
CANONICAL STRUCTURE IN THE UNIVERSE OF SETTHEORY: PART TWOJAMES CUMMINGS, MATTHEW FOREMAN, AND MENACHEM MAGIDORAbstra
t. We prove a number of 
onsisten
y results 
omplementary to theZFC results from our paper [4℄. We produ
e examples of non-tightly sta-tionary mutually stationary sequen
es, sequen
es of 
ardinals on whi
h everysequen
e of sets is mutually stationary, and mutually stationary sequen
es not
on
entrating on a �xed 
o�nality. We also give an alternative proof for the
onsisten
y of the existen
e of stationarily many non-good points, show thatdiagonal Prikry for
ing preserves 
ertain stationary re
e
tion properties, andstudy the relationship between some simultaneous re
e
tion prin
iples. Finallywe show that the least 
ardinal where square fails 
an be the least ina

essi-ble, and show that weak square is in
ompatible in a strong sense with generi
super
ompa
tness.
1. Introdu
tionIn our paper [4℄ we prove a number of ZFC results 
on
erning PCF theory,mutual stationarity, square prin
iples and stationary re
e
tion. In that paper wedis
ussed the informal notion of 
anoni
al stru
ture. This notion is supposed to
apture the idea of stru
ture that is not arbitrarily determined by non-
onstru
tiveexisten
e assumption. For example, stru
ture that requires the axiom of 
hoi
e toprove its existen
e may still be independent of any 
hoi
es made in proving it exists.Cardinals of un
ountable 
o�nality fall into this 
ategory. Other examples mightin
lude �ne stru
ture models of large 
ardinals. Large 
ardinal axioms are non-
onstru
tive assumptions (as opposed to e.g. the pairing axiom, where we knowexa
tly what the intended obje
t is). However, as a 
onsequen
e of their existen
ethere is various 
anoni
al stru
ture, su
h as U \ L[U ℄ for U a normal ultra�lter ona measurable 
ardinal �.The notion of 
anoni
al stru
ture is di�erent from the notion of absoluteness. Weillustrate this with an example. Assuming the Axiom of Choi
e, the 
olle
tion ofreal numbers has some well-ordered 
ardinality 
 and this 
ardinality is independentof the 
hoi
es made to show it exists. Similarly, one needs the Axiom of Choi
e toprove that the least regular un
ountable ordinal (�1) exists. Both of these obje
tsare \
anoni
al" in our sense, but it is independent of ZFC whether they are in fa
tidenti
al. We would like to say that these distin
t examples of stru
ture that mayor may not determine identi
al obje
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2 JAMES CUMMINGS, MATTHEW FOREMAN, AND MENACHEM MAGIDORIn this paper we 
ontinue to explore 
anoni
al stru
ture by proving 
onsisten
yresults 
omplementary to the ZFC results in [4℄.After some preliminaries in Se
tion 2, we show the following results.� In Se
tion 3, we give a for
ing 
onstru
tion for a sequen
e of stationary setswhi
h is mutually stationary but not tightly stationary. The proof involvesa 
ombinatorial prin
iple whi
h we dub Coherent Squares.� In Se
tion 4, we give another for
ing 
onstru
tion for a sequen
e of sta-tionary sets whi
h is mutually stationary but not tightly stationary. Theproof involves some lemmas about uniform stru
tures and mutual station-arity whi
h are of independent interest. We also show the 
onsisten
y of asplitting property for mutually stationary sequen
es.� In Se
tion 5 we show that on an in
reasing !-sequen
e of measurable 
ar-dinals, any sequen
e of stationary sets is mutually stationary. We alsoshow that for any Prikry-generi
 sequen
e, a tail of the sequen
e has thisproperty.� In Se
tion 6 we give an alternative proof of a theorem by Shelah, thatthere 
an exist sequen
es of stationary sets on the �n for n �nite whi
h aremutually stationary and do not 
on
entrate on a �xed 
o�nality.� In Se
tion 7 we give an alternative 
onstru
tion for a model in whi
h theset of non-good points of 
o�nality �1 in �!+1 is non-stationary. We alsoshow that if we are given an in
reasing !-sequen
e of measurable 
ardinalssu
h that the su

essor of their supremum exhibits a 
ertain stationaryre
e
tion property, then the re
e
tion property is preserved by diagonalPrikry for
ing.� In Se
tion 8 we show that the prin
iple saying that for all � any familyof fewer than � many stationary subsets of [�℄�0 re
e
t does not implysimultaneous re
e
tion of � many sets of !-
o�nal ordinals. The proof usesMartin's Maximum.� In Se
tion 9 we show that it is 
onsistent that the least � for whi
h �� failsis ina

essible.� In Se
tion 10 we show that if ��� holds for a singular 
ardinal � of 
o�nality!, then a 
ardinal-preserving 
ountably 
losed for
ing poset 
an not 
reateany instan
es of super
ompa
tness below �. This shows that there is anessential problem in a result by Ben-David and Shelah [2℄.We would like to thank John Krueger for his 
areful reading of an earlier versionof this paper.
2. PreliminariesIn this se
tion we give some ba
kground material on mutual and tight station-arity and PCF theory. For more details we refer the reader to [4℄.The idea of mutual stationarity was introdu
ed by Foreman and Magidor [12℄ intheir work on the non-saturation of the non-stationary ideal on P��.De�nition 2.1. Let hS� : � 2 Ki be su
h that S� � � for all � 2 K, where K isa set of regular un
ountable 
ardinals.(1) If N is a set, then N meets hS� : � 2 Ki if and only if sup(N \ �) 2 S� forall � 2 N \K.



CANONICAL STRUCTURE 3(2) hS� : � 2 Ki is mutually stationary if and only if for every algebra A onsup(K) there exists N � A su
h that N meets hS� : � 2 Ki.If S � P(X) then S is a stationary subset of P(X) if and only if for every algebraA on X there is B 2 S su
h that B � A. The sequen
e hS� : � 2 Ki is mutuallystationary if and only if the set of subsets of sup(K) whi
h meet hS� : � 2 Ki is astationary subset of P(sup(K)). By standard fa
ts [13, Lemma 0℄ about generalisedstationarity, if X is any set with sup(K) � X then hS� : � 2 Ki is mutually sta-tionary if and only if the set of subsets of X whi
h meet hS� : � 2 Ki is a stationarysubset of P(X).It is easy to see that if hS� : � 2 Ki is mutually stationary then S� is stationaryfor ea
h �. Foreman and Magidor showed that the 
onverse is false in general, butis true if S� � � \ 
of(!) for all �. In order to get versions of Solovay's splittingtheorem and Fodor's theorem Foreman and Magidor introdu
ed the notion of tightstru
ture and tightly stationary sequen
e.De�nition 2.2. Let K be a set of regular 
ardinals, let � = 
f(�) > sup(K), andlet A = (H�;2; <�). Let M � A.Then M is tight for K if and only if(1) K 2M .(2) For all g 2Q�2M\K(M\�) there exists h 2M\QK su
h that g(�) < h(�)for all � 2M \K.If jKj � M then K � M , and in this 
ase tightness has a simpler formulation.When K �M , M is tight for K exa
tly when M \QK is 
o�nal in Q�2K M \ �.De�nition 2.3. Let K be a set of regular 
ardinals and let M be a set. The
hara
teristi
 fun
tion of M (on K) is the fun
tion �KM with domain K given by�KM : � 7�! sup(M \ �).If a stru
tureM is su
h thatK �M , then tightness ofM amounts to saying thatevery fun
tion inQK whi
h is pointwise dominated by �M is pointwise dominatedby some fun
tion in M \QK, that is to say M \QK is 
o�nal in QK below �KM .De�nition 2.4. Let K be a set of regular 
ardinals and let hS� : � 2 Ki be su
hthat S� � � for all � 2 K. Let � = sup(K)+. The sequen
e hS� : � 2 Ki is tightlystationary if and only if for every algebra A on H� there is N � A su
h that N istight for K and N meets hS� : � 2 Ki.PCF theory gives a very general te
hnique for analysing singular 
ardinals, butfor our purposes in this paper we will restri
t ourselves to the spe
ial 
ase whenthe singular 
ardinal is �!. Shelah has shown that� There is an in�nite set A � ! and a sequen
e of fun
tions hf� : � < �!+1iwhi
h is a s
ale (that is to say an in
reasing and 
o�nal sequen
e) inQn2A �n under the eventual domination ordering.� Modulo �nite sets there is a unique maximal 
hoi
e for the set A.For the rest of this dis
ussion we �x A to be the maximal set as above, and also�x hf� : � < �!+1i a s
ale in Qn2A �n. A fun
tion g from A to the ordinals is saidto be an exa
t upper bound for hf� : � < �i i� f� <� g for all � < �, and for everyh < g there is � < � su
h that h <� f�. For example the fun
tion n 7! �n is anexa
t upper bound for hf� : � < �!+1i.



