CANONICAL STRUCTURE IN THE UNIVERSE OF SET
THEORY: PART TWO

JAMES CUMMINGS, MATTHEW FOREMAN, AND MENACHEM MAGIDOR

ABSTRACT. We prove a number of consistency results complementary to the
ZFC results from our paper [4]. We produce examples of non-tightly sta-
tionary mutually stationary sequences, sequences of cardinals on which every
sequence of sets is mutually stationary, and mutually stationary sequences not
concentrating on a fixed cofinality. We also give an alternative proof for the
consistency of the existence of stationarily many non-good points, show that
diagonal Prikry forcing preserves certain stationary reflection properties, and
study the relationship between some simultaneous reflection principles. Finally
we show that the least cardinal where square fails can be the least inaccessi-
ble, and show that weak square is incompatible in a strong sense with generic
supercompactness.

1. INTRODUCTION

In our paper [4] we prove a number of ZFC results concerning PCF theory,
mutual stationarity, square principles and stationary reflection. In that paper we
discussed the informal notion of canonical structure. This notion is supposed to
capture the idea of structure that is not arbitrarily determined by non-constructive
existence assumption. For example, structure that requires the axiom of choice to
prove its existence may still be independent of any choices made in proving it exists.
Cardinals of uncountable cofinality fall into this category. Other examples might
include fine structure models of large cardinals. Large cardinal axioms are non-
constructive assumptions (as opposed to e.g. the pairing axiom, where we know
exactly what the intended object is). However, as a consequence of their existence
there is various canonical structure, such as U N L[U] for U a normal ultrafilter on
a measurable cardinal k.

The notion of canonical structure is different from the notion of absoluteness. We
illustrate this with an example. Assuming the Axiom of Choice, the collection of
real numbers has some well-ordered cardinality ¢ and this cardinality is independent
of the choices made to show it exists. Similarly, one needs the Axiom of Choice to
prove that the least regular uncountable ordinal (X;) exists. Both of these objects
are “canonical” in our sense, but it is independent of ZFC whether they are in fact
identical. We would like to say that these distinct examples of structure that may
or may not determine identical objects.
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In this paper we continue to explore canonical structure by proving consistency
results complementary to the ZFC results in [4].
After some preliminaries in Section 2, we show the following results.

In Section 3, we give a forcing construction for a sequence of stationary sets
which is mutually stationary but not tightly stationary. The proof involves
a combinatorial principle which we dub Coherent Squares.

In Section 4, we give another forcing construction for a sequence of sta-
tionary sets which is mutually stationary but not tightly stationary. The
proof involves some lemmas about uniform structures and mutual station-
arity which are of independent interest. We also show the consistency of a
splitting property for mutually stationary sequences.

In Section 5 we show that on an increasing w-sequence of measurable car-
dinals, any sequence of stationary sets is mutually stationary. We also
show that for any Prikry-generic sequence, a tail of the sequence has this
property.

In Section 6 we give an alternative proof of a theorem by Shelah, that
there can exist sequences of stationary sets on the X,, for n finite which are
mutually stationary and do not concentrate on a fixed cofinality.

In Section 7 we give an alternative construction for a model in which the
set of non-good points of cofinality N; in W, ;1 is non-stationary. We also
show that if we are given an increasing w-sequence of measurable cardinals
such that the successor of their supremum exhibits a certain stationary
reflection property, then the reflection property is preserved by diagonal
Prikry forcing.

In Section 8 we show that the principle saying that for all A any family
of fewer than 1 many stationary subsets of [A]*° reflect does not imply
simultaneous reflection of 7 many sets of w-cofinal ordinals. The proof uses
Martin’s Maximum.

In Section 9 we show that it is consistent that the least A\ for which [ fails
is inaccessible.

In Section 10 we show that if [}, holds for a singular cardinal y of cofinality
w, then a cardinal-preserving countably closed forcing poset can not create
any instances of supercompactness below p. This shows that there is an
essential problem in a result by Ben-David and Shelah [2].

We would like to thank John Krueger for his careful reading of an earlier version
of this paper.

2. PRELIMINARIES

In this section we give some background material on mutual and tight station-
arity and PCF theory. For more details we refer the reader to [4].

The idea of mutual stationarity was introduced by Foreman and Magidor [12] in
their work on the non-saturation of the non-stationary ideal on P, A.

Definition 2.1. Let (S, : k € K) be such that S,, C & for all k € K, where K is
a set of regular uncountable cardinals.

(1)

If N is a set, then N meets (S, : k € K) if and only if sup(N N k) € S, for
alke NN K.
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(2) (Sk : k € K) is mutually stationary if and only if for every algebra .4 on
sup(K) there exists N < A such that N meets (S, : k € K).

If S C P(X) then S is a stationary subset of P(X) if and only if for every algebra
A on X there is B € S such that B < A. The sequence (S : £ € K) is mutually
stationary if and only if the set of subsets of sup(K) which meet (S, : k € K) is a
stationary subset of P(sup(K)). By standard facts [13, Lemma 0] about generalised
stationarity, if X is any set with sup(K) C X then (S, : k € K) is mutually sta-
tionary if and only if the set of subsets of X which meet (S, : k € K) is a stationary
subset of P(X).

It is easy to see that if (S, : kK € K) is mutually stationary then S, is stationary
for each k. Foreman and Magidor showed that the converse is false in general, but
is true if S, C kN cof(w) for all x. In order to get versions of Solovay’s splitting
theorem and Fodor’s theorem Foreman and Magidor introduced the notion of tight
structure and tightly stationary sequence.

Definition 2.2. Let K be a set of regular cardinals, let 8 = cf(6) > sup(K), and
let A= (Hy,€,<p). Let M < A.
Then M is tight for K if and only if
(1) K e M.
(2) Forallg € [],.cpsnix (MNk) there exists h € MN]] K such that g(x) < h(k)
forallke M NK.

If |K| € M then K C M, and in this case tightness has a simpler formulation.
When K C M, M is tight for K exactly when M N]] K is cofinal in ], ., M Nk.

Definition 2.3. Let K be a set of regular cardinals and let M be a set. The
characteristic function of M (on K) is the function X%; with domain K given by
X% Kk — sup(M N k).

If a structure M is such that K C M, then tightness of M amounts to saying that
every function in [| K which is pointwise dominated by X/ is pointwise dominated
by some function in M N[] K, that is to say M N]] K is cofinal in [] K below X%

Definition 2.4. Let K be a set of regular cardinals and let (S, : & € K) be such
that S, C & for all Kk € K. Let = sup(K)™". The sequence (S, : k € K) is tightly
stationary if and only if for every algebra A on Hy there is N < A such that N is
tight for K and N meets (Sy : k € K).

PCF theory gives a very general technique for analysing singular cardinals, but
for our purposes in this paper we will restrict ourselves to the special case when
the singular cardinal is ®,,. Shelah has shown that

e There is an infinite set A C w and a sequence of functions (f, : @ < R,41)
which is a scale (that is to say an increasing and cofinal sequence) in
[I,.c 4 ¥n under the eventual domination ordering.

e Modulo finite sets there is a unique maximal choice for the set A.

For the rest of this discussion we fix A to be the maximal set as above, and also
fix (fa:a <Vyy1) ascalein [], .4 N, A function g from A to the ordinals is said
to be an ezact upper bound for (f, : o < ) iff fo <* g for all @ < 3, and for every
h < g there is @ < 8 such that h <* f,. For example the function n — X, is an
exact upper bound for (f, : a < Ny11).
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Without loss of generality we assume that the scale (f, : @ < R,1) is continu-
ous, which means that whenever an exact upper bound for (f, : & < ) exists then
fs is such an upper bound. It is easy to see that modulo finite sets exact upper
bounds are unique, so that if h is any exact upper bound for (f, : a < ) then
h =* fg.

We will be especially interested in the good points of this kind of scale. An
ordinal B < W, ;1 of uncountable cofinality is good if there exists an exact upper
bound A for (f, : @ < ) such that cf(h(n)) = cf(B) for all n with ¢f(8) < w,. The
set of good points is stationary in every uncountable cofinality and is an important
invariant of the universe of set theory; see for example [11], [6] and [18].

There is a useful alternative characterization of good points. The point [ is
good if and only if it has uncountable cofinality and for every A unbounded in
there exist B C A unbounded in 8 and k < w such that (f,(n) : @ € B) is strictly
increasing for all n > k.

One reason for us to be interested in good ordinals is that they give a character-
ization of tight structures. We showed [12] that if M < Hp, 0 < m < w and PCF
is trivial (that is to say that A = w, so there is a scale of length R, in [[, R,
modulo the ideal of finite sets.) then the following are equivalent:

(1) The structure M is tight for {8, : n < w} and cf(M NR,) = N, for all
large n < w.

(2) If v = sup(M N R, 41) then v is a good point of cofinality X, and f,(n) =
X (Ry,) for all large n < w.

The kind of uniform cofinality assumption which appears in the result we just
quoted is ubiquitous enough to deserve a name. We will say that a structure M is
R, -uniform if cf(M NR,,) =N, for m < n < w.

If 0 < m < w then every internally approachable structure of length and car-
dinality ,, is tight for {N,, : n < w}, so there are stationarily many ,,-uniform
tight structures. Zapletal [12] showed that there are stationarily many 8,,-uniform
non-tight structures.

