi, 76:47{97, 1995.[11℄ M. Foreman and M. Magidor. A very weak square priniple. Journal of Symboli Logi,62(1):175{196, 1997.



CANONICAL STRUCTURE 27[12℄ M. Foreman and M. Magidor. Mutually stationary sequenes and the non-saturation of thenon-stationary ideal on P��. Ata Mathematia, 186(2):271{300, 2001.[13℄ M. Foreman, M. Magidor, and S. Shelah. Martin's Maximum, saturated ideals and non-regularultra�lters I. Annals of Mathematis, 127:1{47, 1988.[14℄ A. Hajnal, I. Juh�asz, and S. Shelah. Splitting strongly almost disjoint families. Transationsof the Amerian Mathematial Soiety, 295(1):369{387, 1986.[15℄ P. Larson. Separating stationary reetion priniples. Journal of Symboli Logi, 65(1):247{258, 2000.[16℄ J. P. Levinski, M .Magidor, and S. Shelah. Chang's onjeture for �! . Israel Journal ofMathematis, 69:161{172, 1990.[17℄ M. Magidor. Letures on weak square priniples and foring axioms. Given in the JerusalemLogi Seminar during Summer 1995.[18℄ M. Magidor and S. Shelah. When does almost-free imply free? Journal of the AmerianMathematial Soiety, 7:769{830, 1994.[19℄ Y. N. Moshovakis. Desriptive set theory. North-Holland Publishing Co., Amsterdam, 1980.[20℄ K. Prikry. Changing measurable into aessible ardinals.Dissertationes Mathematiae, 68:5{52, 1970.[21℄ S. Shelah. Proper Foring. North-Holland, Amsterdam, 1980.CMUU C IrvineHebrew University