4 JAMES CUMMINGS, MATTHEW FOREMAN, AND MENACHEM MAGIDORWithout loss of generality we assume that the s
ale hf� : � < �!+1i is 
ontinu-ous, whi
h means that whenever an exa
t upper bound for hf� : � < �i exists thenf� is su
h an upper bound. It is easy to see that modulo �nite sets exa
t upperbounds are unique, so that if h is any exa
t upper bound for hf� : � < �i thenh =� f� .We will be espe
ially interested in the good points of this kind of s
ale. Anordinal � < �!+1 of un
ountable 
o�nality is good if there exists an exa
t upperbound h for hf� : � < �i su
h that 
f(h(n)) = 
f(�) for all n with 
f(�) < !n. Theset of good points is stationary in every un
ountable 
o�nality and is an importantinvariant of the universe of set theory; see for example [11℄, [6℄ and [18℄.There is a useful alternative 
hara
terization of good points. The point � isgood if and only if it has un
ountable 
o�nality and for every A unbounded in �there exist B � A unbounded in � and k < ! su
h that hf�(n) : � 2 Bi is stri
tlyin
reasing for all n > k.One reason for us to be interested in good ordinals is that they give a 
hara
ter-ization of tight stru
tures. We showed [12℄ that if M � H�, 0 < m < ! and PCFis trivial (that is to say that A = !, so there is a s
ale of length �!+1 in Qn �nmodulo the ideal of �nite sets.) then the following are equivalent:(1) The stru
ture M is tight for f�n : n < !g and 
f(M \ �n) = �m for alllarge n < !.(2) If 
 = sup(M \ �!+1) then 
 is a good point of 
o�nality �m and f
(n) =�M (�n) for all large n < !.The kind of uniform 
o�nality assumption whi
h appears in the result we justquoted is ubiquitous enough to deserve a name. We will say that a stru
ture M is�m-uniform if 
f(M \ �n) = �m for m < n < !.If 0 < m < ! then every internally approa
hable stru
ture of length and 
ar-dinality �m is tight for f�n : n < !g, so there are stationarily many �m-uniformtight stru
tures. Zapletal [12℄ showed that there are stationarily many �m-uniformnon-tight stru
tures.Without the assumption that PCF is trivial, we 
an give a more 
ompli
ateddes
ription of the uniform tight stru
tures. We refer the reader to [4, Theorem 5.6℄for the missing details. Let K = f�n : n < !g, let ~B = hB� : � 2 p
f(K)i be asequen
e of PCF generators for K and let ~f = hf�� : � < �; � 2 p
f(K)i be su
hthat hf�� : � < �i is an !-
lub minimal s
ale in QB�=J<� for ea
h �. We showed[4℄ that if 0 < m < ! and M � (H�; ~B; ~f) is �m-uniform and tight for K then �KM
an be written as the pointwise supremum of �nitely many fun
tions of the formf�sup(M\�).IfM is an �m-uniform substru
ture of some expansion A of (H�;2; <�), andM�is the Skolem hull in A ofM[�m, then as we see later in Lemma 6.3 sup(M\�n) =sup(M� \ �n) for m < n < !. So M� is �m-uniform and 
ontains �m. We showed[4℄ that for 0 < m < !, if N is �m-uniform and 
ontains �m then the set N \�! is
losed under bounded suprema of length less than �m; in parti
ular for m < n < !there is a 
lub subset of N \�n whi
h has order type �n and is 
ontained in N \�n.3. A non-tight mutually stationary sequen
eForeman and Magidor [12℄ raised the question as to whether every mutually sta-tionary sequen
e is tightly stationary. In this se
tion we give a for
ing 
onstru
tion



CANONICAL STRUCTURE 5showing that a negative answer is 
onsistent; we do not know whether a negativeanswer follows from the axioms of ZFC. Given k > 0 we will 
onstru
t by for
inga sequen
e hTn : k < n < !i with Tn � �n \ 
of(�k), whi
h is mutually stationarybut not tightly stationary.We start by de�ning a 
ombinatorial prin
iple Coherent Squares (CS). The prin-
iple asserts the existen
e of ��n -sequen
es for 0 < n � !, together with a s
aleof length �!+1 in Qn<! �n whi
h relates the ��n -sequen
es for n < ! to the ��! -sequen
e. We note that the s
ale involved in the prin
iple CS is a \Very GoodS
ale" in the sense of our paper [6℄. This prin
iple is 
losely related to some 
om-binatorial prin
iples of Donder, Jensen and Stanley [8℄ and Donder, Jensen andKoppelberg [7℄.De�nition 3.1. For ea
h n � ! let In = f � : �n < � < �n+1 g. The prin
ipleCS asserts that there exist sequen
eshCn� : � 2 In \ LIM; 0 < n � !i; hf� : � 2 I! \ LIMi;su
h that(1) For all n and all � in Sn \ LIM(a) The set Cn� is 
lub in �, and Cn� � In.If the 
o�nality of � is less than �n then the order type of Cn� is lessthan �n.(b) For every limit point � of Cn� , Cn� = Cn� \ �.(2) For all � in S! \ LIM , f� is a fun
tion su
h that(a) There exists k < ! su
h that dom(f�) = f n : k < n � ! g andot(C!� ) � �k .(b) For all n in dom(f�), f�(n) 2 In \ LIM .(
) For every limit point � of C!� , dom(f�) � dom(f�).(d) For all n in dom(f�),lim(Cnf�(n)) = f f�(n) : � 2 lim(C!� ) g:(3) The sequen
e hf� : � 2 I! \ LIMi forms a s
ale in Qn �n+1, that is to sayit is in
reasing and 
o�nal in the eventual domination ordering.Remark 3.2. Noti
e that hCn� : � 2 In \ LIMi is essentially a ��n -sequen
e, withthe (purely 
osmeti
) di�eren
e that the underlying set is In rather than �n+1.Remark 3.3. If hf� : � 2 I!i is the s
ale in Q�n modulo the ideal of �nite setsgiven by the prin
iple CS, then hf�i is 
ontinuous and !-
lub minimal. Moreover,it is a very good s
ale in the sense of [6℄.All this follows from the observation that if � has un
ountable 
o�nality thenfor large n the sequen
e hf
(n) : 
 2 lim(C!� )i is 
ontinuous and in
reasing withsupremum f�(n).To motivate the prin
iple CS we show that it 
an be used to generate a sequen
eof stationary sets whi
h is not tightly stationary. We suppose that hf�i and hCn�i areas in De�nition 3.1. Given k < ! and a sequen
e of limit ordinals h
n : k � n < !isu
h that 
n < �n for all n, we de�ne a sequen
e of sets byTn = f � 2 In \ LIM : 
f(�) = �k; ot(Cn�) � 
n g:The stationarity of the sets Tn follows from a general fa
t about ��-sequen
esfor � regular.