Without the assumption that PCF is trivial, we can give a more complicated
description of the uniform tight structures. We refer the reader to [4, Theorem 5.6]
for the missing details. Let K = {R, : n < w}, let B = (Bj : A € pcf(K)) be a
sequence of PCF generators for K and let f = (f):a < A\ A € pcf(K)) be such
that (f2 : @ < A) is an w-club minimal scale in [] By/J< for each A\. We showed
[4] that if 0 < m < w and M < (Hg, B, f) is Ry,-uniform and tight for K then X
can be written as the pointwise supremum of finitely many functions of the form
lep(MﬁA)'

If M is an X,,-uniform substructure of some expansion A of (Hy, €, <g), and M*
is the Skolem hull in A of M UR,,,, then as we see later in Lemma 6.3 sup(M NY,,) =
sup(M*NN,) for m <n < w. So M* is R,,-uniform and contains X,,,. We showed
[4] that for 0 < m < w, if N is 8,,-uniform and contains X,,, then the set N NN, is
closed under bounded suprema of length less than X,,; in particular for m < n < w
there is a club subset of N NN,, which has order type XN,, and is contained in N NN,,.

3. A NON-TIGHT MUTUALLY STATIONARY SEQUENCE

Foreman and Magidor [12] raised the question as to whether every mutually sta-
tionary sequence is tightly stationary. In this section we give a forcing construction
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showing that a negative answer is consistent; we do not know whether a negative
answer follows from the axioms of ZFC. Given k > 0 we will construct by forcing
a sequence (T, : k < n < w) with T}, C R,, N cof(Ny), which is mutually stationary
but not tightly stationary.

We start by defining a combinatorial principle Coherent Squares (CS). The prin-
ciple asserts the existence of [y -sequences for 0 < n < w, together with a scale
of length N, ;1 in Hn<w R,, which relates the [y, -sequences for n < w to the Oy -
sequence. We note that the scale involved in the principle CS is a “Very Good
Scale” in the sense of our paper [6]. This principle is closely related to some com-
binatorial principles of Donder, Jensen and Stanley [8] and Donder, Jensen and
Koppelberg [7].

Definition 3.1. For each n < w let I, = {a : N, < a < ¥,;1 }. The principle
CS asserts that there exist sequences

(CPrael, NLIM,0 <n <w),(fo:acl,NLIM),
such that

(1) For all n and all @ in S,, N LIM
(a) The set C7 is club in a, and C7 C I,.
If the cofinality of « is less than ®,, then the order type of C7) is less
than N,,.
(b) For every limit point 3 of Cyy, Cp = C7 N B.
(2) For all @ in S, N LIM, f, is a function such that
(a) There exists k& < w such that dom(fy) = {n : k<n<w} and
Ot(C&J) S Nk, .
(b) For all n in dom(fs), fa(n) € I, N LIM.
(c) For every limit point 3 of C¢, dom(f,) C dom(f3).
(d) For all n in dom(fy),

im(CY () ={ fs(n) : B € lim(Cy) }.

(3) The sequence (f, : a € I, N LIM) forms a scale in [],, 8,41, that is to say
it is increasing and cofinal in the eventual domination ordering.

Remark 3.2. Notice that (C : o € I,, N LIM) is essentially a Oy -sequence, with
the (purely cosmetic) difference that the underlying set is I,, rather than ¥, ;.

Remark 3.3. If (f, : a € I,) is the scale in [[N,, modulo the ideal of finite sets
given by the principle CS, then (f,) is continuous and w-club minimal. Moreover,
it is a very good scale in the sense of [6].

All this follows from the observation that if o has uncountable cofinality then
for large n the sequence (f,(n):~ € lim(CY)) is continuous and increasing with
supremum f,(n).

To motivate the principle CS we show that it can be used to generate a sequence
of stationary sets which is not tightly stationary. We suppose that (f,) and (C%) are
as in Definition 3.1. Given k < w and a sequence of limit ordinals (v, : k < n < w)
such that ~,, < N, for all n, we define a sequence of sets by

T,={a€l,NLIM : cf(a) =R, o0t(CL) >, }.

The stationarity of the sets T, follows from a general fact about [.-sequences
for k regular.
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Lemma 3.4. If k is regular and (Cy : a < k) is a O, -sequence, then for every
n < k the set {6 < k* : 0t(Cs) > n} is stationary.

Proof. Let C be club in T and let ¢ be a limit point of C' with cofinality k. C; NC
is club in ¢ with order type &, and so we may find ¢ a limit point of C¢ N C such
that ot(C¢ Nd) > n. Clearly § € C, and by the coherence property of the square
sequence C¢ N d = Cs and so ot(Cs) > n. We showed {§ < T : ot(Cs) > n} meets
every club subset of kT and so it is stationary. ([

Lemma 3.5. If (v, : k < n < w) is unbounded in R, vy, < N, for every n, then
(T, : k < n <w) is not tightly stationary.

Proof. Let N be a tight structure and for each i < w let a1 = sup(IN N N;41).
Suppose for a contradiction that «; € T; for all i.

The sequence (f, : a € I, N LIM) forms a continuous scale, so by the charac-
terization of uniform tight structures in terms of PCF theory which we discussed
in Section 2 there exists m < w such that f,_(n) = a,, foralln > m. If n > m
then

lim(Cy ) = lim(C}’% ) =1{ fa(n) + B €lim(Cy) }.
Notice also that if 3,7 € im(Cy ) and 8 < ~ then 8 € lim(CY), and so fz(n) €
hm(C}Lw(n)) and in particular fg(n) < f,(n). It follows that ot(C; ) = ot(C ) for
all n > m. Since (v, : k < n < w) is unbounded in X, we may find n > m such
that v, > ot(Cy ). It follows that a, ¢ T),, which is a contradiction. O

We define a forcing iteration of length w + 1 which forces CS to hold. At stage
n for n < w we force with a version of Jensen’s poset for adding a square sequence
6", where conditions prescribe an initial segment of Cn. At stage w we force with
conditions which prescribe initial segments of C* and f

Definition 3.6. For n < w, Q, is the set of sequences
q=(C%" :a e, NLIMN(B+1))
where

(1) The ordinal 3 is a limit ordinal in S,,. We refer to S as the length of ¢ and
write 8 = lh(q).
(2) Forall ¢ in S, NLIM N (B +1)
(a) The set C2™ is club in o and C2™ C I,,.
(b) The order type of C2™ is less than X, if the cofinality of « is less than
N,
(c) For every limit point v of CZ™, C4™ = CL™ N.
If g,r € Q, then ¢ < r if and only if
(1) The length of ¢ is greater than or equal to the length of r.
(2) For all a € I, N LIM N (Ih(r) + 1), C4™ = CTm.

Before stating the main facts about @Q,, we recall the concept of strategic closure.
Let A be an infinite cardinal. A poset Q is (A + 1)-strategically closed if and only
if player Even has a winning strategy for the game in which two players (Even and
0Odd) build a decreasing A + 1-sequence in Q, where Odd plays at all odd stages
and Even plays at all non-zero even stages including limit stages, and Even wins if
she can move at stage \. We refer the reader to Foreman’s paper on games [9] for
more about strategic closure, noting here only that a (A + 1)-strategically closed
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poset adds no A-sequences and hence preserves all cardinals less than or equal to
AT,
The following facts are standard, see for example [6].

Fact 3.7. Let n < w.
(1) The poset Q,, is countably closed.
) The poset Qy, is (X, + 1)-strategically closed.
) If 2% =R, then |Q,| = N,11, so in particular Q, has the R, 2-c.c.
) If p € Qn, v is a limit ordinal in S,, and lh(p) < v, then there is ¢ < p such
that 1h(q) = 7.
(5) IfC™ = (C": v € I, N LIM) is Q,-generic and § € (R, +1) N LIM, then

VIC" = “{ael,NLIM : ot(C") =4} is stationary in Np41”.

We now assume that V satisfies GCH. We define P, as an iteration with full
support, where at stage n we force with Q, as defined in V¥». As usual we let Q,
be a P,-name for Q,. In V¥ let (C?: a € I, N LIM) be the sequence added by
Q,., and define Q,, as follows.

Definition 3.8. The poset Q,, is the set of pairs of sequences
g=({CL :ael, NLIMNB+1)),{(fl:acl,NLIMN(B+1)))

where
(1) The ordinal 8 is a limit ordinal in I,,. We call 8 the length of ¢ and write
8 =1h(g).
(2) Foralla € I, NLIM N (B+1)
(a) The set C2* is club in o and C9* C I,,.
(b) The order type of C%* is less than X,,.
(c) For every limit point v of CZ%, C2% = C&* N .
(3) For all « in I, N LIM N (B + 1), fo is a function such that
(a) There exists k& < w such that dom(fy) = {n : k<n<w} and
ot(Cg’“) S Nk.
(b) For all n € dom(f,), fa(n) € I, N LIM.
(c) For all limit points 8 of C2*, dom(f,) C dom(fg).
(d) For all n € dom(f,),

im(C}? () ={ fs(n) : B € lim(C3*) }.
(4) If oy < as < B, then fo, <* fa,-
If g,r € Q, then ¢ < r if and only if
(1) The length of g is greater than or equal to the length of r.
(2) For all & in S, " LIM N (lh(r) + 1), C9* = C%¥ and fI = f7.

When we construct members of Q, we will generally only verify that the “co-
herence” clause 3d holds.

Lemma 3.9. The forcing poset Q,, is countably closed in V=,

Proof. Let (g; : 1 < w) be a strictly decreasing w-sequence of conditions, and define
B; =1h(g;) and B = sup;_,, B;- We define a condition ¢ as follows.
(1) The length of ¢ is 3.
(2) For all a € I, N LIM N (Ih(g;) + 1), C2% = C% and f2 = f3.
(3) The set C§* is cofinal in 3 with order type w.
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(4) For all n < w, fi(n) >sup{ f§,(n) : i €w}and Ot(C?g(n)) =w.

The choice of fj(n) is possible because ot(C}') = w for a cofinal set of § < R,41.

The clause 3d of the definition of Q,, is satisfied trivially because neither Cg’“’ nor

any of the CJ’}q (n) has any limit points. O
s

We now define P14 =P, *Q,. A standard argument shows that
]Pw+1 ~ HD" * R’na

where R,, is the full support iteration of length w+ 1 with factors (Q; : n < i < w).
For notational convenience we will index the steps of R,, by theset { i : n <i<w }
rather than w + 1.

For the next few lemmas we work in V.

Lemma 3.10. The set of p in R, such that p | i \ n decides 1h(p(i)) for all i with
n <1 <w s dense.

Proof. This is easy, as each of the (Q; is countably closed. [l
From now on we will assume that all p € R,, have this property. Accordingly we
will write lh;(p) for the unique ordinal v such that p [ 7 I+ 5 = lh(p(?)).
Notation: If p € R, then we write
p(i) = (CP" : a € S; N LIM N (Ih;(p) + 1))

for i < w, and let (C?¥ : o € I, N LIM N (Ih,(p) + 1)) be the first component of
p(w) and (f2:a € I, N LIM N (lh,(p) + 1)) the second component.

Definition 3.11. A condition p € R,, is flat if and only if p [ w \ n forces that
(1) dom(fﬁlw(p)) = {z i n < z <w}
(2) Forallie dom(fﬁ’h(p)), fﬁ’lw(p)(i) = lh;(p).

Lemma 3.12. The set of flat conditions in R, is dense.

Proof. Given p we first find ¢ < p such that

e lh,(q) =Th,(p).
e ¢ [w\n decides ff ()"

e lh;(q) > fﬁw(p) () and ot(C’lq}I’f(q)) =w for all ¢ with n < i < w.
Then we find r < g such that
(1) 1h;(r) = lh;(q) for all i < w, and lh,(r) = lh,(q) + w.
(2) ot(Cl” ) = w.
(3) dom(fy, () ={7 : n<i<w}and ff (@) =1hi(r) for all i.

Clearly r is a condition, < p and r is flat. O
Lemma 3.13. For all n < w, R, is (R, + 1)-strategically closed.

Proof. We describe a strategy for player Even in the game, where, without loss
of generality, we may assume that Odd plays a flat condition at each odd stage.
Even’s moves will also be flat conditions. Suppose that 7 is even and that so far
the sequence (p; : ¢ < ) has been played.

7 successor: If v = + 1, then Even defines p, as follows.
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(1) 1h;(py) = lhi(ps) + w and 011;117(;) = {lh;(ps) +j:j<w}forn<i<w.
(2) dom(fﬁll(pw)) ={i:n<i<w}

(3) lz})ll(p'y)(i) =1lh;(py) for n <i < w.

7 limit: Even defines p,, as follows.

(1) Thi(py) = Ugey Ihi(pg) and Cy, = {1hi(pg) : B <y} forn<i<w.
(2) dom(fﬁ’l)(pw)) ={i:n<i<w}
(3) Sll(pw)(i) =1lh;(py) for n <i < w.

As usual we only check that p,(w) satisfies clause 3d from the definition of Q.
We observe first that if § € lim(Cﬁl”i’(;W)) then ¢ = lh;(pg) for some limit 8 < ~.

At stage (3 player Even defined Cﬁfi’éﬁ) = {1lhi(ps) : a< B} for n <i < w, and

fﬁi(pﬁ)(i) = lh;(pg) for n <i < w.
It follows that for n <i < w

lim(CRe ) = {lhi(pg) : BE€yNLIM }
= {f on(@ : BEYNLIM Y}

= {f57() : 6 €lim(CyC 1) }

O

Lemma 3.14. Let G,41 be P, y1-generic and let G, be the induced P, -generic
filter. Then
(1) The models V and V|G 41| have the same cardinals and cofinalities up to
Nw+1.
(2) The principle CS holds in V[Gy11].
(3) Every XN, -sequence of ordinals from V[G11] is in V][G,)].

Proof. This is fairly routine. We only check that (f, :« € I, N LIM) forms a
scale. To see this let g € (], R,,41)Y[Gw+1] and observe that g € V because P,
is countably closed. Now let p be an arbitrary condition. Find ¢ < p such that
lh,(¢) = lh,(p) and lh;(g) > g(4) for all 4, and then find r < ¢ such that r is flat. By
construction flThw(T)(i) =lh;(r) > lhi(q) > g(i) for all i < w, and we are done. [J

We now work in V[G,11]. We recall that given k¥ < w and a sequence of limit
ordinals (7, : k < n < w) such that v, < R, for all n, we defined a sequence of sets
by

T,={a€l,NLIM : cf(a) =R, ot(CL) > v, }.
We showed in Lemma 3.5 that a suitable choice of {7y, : k < n < w) will generate a
sequence which is not tightly stationary.

Lemma 3.15. Let G,+1 C Q, be generic. Then in V[G,41], for all sequences
(Yn + k < n < w) the sequence (T, : k < n < w) is mutually stationary (where T}, is
defined as above.)

Proof. Let (v, : k < n <w) be a sequence of ordinals in V[G,1]. Then, by the
closure of Q,, (v, :k <n <w) lies in V. We showed in Lemma 3.14 that the
models V[G,] and V[G,+1] have the same R,-sequences of ordinals, so it is enough
to check that this is so in V[G,,]. We use the fact that

P, ~ P, xS
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where Sy, is the iteration of length w with full support and factors Q, for k < n < w.
We will do a density argument in S similar to the proof given above that Ry is
strategically closed.

Let H be a name for a function from <“R, to R,. Let po € S, be arbi-
trary. Extending po if necessary, we may assume without loss of generality that
Ot(Clphoiy(ZPo)) =

We will argue in the model VP*, using the closure of S;. In particular we will
now understand H as an Si-name appropriate for forcing over V+. We describe an
inductive construction of a decreasing chain of conditions (p; : j < Ng) in S, and
an increasing chain of sets (A4; : j < ®j) such that |4;] < Ng.

Stage zero: py has already been determined, and we set Ay = 0.

Successor stages: Suppose that p;, A; have been defined. We start by choosing
Bj+1 g Nw such that |Bj+]_| S Nk, A] g BjJr]_, and lhl(pj) S sup(Bj+1 N Ni+1) for
i > k. We then choose ¢; < p; and A1, so that g; forces the H-closure of Bji1 to
be Aj 1, and lh;(g;) > sup(A;j41 N R;4q) for ¢ > k. We define pj;1 as follows:

(1) pis1 < gj.

(2) lhi(pjfl) = lhi(q]') + w.

(3) Ciilpry = {higy) +1 : I <w}.
Limit stages: Suppose that j is limit and we have defined (p;:k < j) and
(Ag : k < j). Define p; by

(1) pj < pg forall k < j.

(2) 1hi(p;) = supy,; Th;(pr).

(3) Ciitp) = Cltipoy U A Thilpw) = B <5}

Let A; = Uy, Ar.

If j is limit it is routine to check that p; is a condition, sup(A4; NN;11) = lh;(p;),
and that p; forces that A; is closed under H.

Let A = Ay,, p = px,- Then p forces that sup(ANN; ;1) = lh;(p) for all ¢, and p
also forces that ot(Clihi(p)) = 7; + Xy, for all 7. It follows that p IF Vi sup(ANN;41) €
T.. O

We summarise the main result of this section in a theorem.

Theorem 3.16. [t is consistent that for every integer k > 0 there exists a se-
quence (T, : k < n < w) such that T, C R,, Ncof(Ny), and the sequence is mutually
stationary but not tightly stationary.

4. ANOTHER NON-TIGHT MUTUALLY STATIONARY SEQUENCE

Steprans and Foreman found another consistency proof for the existence of a
sequence (S, : k < n < w) such that S, C ¥, Ncof(N), and the sequence is mutu-
ally stationary but not tightly stationary. The model is easily described: fixing an
integer k > 0, we force with the Cohen poset Add(Rg, X, ) for adding a subset S
of N, with finite conditions and define S,, = N, N cof (N) NS for each n > k. We
claim that in V[S] the sequence (S, : k < n < w) is as required.

We start by showing that (S, : K < n < w) is not tightly stationary. This part
of the argument is due to Steprans (under the assumption that 2% = N, ;).



CANONICAL STRUCTURE 11

We observe that the poset Add(Rp, X,,) has the countable chain condition. Work-
ing in V we fix a sequence of PCF generators (B) : A € pcf(K)) and a family
(f2: X e pcf(K),a < A) of w-club minimal scales, where K = {R,, : n < w}. By
the countable chain condition it is still the case in V[S] that (B,) is a sequence of
generators and (f2) is a matrix of w-club minimal scales.

If N is a tight Ng-uniform structure in V[S] then as we discussed in Section
2, it follows from [4, Theorem 5.6] that Xy can be computed in an absolute way
from finitely many of the functions £, and so Xy € V. An easy density argument
shows that VN]],, Sn =0, so that the tight structure N can not meet the sequence
(Spin <w).

It remains to be seen that the sequence (S, : n < w) is mutually stationary in
V[S]. Let F € V[S] be a function from <“¥, to R,,. We start by showing that it
is enough to consider structures which lie in the ground model.