6 JAMES CUMMINGS, MATTHEW FOREMAN, AND MENACHEM MAGIDORLemma 3.4. If � is regular and hC� : � < �+i is a ��-sequen
e, then for every� < � the set fÆ < �+ : ot(CÆ) > �g is stationary.Proof. Let C be 
lub in �+ and let � be a limit point of C with 
o�nality �. C� \Cis 
lub in � with order type �, and so we may �nd Æ a limit point of C� \ C su
hthat ot(C� \ Æ) > �. Clearly Æ 2 C, and by the 
oheren
e property of the squaresequen
e C� \ Æ = CÆ and so ot(CÆ) > �. We showed fÆ < �+ : ot(CÆ) > �g meetsevery 
lub subset of �+ and so it is stationary. �Lemma 3.5. If h
n : k � n < !i is unbounded in �! 
n < �n for every n, thenhTn : k � n < !i is not tightly stationary.Proof. Let N be a tight stru
ture and for ea
h i � ! let �i+1 = sup(N \ �i+1).Suppose for a 
ontradi
tion that �i 2 Ti for all i.The sequen
e hf� : � 2 I! \ LIMi forms a 
ontinuous s
ale, so by the 
hara
-terization of uniform tight stru
tures in terms of PCF theory whi
h we dis
ussedin Se
tion 2 there exists m < ! su
h that f�! (n) = �n for all n � m. If n � mthen lim(Cn�n) = lim(Cnf�! (n)) = f f�(n) : � 2 lim(C!�!) g:Noti
e also that if �; 
 2 lim(C!�!) and � < 
 then � 2 lim(C!
 ), and so f�(n) 2lim(Cnf
(n)) and in parti
ular f�(n) < f
(n). It follows that ot(Cn�n) = ot(C!�!) forall n � m. Sin
e h
n : k � n < !i is unbounded in �!, we may �nd n � m su
hthat 
n > ot(C!�!). It follows that �n =2 Tn, whi
h is a 
ontradi
tion. �We de�ne a for
ing iteration of length ! + 1 whi
h for
es CS to hold. At stagen for n < ! we for
e with a version of Jensen's poset for adding a square sequen
e~Cn, where 
onditions pres
ribe an initial segment of ~Cn. At stage ! we for
e with
onditions whi
h pres
ribe initial segments of ~C! and ~f .De�nition 3.6. For n < !, Q n is the set of sequen
esq = hCq;n� : � 2 In \ LIM \ (� + 1)iwhere(1) The ordinal � is a limit ordinal in Sn. We refer to � as the length of q andwrite � = lh(q).(2) For all � in Sn \ LIM \ (� + 1)(a) The set Cq;n� is 
lub in � and Cq;n� � In.(b) The order type of Cq;n� is less than �n if the 
o�nality of � is less than�n.(
) For every limit point 
 of Cq;n� , Cq;n
 = Cq;n� \ 
.If q; r 2 Q n then q � r if and only if(1) The length of q is greater than or equal to the length of r.(2) For all � 2 In \ LIM \ (lh(r) + 1), Cq;n� = Cr;n� .Before stating the main fa
ts about Q n we re
all the 
on
ept of strategi
 
losure.Let � be an in�nite 
ardinal. A poset Q is (� + 1)-strategi
ally 
losed if and onlyif player Even has a winning strategy for the game in whi
h two players (Even andOdd) build a de
reasing � + 1-sequen
e in Q , where Odd plays at all odd stagesand Even plays at all non-zero even stages in
luding limit stages, and Even wins ifshe 
an move at stage �. We refer the reader to Foreman's paper on games [9℄ formore about strategi
 
losure, noting here only that a (� + 1)-strategi
ally 
losed



CANONICAL STRUCTURE 7poset adds no �-sequen
es and hen
e preserves all 
ardinals less than or equal to�+.The following fa
ts are standard, see for example [6℄.Fa
t 3.7. Let n < !.(1) The poset Q n is 
ountably 
losed.(2) The poset Q n is (�n + 1)-strategi
ally 
losed.(3) If 2�n = �n+1 then jQ n j = �n+1, so in parti
ular Q n has the �n+2-
.
.(4) If p 2 Q n , 
 is a limit ordinal in Sn and lh(p) < 
, then there is q � p su
hthat lh(q) = 
.(5) If ~Cn = hCn� : � 2 In \ LIMi is Q n-generi
 and Æ 2 (�n + 1)\LIM , thenV [ ~Cn℄ j= \ f � 2 In \ LIM : ot(Cn�) = Æ g is stationary in �n+1":We now assume that V satis�es GCH. We de�ne P! as an iteration with fullsupport, where at stage n we for
e with Q n as de�ned in V Pn. As usual we let _Q nbe a Pn -name for Q n . In V P! let hCn� : � 2 In \ LIMi be the sequen
e added byQ n , and de�ne Q ! as follows.De�nition 3.8. The poset Q ! is the set of pairs of sequen
esq = (hCq;!� : � 2 I! \ LIM \ (� + 1)i; hfq� : � 2 I! \ LIM \ (� + 1)i)where(1) The ordinal � is a limit ordinal in I!. We 
all � the length of q and write� = lh(q).(2) For all � 2 I! \ LIM \ (� + 1)(a) The set Cq;!� is 
lub in � and Cq;!� � I!.(b) The order type of Cq;!� is less than �!.(
) For every limit point 
 of Cq;!� , Cq;!
 = Cq;!� \ 
.(3) For all � in I! \ LIM \ (� + 1), f� is a fun
tion su
h that(a) There exists k < ! su
h that dom(f�) = f n : k < n � ! g andot(Cq;!� ) � �k.(b) For all n 2 dom(f�), f�(n) 2 In \ LIM .(
) For all limit points � of Cq;!� , dom(f�) � dom(f�).(d) For all n 2 dom(f�),lim(Cnf�(n)) = f f�(n) : � 2 lim(Cq;!� ) g:(4) If �1 < �2 � �, then f�1 <� f�2 .If q; r 2 Q ! then q � r if and only if(1) The length of q is greater than or equal to the length of r.(2) For all � in Sn \ LIM \ (lh(r) + 1), Cq;!� = Cr;!� and fq� = fr�.When we 
onstru
t members of Q ! we will generally only verify that the \
o-heren
e" 
lause 3d holds.Lemma 3.9. The for
ing poset Q ! is 
ountably 
losed in V P!.Proof. Let hqi : i < !i be a stri
tly de
reasing !-sequen
e of 
onditions, and de�ne�i = lh(qi) and � = supi<! �i. We de�ne a 
ondition q as follows.(1) The length of q is �.(2) For all � 2 In \ LIM \ (lh(qi) + 1), Cq;!� = Cqi;!� and fq� = fqi� .(3) The set Cq;!� is 
o�nal in � with order type !.