Lemma 4.1. Let P be a c.c.c. forcing poset, let X be a cardinal and let F be a
P-name for a function from <“\ to \. There is a function f € V from <“X to A
such that if G is P-generic and X € V[G] is a subset of X closed under f, then X

is closed under FC.

Proof. 1t follows from the c.c.c. that if z € <@ X then there are only countably many
possibilities for F(z). Fix an enumeration of these possibilities as (g(z,n) : n < w)
and then define f as follows: if y € <“X and lh(y) = 2™(2n + 1) then f(y) = g(y |
m,n). O

For the rest of this section we mean by “structure” an elementary substructure
of (Hy,,,,€,<,F). Let F be the set of characteristic functions of Nj-uniform
structures with respect to the set {X, : k¥ < n < w}; for notational simplicity we
consider the domain of an element of F to be {n: k < n < w}. Let T be the tree
consisting of all proper initial segments of all elements of . We prove two lemmas
about 7', which may have some independent interest.

Lemma 4.2. FEwvery infinite branch of T is a member of F.

Proof. Let X be a branch of T, and find structures (M, : k < j < w) such that
sup(M; NX,) = X(n) for all n and j with & < n < j. As we noted in Section 2,
we may as well assume that R, C M; and then may find C7 C M; N X(n) which is
club in X(n), for all n and j with k <n < j. For all n > k let D, =();>,, Ci, so
that D,, is club in X(n). We note that if v € D,, then v € M; for all large j.

Let M be the Skolem hull of |J,,., D,. We claim that M is a structure with
characteristic function X. It is clear that Xs(n) > X(n) for all n > k. To see that
the reverse inequality holds, let o € M NX,, and fix s a finite subset of |J,,-; Dn
such that « is in the hull of s. Since s is finite we may find j so large that j > n
and s C Mj, so that o € M; N, and therefore a < Xyz,(n) Since Xy, (n) = X(n),
we are done. O

Remark 4.3. Notice that in any cardinal-preserving extension of V', the argument
works to show that every infinite branch of T is the characteristic function of some
Nj-uniform structure. In particular this is true in V[S].

We now show the tree T has a stationary branching subtree U.

Lemma 4.4. There is a tree U C T such that for all j > k and t € U with
dom(t) ={n:k<n<j}, {a <R;:t"a e U} is stationary in X;.
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Proof. We will use the Gale-Stewart theorem [19] on the determinacy of games
with open payoff sets. We denote by ({8,...5j—1)) the function f with domain
{n:k<n<k+j+1} given by f(n) = Bp—k-1-

Consider the following two-player game of perfect information between two play-
ers I and II. Player I’s i*® move is a set of ordinals A;, player II’s i*" move is an
ordinal a;. We suppose that

(1) {oy:i<yg))€eT forall j.
(2) Aj is a subset of {8 < Npyji1: ((@,...a;j1,6)) € T}, and Aj is non-
stationary in N4 j41.
(3) aj ¢ Aj.
The first player to violate these conditions loses, and if play continues for w moves
then II wins.

Intuitively the idea is that II is trying to build an infinite branch of 7', and that
player I is allowed to block a non-stationary set of potential successors at each
stage. Similar games appear in the game analysis of Namba forcing by Shelah [21].

We claim that II has a winning strategy. Since the game is open for player I,
it follows from the Gale-Stewart theorem that it suffices to show I has no winning
strategy. Suppose for a contradiction that I has a winning strategy 7, and find an
Ni-uniform structure M with 7 € M.

We will construct a run of the game where I plays according to 7 but the wrong
player (player IT) wins. At her j®® move player IT will play a; = sup(M N Ngpj41)-
We check that this gives a win for player II.

Suppose that I has played (4; : i < j), II has played (a; : 7 < j), and «; ¢ A;
for i < j. In general A; will not be in M. However if we define B to be the union
of the set of all A such that I plays A at stage j in some run of the game where I
plays according to 7, then B € M because 7 € M. Since B is the union of at most
R4 ; non-stationary subsets of N 1, B is non-stationary.

Let C € M be a club subset of Ny, which is disjoint from B. Since C' is
unbounded in «a; by elementarity, o; € C' and thus «; ¢ B. By construction
A; C B, thus o ¢ A;. It follows that I wins the game, contradiction!

We now fix a winning strategy o for player II. We define U to be the set of all
({(egy . .- avj—1)) such that ag,...a;_1 is an initial segment of II’s sequence of plays
in some run of the game where II plays according to o. To finish the proof, we
show that U has stationary branching.

Let ((ao,...a;_1)) € U and suppose that it represents II's response to I's playing
Ao, 14]_7 - Ajfl- Let

B = {B < Rypijp1: ((ao,...a5-1,8)) € U},

and suppose for a contradiction that B is non-stationary. Let I play B as his
4" move and let 8 be the response dictated by o. Then by the definition of U,
({(agy...aj—1,8)) € U and so B € B. This means that player II loses immediately,
contradicting the assumption that ¢ was a winning strategy.

O

It is easy to check that for every n > k, S,, meets every stationary subset of
N,, N cof(Ny) from the ground model. Since U has stationary branching, we may
build by induction a branch b of U which is in [],., Sn. By Lemma 4.2 we may
construct a structure M such that Xj; = b. This shows that the sequence (S,,) is

mutually stationary.
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We summarise the main result of this section in a theorem.

Theorem 4.5. Let S C R, be V-generic for Add(Ro,R,,), and define S,, = R, N
cof(Rg) NS for each n > k. In V[S] the sequence (S, : k <n < w) is mutually
stationary but not tightly stationary.

Remark 4.6. It is clear from the proof that a large class of forcing posets could
be used in place of Add(Rg, R,,). To be more precise, essentially the same proof will
work for any forcing poset P such that

(1) The poset P is N,-c.c. and cardinal-preserving.
(2) Forcing with P adds a sequence (S, : k < n < w) with S,, C R,, N cof (N)
such that
(a) In the extension by P, VN[, S, = 0.
(b) For all S € V such that S C R,, Ncof(Ry) and V | “S is stationary”,
S NS #0.

Similar ideas can be used to show that adding enough Cohen reals gives a model
in which every mutually stationary sequence can be split.

Lemma 4.7. Let 0 < k < w and let (U, : k <n <w) be a mutually stationary
sequence of sets with U, C X, Ncof(Ny). Let T* be the tree of functions f such that

o dom(f) ={n:k<n <j} for somej > k.
e There is a structure M such that M meets (U, : k <n <w) and f(n) =
sup(M NR,) for k <n <j.
Then there is a subtree U* C T* such that for all j > k and t € U* with
dom(t) ={n:k<n<j}, {a <R;:t7acU*} is stationary in N;.

Proof. The proof is very similar to that of Lemma 4.4. Two players I and II
collaborate to build a branch of T*, with player I blocking out a non-stationary
set of possible successors of the current position and player IT choosing a successor
which was not blocked by player I.

We need to check that I does not win, and so we suppose that 7 is a strategy for
player II. Since (U, : k < n < w) is mutually stationary, we may find M such that
M meets (U, : k <n <w) and 7 € M. As before, we may check that IT can win
against 7 by playing sup(M N Nyy;11) at move j of the game.

By the Gale-Stewart theorem there is a winning strategy o for player II. As in
Lemma 4.4 we may use o to construct a suitable tree U*, consisting of finite initial
segments of runs of the game in which II plays according to o. (|

Lemma 4.8. Let 0 < k < w and let (U, : k <n <w) be a mutually station-
ary sequence of sets with U, C N, Ncof(Ry). Let G be Add(Ro, R, )-generic over
V. Then in V|G| the following is true: there are partitions (Ul :i < w) of each
U, into w disjoint stationary pieces, such that for all f : w — w the sequence
(Ur{(n) ik <n <w) is mutually stationary.

Proof. We can regard Add(Np,N,) as the finite support product of posets P, for
k < n < w, where P, is the poset of finite partial functions from X,, to y. We may
then identify G with (g, : kK < n < w) where g, is a map from R,, to Ry, and we set
Ul ={a €U, :gn(a) =i} .

It is routine to check that each U} is stationary. We now use Lemma 4.7 to
construct a suitable tree U*, and then given f we build a branch of U* which lies in
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| . U ™) We may now finish the argument exactly as in the proof of Theorem
4.5. |

Theorem 4.9. If G is generic for Add(Rg,R,1) then the following statement
holds in V[G]: for all k > 0 and all mutually stationary (U, : k <n < w) with
U, C R, Ncof(Ng), there are partitions (Ul :i < w) of each U, into w disjoint
stationary pieces, such that for all f : w — w the sequence (Ur{(") tk<n<w)is
mutually stationary.

Proof. By a chain condition argument the sequence (U, : k < n < w) lies in the
generic extension of V' by some proper initial segment Add(Rg, A) of Add(Rg, Ny41),
where A < R, ;1. Since Add(Rg, R,41) =~ Add(Rg, A) x Add(Rg, R,,+1) we may as
well assume that (U, :k <n <w) € V. The theorem is now immediate from
Lemma 4.8. (]

5. MODELS IN WHICH EVERY SEQUENCE IS MUTUALLY STATIONARY

Foreman and Magidor [12] pointed out that in general the question of which
sequences (S, : n < w) with S,, C 8,, are mutually stationary is connected with the
open question whether X, can be a Jonsson cardinal. It is known that rather large
singular cardinals of cofinality w can be Jonsson: in particular Prikry proved that
a singular limit of measurable cardinals is Jonsson and that a measurable cardinal
remains Jonsson after doing Prikry forcing [20].

In this section we mildly strengthen these classical results by relating them to
mutual stationarity. See the introduction to our previous paper [4] for more on the
connection between mutual stationarity, Jonsson cardinals and Chang’s conjecture.

Remark 5.1. Baumgartner [1] proved Theorem 5.2 in the special case where S,, =
Kn N cof(Rg(y,)) for f:w — 2.

Theorem 5.2. Let (k; : 1 < \) be an increasing sequence of measurable cardinals
where X\ = cf(X\) < kg. Let S; C k; be stationary for each i < A, then (S; 11 < \) is
mutually stationary.

Note that an immediate corollary is the well-known fact that sup (k; : i < \) is
Jonsson.

Proof. Note that the hypothesis imply that for all ¢ < X, k; > sup (k; : j < 7). To
simplify the bookkeeping we assume A\ = w. Let § = sup; k;, and fix M a structure
on Hy. For each i let U; be a normal measure on k;.

We will construct sets J; € U; such that J;11 C (ki, £i41) and the following indis-
cernibility property holds: for any positive integer n and any sequence (k; : j < n)
of positive integers, if ¢;,u; € [J;]* for i < n and ¢ is any formula in the language
of M then

M ': ¢(t0, R A 1) — M ': ¢(U0, . .Unfl).

To build the J;, we define for each j < w a sequence (I} : n < w) such that

(1) IJ' e U,.

(2) n+1 = (H’naﬁn—i-l)-

(3) It Cri.

(4) For all s € [k,—1]<% and all (¢; : i < j) with ¢; € [IJ

7 iS¢, the M-type of

(s,to,...t;) is determined by (s, |to],. .- [t;]).
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Base case j = 0: We choose I? € U, as a set of order-indiscernibles for the
structure obtained from M by adding a constant symbol for each element of k,_1.
This is possible by Rowbottom’s theorem.

Successor step: suppose we have constructed I7. Let s € [k,—1]<¥, t € [[J]<¥

and u; € IZ;_H for 1 <4 < j+1. By induction the M-type of (s,t,u1,...uj41) is
determined by (s, ¢, |u1],...|u;j+1]). Using Rowbottom’s theorem and the complete-
ness of U, we may find I7 ™" C I7 such that if t € [IZ11]<% then for all s,uy,...uj+1
the M-type of (s,¢,u1,...uj41) is determined by (s, |t |u1], ... |wjt1])-

We now set J,, = ﬂj I7. To finish the proof of the theorem, we choose for each n
a set z, C J, with limit order-type such that sup(z,) € S,,. Let N be the Skolem
hull in M of the union of the sets z,. We claim that sup(N N &, ) = sup(z,) for
each n.

Suppose that ¢ is a Skolem term and that ¢(ao, . ..a;) < k; where a,, € [2,]<“ and
without loss of generality j > i. Let 8 be the least element of z; with 8 > max(a;).
It must be that ¢(ao,...a;) < 8, for if not an application of indiscernibility shows
that every element of J; which is greater than max(a;) is bounded by t(ag,...qa;),
and this is impossible since J; is unbounded in ;. This shows that t(ag,...a;) <
sup(z;), so sup(N N k;) = sup(z;) and we are done. O

We now turn to the situation in which (k, : n < w) is a Prikry-generic sequence
in a measurable cardinal k.

Remark 5.3. It is too much to ask that every Prikry-generic w-sequence should
have the property that every sequence of stationary sets is mutually stationary. For
example if the sequence begins with 8; and Ny and Chang’s conjecture is false then
we can not meet the sets Sy = Ry, So = Ry N cof (Ny).

Theorem 5.4. Let Kk be measurable and let U be a normal measure on k. Let P
be the Prikry forcing defined from U. Then there is a condition (0, A) € P which
forces that if (k, : n < w) is the generic cofinal w-sequence added by P, then every
sequence (S, : n < w) with S,, stationary in K, for all n is mutually stationary.

Proof. Suppose not. By the direct extension property for Prikry forcing, there is a
condition (@, A) and names S,, and A such that (0, A) forces that

° A is an algebra on k.
e S, is stationary in k.
e No substructure of A meets (S, : n < w).

Let F' be a name for a function F : [k]<* — & which is a Skolem function for
A. That is to say, X C F“X]|<*¥ and F“[X]|<¥ < A for all infinite X C k. Define
a function F* : [k]<% x [5]|<¥ — &k as follows: F*(s,t) is equal to the unique 3
such that there is E € U with the property (s, E) IF F(t) = f if such an E exists,
and 0 otherwise.

By a standard application of Rowbottom’s theorem and a diagonal intersection
argument, we may find B € U such that for all § < x the set B\ (0 +1) is a
set of order-indiscernibles for (k,<,F*,{y:v < 6}). Nowlet D ={y € ANB:
sup(B N~) = ~}. It is easy to check that D € U, since U is normal.

We now force below the condition (), D) to get a generic increasing w-sequence
G = (Kn :n < w). We use this to realise the names S,,, A and F to get stationary
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sets S, , an algebra A on x and a Skolem function F for A. Since (), D) refines
(0, A) there can be no substructure of A which meets (S, : n < w).

Working in V[G] we choose for each n a point v,, € S, with sup(B N ~,) = vx.
Let P =, BN [kn—1,7n) and let N be the closure of P under F. We claim that
sup(N N ky,) = 7y, for all n.

To see this, suppose for a contradiction that F(w) = 3 for some w € [P]<% and
[ such that v, < B < ky.

Find a condition (s, E) € G such that (s, E) I+ F'(w) = 3, and notice that s must
be a finite initial segment of (k, : n < w). Extending if necessary we may assume
that Ih(s) = m > n. It is convenient to break up w and s as follows;

e t=wNkp 1,4 =WN[kp_1,kn), v =wN (K \ kp).
o s;, = (Koy---Kn-1), SH = (Kny---Km—1)-
By the definition of the function F*, we have

F*(sp su,t"u"v) =8 < k.

All points of B above sup(u) are chosen from a set of indiscernibles for a structure
which has symbols for F* and all ordinals below sup(u). Fix 6,( € B N &, with
B < § and sup(w N ky) < ¢ < v,. We may choose a suitable ¢ because k,, € D and
so B N k,, is unbounded in &,,.

The key points are that

e The sequences sz, t and u consist of ordinals below sup(u).
e The sequences sy and v consist of ordinals in B above &,,.
e The ordinals ¢ and ( lie in B and are between sup(u) and &y,
Since F*(s,w) < ¢, it follows by indiscernibility that F*(s,w) < ¢. This is
a contradiction, so sup(N N k) = 7, as required. It follows that N meets the
sequence (S, : n < w), contradiction! O

Corollary 5.5. If (k, : n < w) is any Prikry generic sequence, then there exists m
such that all sequences (S, : m <n < w) with Sy, stationary in K, for allm > n
are mutually stationary.

Proof. Let A be as in the conclusion of Theorem 5.4, and find m such that «,, € A
for all n > m. (Il

6. MUTUALLY STATIONARY SEQUENCES NOT CONCENTRATING ON A FIXED
COFINALITY

Theorems 5.2 and 5.4 show that if (k, :n < w) is an increasing sequence of
reasonably large cardinals then every sequence of stationary sets can be mutually
stationary. We now return to the problem of mutual stationarity for small cardinals.

Let 0 <l < w, let f:w — {0,1} be any function, and define S¥ = {a < N, :
cf(a) = Ny} for n > 1. We will construct a model in which for every function f
the sequence (S7 : 1 < n < w) is mutually stationary, starting from the assumption
that there are infinitely many supercompact cardinals. This was originally done by
Shelah, the simpler proof given here is due to Foreman and Magidor.

We will use some facts about TA structures. The first fact appears in in section
2 of [10].

Lemma 6.1. Let N < A be a structure of some regular uncountable cardinality .
Then the following are equivalent:



CANONICAL STRUCTURE 17

(1) N is IA of length and cardinality .

(2) For every u-closed poset P € N there is a sequence of elements (pq : a < )
of NNP, such that for every D € N a dense open subset of P there is a <
with po € D.

The next fact is implicit in Foreman, Magidor and Shelah’s paper [13] on Martin’s
Maximum.

Lemma 6.2. Let N < A be internally approachable of length and cardinality p,
where p is an uncountable regular cardinal. Let 8 be an ordinal such that § <
sup(N NON) and let M = Sk*(N U {8}). Then M is internally approachable of
length and cardinality p.

Proof. Let (N, : a < p) be an internally approaching chain of models with union
M. We may assume without loss of generality that 5 < sup(Ng N ON). Define
M, = Sk*(N, U{B}), so that clearly the M, form an increasing continuous chain
of models of size less than x4 whose union is M.

We claim that M, = {f(8) : f € N4,8 € dom(f)}. Clearly if f € N, then
f(B) € M,. Conversely if y € M, then y = t(z,3) for some Skolem term ¢ and
parameter z € N,. If v € No N ON with 5 < 7 then the (partial) function f with
domain v which maps « to t(z,«) is definable in Hy from the parameters y,~y so
f € Na.

Fix an ordinal ¢ < p. 8 and (N, : o < () are members of M¢.1, so by the work
of the last paragraph (M, :a < () € M¢ii. So M is internally approachable of
length and cardinality u, as claimed. O

The construction will proceed by starting with a structure which meets each XN,
for n > [ in a set of cofinality ¥;, and judiciously adding w many ordinals. The
following well-known lemma [1] shows that adding an ordinal below ,, does no
damage above N,,.