8 JAMES CUMMINGS, MATTHEW FOREMAN, AND MENACHEM MAGIDOR(4) For all n < !, fq�(n) � sup f fq�i(n) : i 2 ! g and ot(Cnfq�(n)) = !.The 
hoi
e of fq�(n) is possible be
ause ot(CnÆ ) = ! for a 
o�nal set of Æ < �n+1.The 
lause 3d of the de�nition of Q n is satis�ed trivially be
ause neither Cq;!� norany of the Cnfq�(n) has any limit points. �We now de�ne P!+1 = P! � Q ! . A standard argument shows thatP!+1 ' Pn � Rn ;where Rn is the full support iteration of length !+1 with fa
tors hQ i : n � i � !i.For notational 
onvenien
e we will index the steps of Rn by the set f i : n � i � ! grather than ! + 1.For the next few lemmas we work in V Pn.Lemma 3.10. The set of p in Rn su
h that p � i n n de
ides lh(p(i)) for all i withn � i � ! is dense.Proof. This is easy, as ea
h of the Q i is 
ountably 
losed. �From now on we will assume that all p 2 Rn have this property. A

ordingly wewill write lhi(p) for the unique ordinal 
 su
h that p � i 
 �
 = lh(p(i)).Notation: If p 2 Rn then we writep(i) = h _Cp;i� : � 2 Si \ LIM \ (lhi(p) + 1)ifor i < !, and let h _Cp;!� : � 2 I! \ LIM \ (lh!(p) + 1)i be the �rst 
omponent ofp(!) and h _fp� : � 2 I! \ LIM \ (lh!(p) + 1)i the se
ond 
omponent.De�nition 3.11. A 
ondition p 2 Rn is 
at if and only if p � ! n n for
es that(1) dom( _fplh!(p)) = f i : n � i < ! g.(2) For all i 2 dom( _fplh!(p)), _fplh!(p)(i) = lhi(p).Lemma 3.12. The set of 
at 
onditions in Rn is dense.Proof. Given p we �rst �nd q � p su
h that� lh!(q) = lh!(p).� q � ! n n de
ides fplh!(p).� lhi(q) > fplh!(p)(i) and ot(Cq;ilhi(q)) = ! for all i with n � i < !.Then we �nd r � q su
h that(1) lhi(r) = lhi(q) for all i < !, and lh!(r) = lh!(q) + !.(2) ot(Cr;!lh!(r)) = !.(3) dom(frlh!(r)) = f i : n � i < ! g and frlh!(r)(i) = lhi(r) for all i.Clearly r is a 
ondition, r � p and r is 
at. �Lemma 3.13. For all n < !, Rn is (�n + 1)-strategi
ally 
losed.Proof. We des
ribe a strategy for player Even in the game, where, without lossof generality, we may assume that Odd plays a 
at 
ondition at ea
h odd stage.Even's moves will also be 
at 
onditions. Suppose that 
 is even and that so farthe sequen
e hpi : i < 
i has been played.
 su

essor: If 
 = Æ + 1, then Even de�nes p
 as follows.



CANONICAL STRUCTURE 9(1) lhi(p
) = lhi(pÆ) + ! and Cp
 ;ilhi(p
) = flhi(pÆ) + j : j < !g for n � i � !.(2) dom(fp
lh!(p
)) = f i : n � i < ! g.(3) fp
lh!(p
)(i) = lhi(p
) for n � i < !.
 limit: Even de�nes p
 as follows.(1) lhi(p
) = S�<
 lhi(p�) and Cp
 ;ilhi(p
) = f lhi(p�) : � < 
 g for n � i � !.(2) dom(fp
lh!(p
)) = f i : n � i < ! g.(3) fp
lh!(p
)(i) = lhi(p
) for n � i < !.As usual we only 
he
k that p
(!) satis�es 
lause 3d from the de�nition of Q ! .We observe �rst that if Æ 2 lim(Cp
 ;ilhi(p
)) then Æ = lhi(p�) for some limit � < 
.At stage � player Even de�ned Cp� ;ilhi(p�) = f lhi(p�) : � < � g for n � i � !, andfp�lh!(p�)(i) = lhi(p�) for n � i < !.It follows that for n � i < !lim(Cp
 ;ilhi(p
)) = f lhi(p�) : � 2 
 \ LIM g= f fp�lh!(p�)(i) : � 2 
 \ LIM g= f fp
Æ (i) : Æ 2 lim(Cp
 ;!lh!(p
)) g �Lemma 3.14. Let G!+1 be P!+1-generi
 and let G! be the indu
ed P! -generi
�lter. Then(1) The models V and V [G!+1℄ have the same 
ardinals and 
o�nalities up to�!+1.(2) The prin
iple CS holds in V [G!+1℄.(3) Every �!-sequen
e of ordinals from V [G!+1℄ is in V [G!℄.Proof. This is fairly routine. We only 
he
k that hf� : � 2 I! \ LIMi forms as
ale. To see this let g 2 (Qn �n+1)V [G!+1℄, and observe that g 2 V be
ause P!+1is 
ountably 
losed. Now let p be an arbitrary 
ondition. Find q � p su
h thatlh!(q) = lh!(p) and lhi(q) � g(i) for all i, and then �nd r � q su
h that r is 
at. By
onstru
tion frlh!(r)(i) = lhi(r) � lhi(q) � g(i) for all i < !, and we are done. �We now work in V [G!+1℄. We re
all that given k < ! and a sequen
e of limitordinals h
n : k � n < !i su
h that 
n < �n for all n, we de�ned a sequen
e of setsby Tn = f � 2 In \ LIM : 
f(�) = �k; ot(Cn�) � 
n g:We showed in Lemma 3.5 that a suitable 
hoi
e of h
n : k � n < !i will generate asequen
e whi
h is not tightly stationary.Lemma 3.15. Let G!+1 � Q ! be generi
. Then in V [G!+1℄, for all sequen
esh
n : k � n < !i the sequen
e hTn : k � n < !i is mutually stationary (where Tn isde�ned as above.)Proof. Let h
n : k � n < !i be a sequen
e of ordinals in V [G!+1℄. Then, by the
losure of Q ! , h
n : k � n < !i lies in V . We showed in Lemma 3.14 that themodels V [G!℄ and V [G!+1℄ have the same �!-sequen
es of ordinals, so it is enoughto 
he
k that this is so in V [G!℄. We use the fa
t thatP! ' Pk � Sk



10 JAMES CUMMINGS, MATTHEW FOREMAN, AND MENACHEM MAGIDORwhere Sk is the iteration of length ! with full support and fa
tors Q n for k � n < !.We will do a density argument in Sk similar to the proof given above that R k isstrategi
ally 
losed.Let _H be a name for a fun
tion from <!�! to �!. Let p0 2 Sn be arbi-trary. Extending p0 if ne
essary, we may assume without loss of generality thatot(Cp0;ilhi(p0)) = 
i.We will argue in the model V Pk , using the 
losure of Sk. In parti
ular we willnow understand _H as an Sk-name appropriate for for
ing over V Pk . We des
ribe anindu
tive 
onstru
tion of a de
reasing 
hain of 
onditions hpj : j � �ki in Sk, andan in
reasing 
hain of sets hAj : j � �ki su
h that jAj j � �k.Stage zero: p0 has already been determined, and we set A0 = ;.Su