Lemma 6.3. Let A = (Hy, €,<y) for some large reqular . Let N < A, where
IN| = X, C N for somen < w. Let n < m < w, let B be an ordinal with
sup(N N R,,) < B < Ry, and let N* = Sk*(N N {B}). Then sup(N* NR;) =
sup(N NX;) form < j < w.

Proof. Let t be a Skolem term. For each x € N, N can compute the supremum of
the set {t(z,0) : 6 < N, } NN, O

For the rest of this section we will make the following assumption:
Assumption: there exists a sequence of ideals (Z,, : [ + 2 < n < w) such that

(1) Z, is a uniform, R,,-complete, normal ideal on R,,.
(2) P(R,)/Z, has an ®;;-closed dense subset.

This assumption is known to be consistent relative to the existence of infinitely
many supercompact cardinals.

We now fix some large regular cardinal # and a structure A which is an expansion
of (Hp,€,<p,{Z, : l +2 <n < w)). If N < Ahas cardinality X;, and sup(NNR,,) <
B < N, for some n, we will say that 3 is Z,,-generic for N if and only if the following
two conditions are satisfied

(1) For every C € NNZ,, (B ¢C.
(2) The set {A € NNP(R,) : B € A} induces an N-generic filter on N N
P(X,)/Z,.
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Notice that by the first of these two conditions, if A and A’ are subsets of N,, which
both lie in N and are equivalent modulo Z,,, then S € A <— e A’

Lemma 6.4. If N is internally approachable of length and cofinality ¥X;, then the
set of B < N, which are I,,-generic for N is T, -positive.

Proof. Let D be a dense ¥N;;1-closed subset of P(X,,)/Z,,. By Lemma 6.1 we may
find a decreasing sequence ([A,] : @ < ®;) of elements of N N D, which meets every
dense open subset of P(R,,)/Z, lying in N.

Let [B] € D be a lower bound for the sequence ([A,]: a < ¥;). Since the ideal
T, is ¥,y 1-complete, the set C' = ({N,\X : X € NNZ, } is in the dual of Z,.
For all Ae NNP(R,),a € BNC we have a € A iff A is in the filter generated by
the sequence ([A4] : @ < ¥;). In particular, all « € BN C' are generic over N. [J

The following lemma is the crucial one motivating our use of Z,,-generic ordinals.
It indicates that when we add a suitable Z,,-generic ordinal we do not undo our work
at cardinals below X,,.

Lemma 6.5. Let 8 be such that sup(N NR,) < B < N, and B is I,,-generic for
N. Let N* = Sk*(N U{B}). Then N*NR,_; = NNR,_;.

Proof. By the same argument that we used in Lemma 6.2, N* = {f(8) : f € N}.
Let vy € N*NX,_; and fix f € N such that f: 8, — X,,_; and v = f(8).

The set of equivalence classes [A] such that f is constant on A lies in N, and by
normality it is dense in P(R,,)/Z,,. Since S is a generic ordinal there is A € N such
that 8 € A and f is constant on A. It follows that v € N. |

Remark 6.6. We may also give an essentially equivalent proof of Lemma 6.5
phrased in the language of ultrafilters and elementary embeddings. Let M be the
transitive collapse of N, let M™* be the collapse of N*, and let j : M — M™ be the
elementary embedding from M to M* corresponding to the inclusion map from N
to N*. Let U be the M-ultrafilter on the collapse of x,, which is induced by S.

It is routine to check that M* = Ult(M,U) and j is the associated elementary
embedding jg/[ . j has critical point equal to the collapse of k,, so in particular j
fixes the collapse of k,,_1. It follows that NN k,—1 = N*Nk,_1.

Theorem 6.7. Let f: w — {0,1} be any function and let T,, = {a < R, : cf(a) =
Nty } for n > 1. The sequence (T), : | < n < w) is mutually stationary.

Proof. Tt will suffice to build a structure M < A such that c¢f(M NN;;1) = R; and
cf(M NN,) = f(n) for n >+ 1. If necessary we may then use Lemma 6.3 to add
in w ordinals below N;;1 and adjust cf (M N R;4q).

Let A be some expansion of (Hy, €,<p). Let N < A be an internally approach-
able structure of length and cardinality X;. In particular, sup(NNX,,) has cofinality
N; for every n > [.

If f is constant with value [ there is nothing to do, so we assume that f takes the
value 0 at least once. Let (nj : k < w) be a sequence of integers such that njy > 2,
f(nk) = 0 for all k, and for all n > [ + 1 such that f(n) = 0 there are infinitely
many k such that np = n.

We construct sequences (N : k < w) of structures and (8 : k < w) of ordinals
by recursion on k.

e Ny =N.
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e If ny = n then S} is some ordinal such that sup(N, NR,,) < B < X,, and
Bk is I,-generic for Ny.
® Nit1 = Sk™ (Wi U {Bi})-

The construction can proceed, because by Lemma 6.2 the structure Ny is inter-
nally approachable of length and cofinality ¥N; for every & < w. Lemmas 6.3 and
6.5 imply that sup(Ng41 N R;) = sup(N N R;) for j # k, so if we set N, = J,, N
then we see that

e N, < A
° Cf(Nw N Nl+1) =N,
° Cf(NwﬂNj) = lff(]) =1l,j>1+1.
° cf(NwﬂNj):No if f(I)=0,7>1+1.
This shows that (T}, : | < n < w) is mutually stationary. O

If we are willing to leave gaps between the cardinals where we want cofinality w,
then we can reduce the hypothesis of Theorem 6.7 to infinitely many measurable
cardinals. Explicitly: If there are infinitely many measurable cardinals and A C w\2
is such that for all n € A,n +1 ¢ A, then there is a forcing extension where X,
carries a normal N,-complete ideal on N,, with a dense set that is closed under
decreasing sequences of length N,,_5. In the resulting model, it can be shown that
if f:w — {0,1} is such that f 1(0) C A, then the sequence of sets (I}, : [ < n < w)
is mutually stationary. The proof is exactly as above.

7. GOOD POINTS AND DIAGONAL PRIKRY FORCING

In this section we record two forcing constructions involving large cardinals, PCF
and reflection. The first construction gives a simple proof that it is consistent for
there to be stationarily many non-good points in R, 1.

7.1. Good points. As we mentioned in the introduction to this paper, various
models are known in which the set of non-good points of cofinality X; is stationary
in Nw+1.

e Levinski, Magidor and Shelah [16] have shown that the Chang’s conjecture
(Ny41,Ny) = (Ry,Rp) is consistent, and Foreman and Magidor [11] have
shown that if (N,11,8,) = (X;,Rg) then the set of non-good points of
cofinality Wy is stationary.

e In unpublished work Magidor [17] has shown that the same conclusion
follows from Martin’s Maximum.

In this section we record the remark that Shelah’s construction [14] for making
the set of non-approachable points of cofinality Ny stationary also makes the set of
non-good points stationary.

We start by assuming that x is supercompact and that the GCH holds. It fol-
lows from GCH that there exists a scale (f, : @ < 7<) in ], _, £ under the
eventual domination ordering; to see this enumerate [, 1" as (g, : n < T,
write each a < R, 41 as an increasing union |J,, X with |X?| < ", and induc-
tively choose f, so that f,(n) is greater than f,(n) and g,(n) for all n € Xg.

The basic idea is that this scale contains many non-good points of cofinality less
than x, and that we will “miniaturise” this situation by some judicious cardinal
collapsing. Fix j : V — M witnessing that & is kT *!-supercompact, and note
that j is discontinuous at £*™ for n < w and also at KT+, Let v = sup(j“x T+ 1)
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and let H € []j(k™") be given by H(n) = sup(j“,™). Let j({fo : a < kT¥T1)) =
(gs : B < j(k™*1)), and observe that by the elementarity of j and the closure
of M the sequence (gg: [ < j(kT“!)) is a scale in [], j(x™™) under eventual
domination. It is easy to see that H is an exact upper bound for (gs : 8 < 7).

We claim that there is an inaccessible § < k such that for stationarily many n €
kTeTINcof (67 F1) there an exact upper bound h for (f, : a < 1), with cf(h(n)) =
§T™ for all n. If the claim fails then fix for each § a club Cj witnessing the non-
stationarity of the relevant set, and let C' = [); Cs. Since C is club we see that
v € §(C), and since cf(y) = k™! and (gs : B < ) has an exact upper bound H
with cf(H(n)) = k*™ for all n we get a contradiction by elementarity.

We now fix a suitable inaccessible § < « and let S be the stationary set of
n € kT I Ncof (67 T1) such that there is an exact upper bound h for (f, : @ < n),
with cf(h(n)) = 6" for all n. We force with P x Q where P = Col(w,§"*) and
Q= Col(6T*2, < k). Let G x H be P x Q-generic.

The usual chain condition and closure arguments tell us that 5#”1 is the new
Ny, n‘t” = N,,+3 and /ﬁ}““ = N 41. By Easton’s lemma all 5$“’+1—sequences
of ordinals from V[G][H] lie in V[G]. Since P x Q is k-c.c. it is also routine to
check that S is still stationary in V[G][H] and that (f, : o < kT*T1) is a scale in
Hn<w H‘tn'

To finish we claim that if n € S then 7 is not a good point in V[G][H]. Suppose
for a contradiction that such an 7 is good, and fix an unbounded set A C 7 of order
type 61" and k < w such that (fa(n) : a € A) is strictly increasing for n > k. As
we pointed out above, A € V[G]. Since P has cardinality 67 it follows that there
is B C A with B € V and B unbounded in 7.