essor stages: Suppose that pj , Aj have been de�ned. We start by 
hoosingBj+1 � �! su
h that jBj+1j � �k, Aj � Bj+1, and lhi(pj) � sup(Bj+1 \ �i+1) fori � k. We then 
hoose qj � pj and Aj+1 so that qj for
es the _H-
losure of Bj+1 tobe Aj+1, and lhi(qj) � sup(Aj+1 \ �i+1) for i � k. We de�ne pj+1 as follows:(1) pj+1 � qj .(2) lhi(pj+1) = lhi(qj) + !.(3) Cpj+1;ilhi(pj+1) = f lhi(qj) + l : l < ! g.Limit stages: Suppose that j is limit and we have de�ned hpk : k < ji andhAk : k < ji. De�ne pj by(1) pj � pk for all k < j.(2) lhi(pj) = supk<j lhi(pk).(3) Cpj ;ilhi(pj) = Cp0;ilhi(p0) [ f lhi(pk) : k < j g.Let Aj = Sk<j Ak.If j is limit it is routine to 
he
k that pj is a 
ondition, sup(Aj \�i+1) = lhi(pj),and that pj for
es that Aj is 
losed under _H .Let A = A�k , p = p�k . Then p for
es that sup(A\�i+1) = lhi(p) for all i, and palso for
es that ot(Cilhi(p)) = 
i+�k for all i. It follows that p 
 8i sup(A\�i+1) 2Ti. �We summarise the main result of this se
tion in a theorem.Theorem 3.16. It is 
onsistent that for every integer k > 0 there exists a se-quen
e hTn : k < n < !i su
h that Tn � �n \ 
of(�k), and the sequen
e is mutuallystationary but not tightly stationary.4. Another non-tight mutually stationary sequen
eSteprans and Foreman found another 
onsisten
y proof for the existen
e of asequen
e hSn : k < n < !i su
h that Sn � �n \ 
of(�k), and the sequen
e is mutu-ally stationary but not tightly stationary. The model is easily des
ribed: �xing aninteger k > 0, we for
e with the Cohen poset Add(�0;�!) for adding a subset Sof �! with �nite 
onditions and de�ne Sn = �n \ 
of(�k) \ S for ea
h n > k. We
laim that in V [S℄ the sequen
e hSn : k < n < !i is as required.We start by showing that hSn : k < n < !i is not tightly stationary. This partof the argument is due to Steprans (under the assumption that 2�! = �!+1).



CANONICAL STRUCTURE 11We observe that the poset Add(�0;�!) has the 
ountable 
hain 
ondition. Work-ing in V we �x a sequen
e of PCF generators hB� : � 2 p
f(K)i and a familyhf�� : � 2 p
f(K); � < �i of !-
lub minimal s
ales, where K = f�n : n < !g. Bythe 
ountable 
hain 
ondition it is still the 
ase in V [S℄ that hB�i is a sequen
e ofgenerators and hf��i is a matrix of !-
lub minimal s
ales.If N is a tight �k-uniform stru
ture in V [S℄ then as we dis
ussed in Se
tion2, it follows from [4, Theorem 5.6℄ that �N 
an be 
omputed in an absolute wayfrom �nitely many of the fun
tions f�� , and so �N 2 V . An easy density argumentshows that V \Qn Sn = ;, so that the tight stru
ture N 
an not meet the sequen
ehSn : n < !i.It remains to be seen that the sequen
e hSn : n < !i is mutually stationary inV [S℄. Let F 2 V [S℄ be a fun
tion from <!�! to �!. We start by showing that itis enough to 
onsider stru
tures whi
h lie in the ground model.Lemma 4.1. Let P be a 
.
.
. for
ing poset, let � be a 
ardinal and let _F be aP-name for a fun
tion from <!� to �. There is a fun
tion f 2 V from <!� to �su
h that if G is P-generi
 and X 2 V [G℄ is a subset of � 
losed under f , then Xis 
losed under _FG.Proof. It follows from the 
.
.
. that if x 2 <!� then there are only 
ountably manypossibilities for _F (x). Fix an enumeration of these possibilities as hg(x; n) : n < !iand then de�ne f as follows: if y 2 <!� and lh(y) = 2m(2n+ 1) then f(y) = g(y �m;n). �For the rest of this se
tion we mean by \stru
ture" an elementary substru
tureof (H�!+1 ;2; <; F ). Let F be the set of 
hara
teristi
 fun
tions of �k-uniformstru
tures with respe
t to the set f�n : k < n < !g; for notational simpli
ity we
onsider the domain of an element of F to be fn : k < n < !g. Let T be the tree
onsisting of all proper initial segments of all elements of F . We prove two lemmasabout T , whi
h may have some independent interest.Lemma 4.2. Every in�nite bran
h of T is a member of F .Proof. Let � be a bran
h of T , and �nd stru
tures hMj : k < j < !i su
h thatsup(Mj \ �n) = �(n) for all n and j with k < n � j. As we noted in Se
tion 2,we may as well assume that �k �Mj and then may �nd Cjn �Mj \ �(n) whi
h is
lub in �(n), for all n and j with k < n � j. For all n > k let Dn = Tj�nCjn, sothat Dn is 
lub in �(n). We note that if 
 2 Dn then 
 2Mj for all large j.Let M be the Skolem hull of Sn>kDn. We 
laim that M is a stru
ture with
hara
teristi
 fun
tion �. It is 
lear that �M (n) � �(n) for all n > k. To see thatthe reverse inequality holds, let � 2 M \ �n and �x s a �nite subset of Sn>kDnsu
h that � is in the hull of s. Sin
e s is �nite we may �nd j so large that j � nand s �Mj , so that � 2Mj \�n and therefore � < �Mj (n) Sin
e �Mj (n) = �(n),we are done. �Remark 4.3. Noti
e that in any 
ardinal-preserving extension of V , the argumentworks to show that every in�nite bran
h of T is the 
hara
teristi
 fun
tion of some�k-uniform stru
ture. In parti
ular this is true in V [S℄.We now show the tree T has a stationary bran
hing subtree U .Lemma 4.4. There is a tree U � T su
h that for all j > k and t 2 U withdom(t) = fn : k < n < jg, f� < �j : t_� 2 Ug is stationary in �j .



12 JAMES CUMMINGS, MATTHEW FOREMAN, AND MENACHEM MAGIDORProof. We will use the Gale-Stewart theorem [19℄ on the determina
y of gameswith open payo� sets. We denote by hh�0; : : : �j�1ii the fun
tion f with domainfn : k < n < k + j + 1g given by f(n) = �n�k�1.Consider the following two-player game of perfe
t information between two play-ers I and II. Player I's ith move is a set of ordinals Ai, player II's ith move is anordinal �i. We suppose that(1) hh�i : i < jii 2 T for all j.(2) Aj is a subset of f� < �k+j+1 : hh�0; : : : �j�1; �ii 2 Tg, and Aj is non-stationary in �k+j+1.(3) �j =2 Aj .The �rst player to violate these 
onditions loses, and if play 
ontinues for ! movesthen II wins.Intuitively the idea is that II is trying to build an in�nite bran
h of T , and thatplayer I is allowed to blo
k a non-stationary set of potential su

essors at ea
hstage. Similar games appear in the game analysis of Namba for
ing by Shelah [21℄.We 
laim that II has a winning strategy. Sin
e the game is open for player I,it follows from the Gale-Stewart theorem that it suÆ
es to show I has no winningstrategy. Suppose for a 
ontradi
tion that I has a winning strategy � , and �nd an�k-uniform stru
ture M with � 2M .We will 
onstru
t a run of the game where I plays a

ording to � but the wrongplayer (player II) wins. At her jth move player II will play �j = sup(M \ �k+j+1).We 
he
k that this gives a win for player II.Suppose that I has played hAi : i � ji, II has played h�i : i < ji, and �i =2 Aifor i < j. In general Aj will not be in M . However if we de�ne B to be the unionof the set of all A su
h that I plays A at stage j in some run of the game where Iplays a

ording to � , then B 2M be
ause � 2M . Sin
e B is the union of at most�k+j non-stationary subsets of �k+j+1, B is non-stationary.Let C 2 M be a 
lub subset of �k+j+1 whi
h is disjoint from B. Sin
e C isunbounded in �j by elementarity, �j 2 C and thus �j =2 B. By 
onstru
tionAj � B, thus �j =2 Aj . It follows that II wins the game, 
ontradi
tion!We now �x a winning strategy � for player II. We de�ne U to be the set of allhh�0; : : : �j�1ii su
h that �0; : : : �j�1 is an initial segment of II's sequen
e of playsin some run of the game where II plays a

ording to �. To �nish the proof, weshow that U has stationary bran
hing.Let hh�0; : : : �j�1ii 2 U and suppose that it represents II's response to I's playingA0; A1; : : : Aj�1. LetB = f� < �k+j+1 : hh�0; : : : �j�1; �ii 2 Ug;and suppose for a 
ontradi
tion that B is non-stationary. Let I play B as hisjth move and let � be the response di
tated by �. Then by the de�nition of U ,hh�0; : : : �j�1; �ii 2 U and so � 2 B. This means that player II loses immediately,
ontradi
ting the assumption that � was a winning strategy. �It is easy to 
he
k that for every n > k, Sn meets every stationary subset of�n \ 
of(�k) from the ground model. Sin
e U has stationary bran
hing, we maybuild by indu
tion a bran
h b of U whi
h is in Qn>k Sn. By Lemma 4.2 we may
onstru
t a stru
ture M su
h that �M = b. This shows that the sequen
e hSni ismutually stationary.



CANONICAL STRUCTURE 13We summarise the main result of this se
tion in a theorem.Theorem 4.5. Let S � �! be V -generi
 for Add(�0;�!), and de�ne Sn = �n \
of(�k) \ S for ea
h n > k. In V [S℄ the sequen
e hSn : k < n < !i is mutuallystationary but not tightly stationary.Remark 4.6. It is 
lear from the proof that a large 
lass of for
ing posets 
ouldbe used in pla
e of Add(�0;�!). To be more pre
ise, essentially the same proof willwork for any for
ing poset P su
h that(1) The poset P is �!-
.
. and 
ardinal-preserving.(2) For
ing with P adds a sequen
e hSn : k < n < !i with Sn � �n \ 
of(�k)su
h that(a) In the extension by P, V \Qn Sn = ;.(b) For all S 2 V su
h that S � �n \ 
of(�k) and V j= \S is stationary",Sn \ S 6= ;.Similar ideas 
an be used to show that adding enough Cohen reals gives a modelin whi
h every mutually stationary sequen
e 
an be split.Lemma 4.7. Let 0 < k < ! and let hUn : k < n < !i be a mutually stationarysequen
e of sets with Un � �n\ 
of(�k). Let T � be the tree of fun
tions f su
h that� dom(f) = fn : k < n � jg for some j > k.� There is a stru
ture M su
h that M meets hUn : k < n < !i and f(n) =sup(M \ �n) for k < n � j.Then there is a subtree U� � T � su
h that for all j > k and t 2 U� withdom(t) = fn : k < n < jg, f� < �j : t_� 2 U�g is stationary in �j .Proof. The proof is very similar to that of Lemma 4.4. Two players I and II
ollaborate to build a bran
h of T �, with player I blo
king out a non-stationaryset of possible su

essors of the 
urrent position and player II 
hoosing a su

essorwhi
h was not blo
ked by player I.We need to 
he
k that I does not win, and so we suppose that � is a strategy forplayer II. Sin
e hUn : k < n < !i is mutually stationary, we may �nd M su
h thatM meets hUn : k < n < !i and � 2 M . As before, we may 
he
k that II 
an winagainst � by playing sup(M \ �k+j+1) at move j of the game.By the Gale-Stewart theorem there is a winning strategy � for player II. As inLemma 4.4 we may use � to 
onstru
t a suitable tree U�, 
onsisting of �nite initialsegments of runs of the game in whi
h II plays a

ording to �. �Lemma 4.8. Let 0 < k < ! and let hUn : k < n < !i be a mutually station-ary sequen
e of sets with Un � �n \ 
of(�k). Let G be Add(�0;�!)-generi
 overV . Then in V [G℄ the following is true: there are partitions hU in : i < !i of ea
hUn into ! disjoint stationary pie
es, su
h that for all f : ! �! ! the sequen
ehUf(n)n : k < n < !i is mutually stationary.Proof. We 
an regard Add(�0;�!) as the �nite support produ
t of posets Pn fork < n < !, where Pn is the poset of �nite partial fun
tions from �n to �0. We maythen identify G with hgn : k < n < !i where gn is a map from �n to �0, and we setU in = f� 2 Un : gn(�) = ig.It is routine to 
he
k that ea
h U in is stationary. We now use Lemma 4.7 to
onstru
t a suitable tree U�, and then given f we build a bran
h of U� whi
h lies in



14 JAMES CUMMINGS, MATTHEW FOREMAN, AND MENACHEM MAGIDORQn>k Uf(n)n . We may now �nish the argument exa
tly as in the proof of Theorem4.5. �Theorem 4.9. If G is generi
 for Add(�0;�!+1) then the following statementholds in V [G℄: for all k > 0 and all mutually stationary hUn : k < n < !i withUn � �n \ 
of(�k), there are partitions hU in : i < !i of ea
h Un into ! disjointstationary pie
es, su
h that for all f : ! �! ! the sequen
e hUf(n)n : k < n < !i ismutually stationary.Proof. By a 
hain 
ondition argument the sequen
e hUn : k < n < !i lies in thegeneri
 extension of V by some proper initial segment Add(�0; �) of Add(�0;�!+1),where � < �!+1. Sin
e Add(�0;�!+1) ' Add(�0; �) � Add(�0;�!+1) we may aswell assume that hUn : k < n < !i 2 V . The theorem is now immediate fromLemma 4.8. �5. Models in whi
h every sequen
e is mutually stationaryForeman and Magidor [12℄ pointed out that in general the question of whi
hsequen
es hSn : n < !i with Sn � �n are mutually stationary is 
onne
ted with theopen question whether �! 
an be a Jonsson 
ardinal. It is known that rather largesingular 
ardinals of 
o�nality ! 
an be Jonsson: in parti
ular Prikry proved thata singular limit of measurable 
ardinals is Jonsson and that a measurable 
ardinalremains Jonsson after doing Prikry for
ing [20℄.In this se
tion we mildly strengthen these 
lassi
al results by relating them tomutual stationarity. See the introdu
tion to our previous paper [4℄ for more on the
onne
tion between mutual stationarity, Jonsson 
ardinals and Chang's 
onje
ture.Remark 5.1. Baumgartner [1℄ proved Theorem 5.2 in the spe
ial 
ase where Sn =�n \ 
of(�f(n)) for f : ! �! 2.Theorem 5.2. Let h�i : i < �i be an in
reasing sequen
e of measurable 
ardinalswhere � = 
f(�) < �0. Let Si � �i be stationary for ea
h i < �, then hSi : i < �i ismutually stationary.Note that an immediate 
orollary is the well-known fa
t that sup h�i : i < �i isJonsson.Proof. Note that the hypothesis imply that for all i < �, �i > sup h�j : j < ii: Tosimplify the bookkeeping we assume � = !. Let � = supi �i, and �xM a stru
tureon H�. For ea
h i let Ui be a normal measure on �i.We will 
onstru
t sets Ji 2 Ui su
h that Ji+1 � (�i; �i+1) and the following indis-
ernibility property holds: for any positive integer n and any sequen
e hkj : j < niof positive integers, if ti; ui 2 [Ji℄ki for i < n and � is any formula in the languageof M then M j= �(t0; : : : tn�1) () M j= �(u0; : : : un�1):To build the Ji, we de�ne for ea
h j < ! a sequen
e hIjn : n < !i su
h that(1) Ijn 2 Un.(2) Ijn+1 � (�n; �n+1).(3) Ij+1n � Ijn.(4) For all s 2 [�n�1℄<! and all hti : i � ji with ti 2 [Ijn+i℄<!, the M-type of(s; t0; : : : tj) is determined by (s; jt0j; : : : jtj j).