The set B will serve as a witness that in V' the point 7 is good of cofinality
§+t@tl This implies that an exact upper bound g for (f, :a <mn) exists with
cf(g(n)) = 67T for all n, contradicting the fact that » € S and that exact upper
bounds are unique modulo finite alteration.

To summarise we have proved the following result.

Theorem 7.1. If k is kTt -supercompact then in some generic extension the set
of non-good points of cofinality Ny in N, 1 is stationary.

If we could make §t“+! into Ny by some small forcing we could get the consis-
tency of the set of non-good points of cofinality N, being stationary. Unfortunately
this kind of cardinal collapse is provably very difficult and conjectured to be im-
possible [3].

7.2. Diagonal Prikry forcing. We showed in a previous paper [6] that Prikry
forcing at a measurable cardinal s preserves some of the stationary reflection prop-
erties of k. Here we prove a similar result for diagonal Prikry forcing, using a
rather similar argument.

We start by fixing some notation that we will use through this section. Suppose
that we are given an increasing w-sequence of measurable cardinals k, together
with a normal measure U, on each x,. A condition in the diagonal Prikry forcing
determined by these data is a sequence (v, . .. Qm—1, Bm, Bm+1,-..) where ;1 <
a; < k; and B; € U;. Given conditions p = (ag,...n_1,Bm, Bm+1,-..) and
qa= (Bos---Bn-1,CnyCpnsi1,--..), q extends p when n > m, 5; = a; for i < m and
B; € B; for m <1 < n.
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We refer to the finite sequence (ay, ..., 1) as the lower part of the condition
(a0, -+ @m—1, By Bm+1,--.). It is well-known that diagonal Prikry forcing has the
Prikry property, in the sense that any question about the forcing extension can be
decided by shrinking the measure one sets in a condition, or to put it another way
without changing the lower part.

We now let k = |, £, and suppose that ™ has the following reflection property:
for all n, any stationary susbet of k™ Ncof (< k,,) reflects at some point in k™ Ncof (<
Krn). This will be the case for example if all of the x,, are strongly compact. We
claim that this reflection property is preserved by the diagonal Prikry forcing.

To see this fix n, a condition p and a name 7T for a stationary subset of kT Ncof (<
Kn). By extending p if necessary we may assume that the lower part of p has length
at least n. For each lower part x which extends the lower part of p we let T, be
the set of a such that some extension of p with lower part z forces a into T’; since
there are only k possibilities for x, we may find z such that T} is stationary.

By hypothesis there is v < & with cf(y) < &, such that T, N~ is stationary.
We now fix C' C ~ with order type cf(y), and then use the completeness of the
measures U; for j > n to find a single condition ¢ with lower part x such that ¢
forces that C NT, C T. Then q forces that T reflects at v and we are done.

We summarise the results of this discussion in a theorem.

Theorem 7.2. Let (K, : n < w) be an increasing sequence of measurable cardinals
with supremum k, and suppose that for every n every stationary susbet of k™ Ncof (<
kn) reflects at some point in K+ Ncof (< ky,). Then this reflection property still holds
in the generic extension by any diagonal Prikry forcing defined from some sequence
of normal measures on the k.

Gitik and Magidor have devised several forcing posets for adding many diagonal
Prikry sequences simultaneously. It would be interesting to combine their methods
with those of Theorem 7.2.

8. REFLECTION AND MARTIN’S MAXIMUM REVISITED

Foreman, Magidor and Shelah [13] showed that Martin’s Maximum implies that
for all A > Ny, every stationary subset of [H)]¥ reflects to a structure of size
and uniform cofinality ®;. We showed in the last section of [6] that forcing over
a model of MM™ we can get the consistency of this kind of reflection with the
existence of two stationary subsets of a regular cardinal k > Ny which do not
reflect simultaneously, and Larson [15] independently obtained similar results. The
following result generalises and sharpens these theorems: note in particular that
we are reflecting to an TA structure and that we are only using MM (rather than
MM™) in the ground model.

Theorem 8.1. Assume Martin’s Maximum. Let k be a reqular cardinal with k > Ny
and let n be a (possibly finite) cardinal with n < Ny. Then there is a forcing poset
P which adds no bounded subsets of k and such that in VT

(1) There are n stationary subsets of k N cof(w) which do not reflect simulta-
neously.

(2) For every A\ > Ny, every set of fewer than n stationary subsets of [Hy]™°
simultaneously reflects to an internally approachable set in [Hy]N*.

In particular, every collection of less than n stationary subsets of kN cof(w) simul-
taneously reflects.
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Proof. We let P be the natural poset for partitioning x N cof(w) into 7 many sta-
tionary sets which do not reflect simultaneously. Conditions in P are functions p
such that p : nx (aNcof (w)) — 2 for some a < &, with the properties that for each
i we have p(v, 1) = 1 for exactly one v < 7, and that for every 5 € (a+ 1) Ncof(Ry)
there are v < n and C' club in 8 such that f | {v} x C is identically zero.

It is easy to see that [P is countably closed and is k-strategically closed (a winning
strategy for player II is to pick a coordinate v < 7 and to write zero at that
coordinate whenever it is her turn to play). It is also easy to see that P adds a
partition of x N cof(w) into 7 stationary sets which do not reflect simultaneously.

By Martin’s Maximum the non-stationary ideal on R; is Rp-saturated in V. We
claim that this is also the case in V. To see this let (4; : i < Xy) be a P-name for
a counterexample to saturation, and note that V' and V' have the same subsets
of Ny; in particular they agree on the question of whether a subset of N; is club,
stationary or non-stationary. Since k > Ny we may use the strategic closure of P to
build a decreasing chain (p; : i < Ra) of conditions in IP such that p; I+ A; = B, for
some B; € V. Then (B; : i < Ng) is a counterexample to saturation in V', which is
a contradiction.

We let (T : j < n) be the sequence of stationary subsets of x added by P. Let
¢ < n be a cardinal, let A be a cardinal in V¥ and let (Sl : i < ¢) be a sequence of
P-names for stationary subsets of [H,]M. (So there are at most countably many
sets S;.) Let pu be the maximum of A and k. We work towards showing that P
forces that the sets S; reflect simultaneously.

We now work in V', For each i < ¢ we will say that S; is social if there exists
j < nsuch that for stationarily many N € [H,|¥, NNH) € S, and sup(NNk) € T}.
In this case we let j(7) be the least j with this property. If S; is not social we say
that S; is antisocial. If n < W; then all S; are social, but if n = N; this is not
necessarily the case.

Let j* < n be least such that j* # j(i) for any social S;. Since there are only
countably many sets S; we may fix a club set Cpeq in [H,L]NO such that if S; is
antisocial, then sup(N N k) ¢ T}- for every N € Cpqq such that N N Hy € S;.

We now use a fact from [13]:

Claim. Suppose that the non-stationary ideal on wy is Na-saturated and S C [HM]NO

is stationary. Then there is a closed unbounded set C C [H,]™ such that for all
stationary T C { NNwy : N € CNS} there are stationarily many N € CN S
such that N Nwy € T.

Proof. (Sketch) First note that if C, D are club sets in [H,,]¥° and there is a £ € w;
such that for all N € C'if { € N then N € D, then {NNw;: N e C} C {NNuws :
N € D} modulo the non-stationary ideal on w;.

Now build a sequence of closed unbounded sets (C¢ : £ < £*) for some £* < ws
by induction. Let Co = [H,]¥° and given C¢ choose C¢y1 C Cg if possible so that
{NNwi : N€Cey1 } C{NNuw;y : N € C¢} modulo the non-stationary ideal.
If this is not possible, then we set £* = £ + 1. At limit stages we take diagonal
intersections.

Since the non-stationary ideal on w; is Ny-saturated, there is a £* < wy where
this sequence stops. If {* = £+ 1, then C' = C¢ satisfies the conclusion of the claim.

O

By the claim we can fix for each ¢ < { a stationary set U; C N; such that
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(1) If S; is social then for every stationary T C U; there are stationarily many
N € [H,]® such that N N Hy € S;, sup(N Nk) € Tj;) and NNRy € T.

(2) If S; is antisocial then for every stationary T' C U; there are stationarily
many N € [H,]™ such that NN Hy € S; and NN Xy € T.

Thinning out if necessary we arrange that the U; are pairwise disjoint. By the
closure of P we see that (U; : i < {) € V, and so working below a suitable condition
in P we may assume that we have a fixed sequence (U; : i < ¢) which is in V.

Still working in V¥ we define Q to be Col(Ry, HY). If F : ¥y ~ H) is the
bijection added by Q then in VP*© we let s; = {6 < ¥; : F“6 N Hy € S;} and
t; = {6 < Ny : sup(F“s Nk) € T;}. Working in V**¥ we define a poset R;
conditions in R are closed bounded subsets of 8; consisting of ordinals ¢ such that
d ¢ tj, and such that § € U; implies F'“6 N Hy € S; for each i. The ordering on R
is end-extension.

With a view to applying Martin’s Maximum, we claim that P+ QxR is stationary
set preserving. Let S be a stationary subset of Ny. It is clear by the strategic closure
of P that S is still stationary in V', and we will work in V¥ to argue that Q xR
preserves the stationarity of S. Let C be a Q x R-name for a club subset of X; and
let (go,co) € Q*R. As usual when we are proving the preservation of stationarity,
our goal is to find (g,c¢) < (go, co) forcing that C meets S.

Shrinking S if necessary, and using the fact that there are only countably many
sets U;, we may assume that either S is disjoint from every U; or S C U; for some
1. We will treat these cases separately, and will also break up the second case
according to the sociality or otherwise of S;. We start by fixing some large regular
cardinal 6.

Case 1: S is disjoint from every U;. In this case we will choose a countable M < Hy
containing everything relevant such that 0 =4 M NNy € S and sup(M N k) ¢ Tj-.
We then build a chain ((gn,cp) : » < w) of conditions in M N Q x R which meets
every dense subset of Q * R lying in M, and let ¢ = J g, and ¢ = Jc,.

It is clear that ¢ € Q and ¢ forces that F/“0 = M ﬂHl‘f. Since sup(M Nk) ¢ Tj-,
g forces that ¢ ¢ ¢;« and so (g,cU{d}) is a condition in Q*R. This condition forces
that § € C and we are done.

Case 2a: S C U; for a social S;. In this case we choose a countable M < Hy such
that § =gt M MRy € S, M N Hy € S; and sup(M N k) € Tj;); this is possible by
the choice of j(i) and U;. We define ¢ and c as in case 1, and again ¢ forces that
F«s=MnNH X .

Since j(i) # j*, q forces that § ¢ t;-. By the choice of M we also see that ¢
forces § € s;. Thus (¢,cU{d}) is a condition in Q * R and we are done.

Case 2b: S C U; for an antisocial S;. In this case we choose M < Hy such that
0 =get M NNy € 5, MNHy € S; and M NH, € Cpyq. It follows from the choice
of Cyea that sup(M N k) ¢ T+, and we may now proceed as in Case 2a.

We note that in the course of proving the claim, we also showed that if C' is the
club set added by R then C N U; is stationary for every i.

To finish the argument we will now apply Martin’s Maximum to P* Q xR as in
the last section of [6]. Meeting suitable dense sets we produce p, F' and C' together
with 7% < n and disjoint stationary U; C N; such that

(1) dom(p) =n X a for some a < & of cofinality Ny, with p: n x a — 2.
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(2) F :Xy — H, and F“R; is internally approachable (this approachability
is easy to arrange, observing that for each v < Ny the set of (p,q,r) such
that ¢ | v € range(q) is dense)

(3) sup F“Ny Nk = o

(4) Cis club in 8y and C' NU; is stationary for every i.

(5) p(j*,sup(F“6Nk)) =0 for every § € C.

(6) For every a < a,p|nxacP.

(7) For every § € C N Uj;, there is some & < a such that p [ n x & forces that
FYSNH)y,eS;.

Since we have arranged that p(j*,v) = 0 for a club set of v < «, p is itself a
condition in P. For each ¢ we have arranged that C' N U; is stationary and that p
forces {F“6NH)y:6 € CnNU;} CS;, so that p forces S; to reflect to F“Ny.

O

9. THE LEAST CARDINAL WHERE SQUARE FAILS

We showed [4] that if Ok, holds for every n < w and CH holds then a certain
weakening of [y holds. We then showed [5] that it is consistent for the full [y,
to fail under these circumstances. In this section we show that the least cardinal
where square fails can be the least inaccessible.

Theorem 9.1. It is consistent from large cardinals that the least X where Oy fails
1s the least inaccessible cardinal.

Zeman pointed out that consistency that square first fails at the first inaccessible
is a Mahlo cardinal. The model he constructs is the “usual” model V(%) where
k is the first inaccesible cardinal. The “usual” arguments show that square fails at
% in this model, and moreover, that if square held below & in the ground model, it
holds below « in this model. Nonetheless we give the proof below as it seems that
it may be useful in some other context.

Proof. (Sketch) Let GCH hold, let x be supercompact and let A be the least inac-
cessible cardinal greater than . Force that [, holds for every n with n < A by a
Reverse Easton iteration P of length A. Note that P preserves cardinals, preserves
the inaccessibility of A and has cardinality A. Now let Q be the Cohen forcing
Add(Rg, k), so that in VF*C the cardinal ) is the least inaccessible cardinal.

We show that [y fails in V7*Q by showing that every stationary subset of AT
reflects. Let T be a stationary subset of AT in VT*Q, and use the fact that P x Q
has size A to find a set U C T such that U € V and U is stationary in V. Since &
is supercompact U reflects to some point 7 of cofinality 6, for some inaccessible §
with § < k. We finish by showing that P« Q preserves the stationarity of stationary
subsets of 61, from which it follows that T'N 7 is stationary in VF*Q,

We factor P as Ps « PP, where P5 adds the O¢ sequences for ¢ < ¢ and P adds
them for ¢ > 6. Since Ps is 6T-c.c. and P is < §T-strategically closed in V73,
forcing with IP preserves stationary subsets of §*; since Q is is c.c.c the same is true
of P x Q. O

10. A LIMITING RESULT

In this last section of the paper we prove a result which limits the possibilities for
creating a supercompact cardinal by forcing in the presence of weak squares. This
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result was motivated by the question “to what extent are weak squares compatible
with stationary reflection?” A natural scenario for making a model with weak
square at p and some reflection is to make a model of LI}, where some A with
A < p can be made supercompact by “mild” forcing. Ben-David and Shelah [2]
attempted to give a proof of the consistency of weak square with reflection in
which a generic supercompact embedding is resurrected by countably closed forcing,
but the theorem that follows shows that their approach to the problem cannot
work. See our paper on squares and reflection [6] for a consistency proof that uses
the technique of resurrecting supercompact cardinals, but where the forcing which
resurrects supercompactness is stationary set preserving for more delicate reasons.

A cardinal X is generically n- supercompact by countably closed forcing iff there
is a countable closed forcing P such that in V¥, there is an elementary embedding
7:V — M with M a transitive class and j“n € M.

Theorem 10.1. Let A < p be cardinals with X regular, p strong limit and cf(u) = w.
If U}, holds then X is not generically w-supercompact by a countably closed forcing
which preserves pu and p.

Proof. We wish to fix a sequence which witnesses [1; and has some additional
properties. Starting with an arbitrary L1} -sequence, we first replace each set C, by
its closure under the power set operation; since p is strong limit and the elements
of C have order type less than pu, the resulting set still has size at most u. We have
produced a sequence (C, : @ < pt) such that for all «
(1) C, is a set of subsets of a and |Cy| < p.
(2) If C is in C, then
(a) P(C) C Ca.
(b) For every 8 < a with sup(CNg)=p4,CNSeCs.
(3) C, contains at least one set which is club in « and has order-type cf(«).

Now let P be some countably closed forcing poset which preserves pu and pt,
let V; be some generic extension by P. Suppose that in Vi, the generic p™-
supercompactness of A is witnessed by j: V — M.

Let v = sup j“u™, so that cf(y) = cfp(y) = p* and v < j(u™). Let the image of
our original [J*-sequence under j be (CJ, : & < j(u")), and fix C' € CJ which is club
in v and has order-type p. The embedding j is continuous at points of cofinality
w, so that j“u* N C is w-club in 7. Let C' name C.

Claim. There do not exist p € P and an unbounded subset D of ut such that
pl-j3“D CC.

Proof. If such p and D exist, let a be an accumulation point of D such that cf(a) =
w and ot(D Na) > u. The embedding j must be continuous at «, so p forces that
j(e) is an accumulation point of j(C'), and so by coherence that j(C)Nj(a) € CJ].'(Q).
If = is any countable subset of D N « then p forces that j(z) = j“r and that
j“c C §(C) Nj(a), so p forces that j(z) € C;.‘(a). By elementarity = € C,. This is

impossible because there are u* possibilities for z and p* > pu* > |C,]. 1

Given a < ut, let a* be a term for the least 3 > a with j(3) € C; we say that
p bounds o* if and only if there is v < u* such that p IF a* < . Not that if p does
not bound a* and 8 > « then p does not bound g*.

Claim. For every p there is an o < ut such that p does not bound a*.



26 JAMES CUMMINGS, MATTHEW FOREMAN, AND MENACHEM MAGIDOR

Proof. Suppose that p bounds a* for every «, and define D to be the w-club set of
points (3 such that cf(8) = w and p IF a* < 8 for every oo < 8. If 8 € D then it is
forced that j is continuous at (3, so that p forces j(3) to be a limit point of C and
hence p I+ j(8) € C. This contradicts the previous claim. O

Claim. There exist a tree of conditions (ps : s € <“u) and an increasing sequence
(a; 11 < w) of ordinals from u™ such that

(1) Ift extends s then py < ps.
(2) The condition ps does not bound oy .

(3) For each i < p, ps~i decides oy ) as some ordinal B(s™4) with B(s™i) <
Qh(s)+1-

(4) Ifi #j then B(s™i) # B(s™J)-

Proof. We observe that if p does not bound a* and 8 > « then p does not bound
B*. We start by setting py = 1p and choosing «ap such that py does not bound
afy. Having defined «,, and p; for 1h(s) = n, we use the fact that no ps; bounds
to choose the ps~; and (s i) appropriately; we then choose ay,, 1 above all the
B(t) for Ih(t) = n + 1, with the property that o;, is not bounded by any p; with
Ih(t) =n+1. O

Let a,, = sup;,, o;. For each f € “u let py be a lower bound for (s, : 0 < w)
and let z; = { B(f | n) : n <w }. By construction each p; forces that j(o,) is a
limit point of C, so that arguing as in the proof of our first claim py IF j(zf) € C;(aw)
and hence xy € Cy,, .

By construction the z; are all distinct, and there are u“ possibilities for f.
Therefore |Cy,| > p, contradiction! It follows that j can not be a generic p*-
supercompact embedding in V. O
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