CANONICAL STRUCTURE 15Base 
ase j = 0: We 
hoose I0n 2 Un as a set of order-indis
ernibles for thestru
ture obtained from M by adding a 
onstant symbol for ea
h element of �n�1.This is possible by Rowbottom's theorem.Su

essor step: suppose we have 
onstru
ted Ijn. Let s 2 [�n�1℄<!, t 2 [Ijn℄<!and ui 2 Ijn+i for 1 � i � j + 1. By indu
tion the M-type of (s; t; u1; : : : uj+1) isdetermined by (s; t; ju1j; : : : juj+1j). Using Rowbottom's theorem and the 
omplete-ness of Un we may �nd Ij+1n � Ijn su
h that if t 2 [Ij+1n ℄<! then for all s; u1; : : : uj+1the M-type of (s; t; u1; : : : uj+1) is determined by (s; jtj; ju1j; : : : juj+1j).We now set Jn = Tj Ijn. To �nish the proof of the theorem, we 
hoose for ea
h na set zn � Jn with limit order-type su
h that sup(zn) 2 Sn. Let N be the Skolemhull in M of the union of the sets zn. We 
laim that sup(N \ �n) = sup(zn) forea
h n.Suppose that t is a Skolem term and that t(a0; : : : aj) < �i where an 2 [zn℄<! andwithout loss of generality j � i. Let � be the least element of zi with � > max(ai).It must be that t(a0; : : : aj) < �, for if not an appli
ation of indis
ernibility showsthat every element of Ji whi
h is greater than max(ai) is bounded by t(a0; : : : aj),and this is impossible sin
e Ji is unbounded in �i. This shows that t(a0; : : : aj) <sup(zi), so sup(N \ �i) = sup(zi) and we are done. �We now turn to the situation in whi
h h�n : n < !i is a Prikry-generi
 sequen
ein a measurable 
ardinal �.Remark 5.3. It is too mu
h to ask that every Prikry-generi
 !-sequen
e shouldhave the property that every sequen
e of stationary sets is mutually stationary. Forexample if the sequen
e begins with �1 and �2 and Chang's 
onje
ture is false thenwe 
an not meet the sets S0 = �1, S2 = �2 \ 
of(�1).Theorem 5.4. Let � be measurable and let U be a normal measure on �. Let Pbe the Prikry for
ing de�ned from U . Then there is a 
ondition (;; A) 2 P whi
hfor
es that if h�n : n < !i is the generi
 
o�nal !-sequen
e added by P, then everysequen
e hSn : n < !i with Sn stationary in �n for all n is mutually stationary.Proof. Suppose not. By the dire
t extension property for Prikry for
ing, there is a
ondition (;; A) and names _Sn and _A su
h that (;; A) for
es that� _A is an algebra on �.� _Sn is stationary in �n.� No substru
ture of _A meets h _Sn : n < !i.Let _F be a name for a fun
tion F : [�℄<! �! � whi
h is a Skolem fun
tion forA. That is to say, X � F\[X℄<! and F\[X℄<! � A for all in�nite X � �. De�nea fun
tion F � : [�℄<! � [�℄<! �! � as follows: F �(s; t) is equal to the unique �su
h that there is E 2 U with the property (s; E) 
 _F (t) = � if su
h an E exists,and 0 otherwise.By a standard appli
ation of Rowbottom's theorem and a diagonal interse
tionargument, we may �nd B 2 U su
h that for all Æ < � the set B n (Æ + 1) is aset of order-indis
ernibles for (�;<; F �; f
 : 
 � Æg). Now let D = f
 2 A \ B :sup(B \ 
) = 
g. It is easy to 
he
k that D 2 U , sin
e U is normal.We now for
e below the 
ondition (;; D) to get a generi
 in
reasing !-sequen
eG = h�n : n < !i. We use this to realise the names _Sn, _A and _F to get stationary



16 JAMES CUMMINGS, MATTHEW FOREMAN, AND MENACHEM MAGIDORsets Sn , an algebra A on � and a Skolem fun
tion F for A. Sin
e (;; D) re�nes(;; A) there 
an be no substru
ture of A whi
h meets hSn : n < !i.Working in V [G℄ we 
hoose for ea
h n a point 
n 2 Sn with sup(B \ 
n) = 
n.Let P = SnB \ [�n�1; 
n) and let N be the 
losure of P under F . We 
laim thatsup(N \ �n) = 
n for all n.To see this, suppose for a 
ontradi
tion that F (w) = � for some w 2 [P ℄<! and� su
h that 
n � � < �n.Find a 
ondition (s; E) 2 G su
h that (s; E) 
 _F (w) = �, and noti
e that s mustbe a �nite initial segment of h�n : n < !i. Extending if ne
essary we may assumethat lh(s) = m > n. It is 
onvenient to break up w and s as follows;� t = w \ �n�1, u = w \ [�n�1; �n), v = w \ (� n �n).� sL = (�0; : : : �n�1), sH = (�n; : : : �m�1).By the de�nition of the fun
tion F �, we haveF �(s_L sH ; t_u_v) = � < �n:All points of B above sup(u) are 
hosen from a set of indis
ernibles for a stru
turewhi
h has symbols for F � and all ordinals below sup(u). Fix Æ; � 2 B \ �n with� < Æ and sup(w \ �n) < � < 
n. We may 
hoose a suitable Æ be
ause �n 2 D andso B \ �n is unbounded in �n.The key points are that� The sequen
es sL, t and u 
onsist of ordinals below sup(u).� The sequen
es sH and v 
onsist of ordinals in B above �n.� The ordinals Æ and � lie in B and are between sup(u) and �n.Sin
e F �(s; w) < Æ, it follows by indis
ernibility that F �(s; w) < �. This isa 
ontradi
tion, so sup(N \ �n) = 
n as required. It follows that N meets thesequen
e hSn : n < !i, 
ontradi
tion! �Corollary 5.5. If h�n : n < !i is any Prikry generi
 sequen
e, then there exists msu
h that all sequen
es hSm : m � n < !i with Sm stationary in �m for all m � nare mutually stationary.Proof. Let A be as in the 
on
lusion of Theorem 5.4, and �nd m su
h that �n 2 Afor all n � m. �6. Mutually stationary sequen
es not 
on
entrating on a fixed
ofinalityTheorems 5.2 and 5.4 show that if h�n : n < !i is an in
reasing sequen
e ofreasonably large 
ardinals then every sequen
e of stationary sets 
an be mutuallystationary. We now return to the problem of mutual stationarity for small 
ardinals.Let 0 < l < !, let f : ! �! f0; lg be any fun
tion, and de�ne Sfn = f� < �n :
f(�) = �f(n)g for n > l. We will 
onstru
t a model in whi
h for every fun
tion fthe sequen
e hSfn : l < n < !i is mutually stationary, starting from the assumptionthat there are in�nitely many super
ompa
t 
ardinals. This was originally done byShelah, the simpler proof given here is due to Foreman and Magidor.We will use some fa
ts about IA stru
tures. The �rst fa
t appears in in se
tion2 of [10℄.Lemma 6.1. Let N � A be a stru
ture of some regular un
ountable 
ardinality �.Then the following are equivalent:



CANONICAL STRUCTURE 17(1) N is IA of length and 
ardinality �.(2) For every �-
losed poset P 2 N there is a sequen
e of elements hp� : � < �iof N \P, su
h that for every D 2 N a dense open subset of P there is � < �with p� 2 D.The next fa
t is impli
it in Foreman, Magidor and Shelah's paper [13℄ on Martin'sMaximum.Lemma 6.2. Let N � A be internally approa
hable of length and 
ardinality �,where � is an un
ountable regular 
ardinal. Let � be an ordinal su
h that � <sup(N \ ON) and let M = SkA(N [ f�g). Then M is internally approa
hable oflength and 
ardinality �.Proof. Let hN� : � < �i be an internally approa
hing 
hain of models with unionM . We may assume without loss of generality that � < sup(N0 \ ON). De�neM� = SkA(N� [ f�g), so that 
learly the M� form an in
reasing 
ontinuous 
hainof models of size less than � whose union is M .We 
laim that M� = ff(�) : f 2 N�; � 2 dom(f)g. Clearly if f 2 N� thenf(�) 2 M�. Conversely if y 2 M� then y = t(x; �) for some Skolem term t andparameter x 2 N�. If 
 2 N0 \ON with � < 
 then the (partial) fun
tion f withdomain 
 whi
h maps � to t(x; �) is de�nable in H� from the parameters y; 
 sof 2 N�.Fix an ordinal � < �. � and hN� : � � �i are members of M�+1, so by the workof the last paragraph hM� : � � �i 2 M�+1. So M is internally approa
hable oflength and 
ardinality �, as 
laimed. �The 
onstru
tion will pro
eed by starting with a stru
ture whi
h meets ea
h �nfor n > l in a set of 
o�nality �l, and judi
iously adding ! many ordinals. Thefollowing well-known lemma [1℄ shows that adding an ordinal below �m does nodamage above �m.Lemma 6.3. Let A = (H�;2; <�) for some large regular �. Let N � A, wherejN j = �n � N for some n < !. Let n < m < !, let � be an ordinal withsup(N \ �m) < � < �m, and let N� = SkA(N \ f�g). Then sup(N� \ �j) =sup(N \ �j) for m < j < !.Proof. Let t be a Skolem term. For ea
h x 2 N , N 
an 
ompute the supremum ofthe set ft(x; Æ) : Æ < �mg \ �j . �For the rest of this se
tion we will make the following assumption:Assumption: there exists a sequen
e of ideals hIn : l + 2 � n < !i su
h that(1) In is a uniform, �n-
omplete, normal ideal on �n.(2) P(�n)=In has an �l+1-
losed dense subset.This assumption is known to be 
onsistent relative to the existen
e of in�nitelymany super
ompa
t 
ardinals.We now �x some large regular 
ardinal � and a stru
ture A whi
h is an expansionof (H�;2; <�; hIn : l + 2 � n < !i). If N � A has 
ardinality �l, and sup(N\�n) <� < �n for some n, we will say that � is In-generi
 for N if and only if the followingtwo 
onditions are satis�ed(1) For every C 2 N \ In, � =2 C.(2) The set fA 2 N \ P(�n) : � 2 Ag indu
es an N -generi
 �lter on N \P(�n)=In.



18 JAMES CUMMINGS, MATTHEW FOREMAN, AND MENACHEM MAGIDORNoti
e that by the �rst of these two 
onditions, if A and A0 are subsets of �n whi
hboth lie in N and are equivalent modulo In, then � 2 A () � 2 A0.Lemma 6.4. If N is internally approa
hable of length and 
o�nality �l, then theset of � < �n whi
h are In-generi
 for N is In-positive.Proof. Let D be a dense �l+1-
losed subset of P(�n)=In. By Lemma 6.1 we may�nd a de
reasing sequen
e h[A�℄ : � < �li of elements of N \D, whi
h meets everydense open subset of P(�n)=In lying in N .Let [B℄ 2 D be a lower bound for the sequen
e h[A�℄ : � < �li. Sin
e the idealIn is �l+1-
omplete, the set C = T f �nnX : X 2 N \ In g is in the dual of In.For all A 2 N \ P (�n); � 2 B \C we have � 2 A i� A is in the �lter generated bythe sequen
e h[A�℄ : � < �li. In parti
ular, all � 2 B \ C are generi
 over N . �The following lemma is the 
ru
ial one motivating our use of In-generi
 ordinals.It indi
ates that when we add a suitable In-generi
 ordinal we do not undo our workat 
ardinals below �n.Lemma 6.5. Let � be su
h that sup(N \ �n) < � < �n and � is In-generi
 forN . Let N� = SkA(N [ f�g). Then N� \ �n�1 = N \ �n�1.Proof. By the same argument that we used in Lemma 6.2, N� = ff(�) : f 2 Ng.Let 
 2 N� \ �n�1 and �x f 2 N su
h that f : �n �! �n�1 and 
 = f(�).The set of equivalen
e 
lasses [A℄ su
h that f is 
onstant on A lies in N , and bynormality it is dense in P(�n)=In. Sin
e � is a generi
 ordinal there is A 2 N su
hthat � 2 A and f is 
onstant on A. It follows that 
 2 N . �Remark 6.6. We may also give an essentially equivalent proof of Lemma 6.5phrased in the language of ultra�lters and elementary embeddings. Let M be thetransitive 
ollapse of N , let M� be the 
ollapse of N�, and let j :M �!M� be theelementary embedding from M to M� 
orresponding to the in
lusion map from Nto N�. Let U be the M -ultra�lter on the 
ollapse of �n whi
h is indu
ed by �.It is routine to 
he
k that M� = Ult(M;U) and j is the asso
iated elementaryembedding jMU . j has 
riti
al point equal to the 
ollapse of �n, so in parti
ular j�xes the 
ollapse of �n�1. It follows that N \ �n�1 = N� \ �n�1.Theorem 6.7. Let f : ! �! f0; lg be any fun
tion and let Tn = f� < �n : 
f(�) =�f(n)g for n > l. The sequen
e hTn : l < n < !i is mutually stationary.Proof. It will suÆ
e to build a stru
ture M � A su
h that 
f(M \ �l+1) = �l and
f(M \ �n) = f(n) for n > l + 1. If ne
essary we may then use Lemma 6.3 to addin ! ordinals below �l+1 and adjust 
f(M \ �l+1).Let A be some expansion of (H�;2; <�). Let N � A be an internally approa
h-able stru
ture of length and 
ardinality �l. In parti
ular, sup(N \�n) has 
o�nality�l for every n > l.If f is 
onstant with value l there is nothing to do, so we assume that f takes thevalue 0 at least on
e. Let hnk : k < !i be a sequen
e of integers su
h that nk > 2,f(nk) = 0 for all k, and for all n > l + 1 su
h that f(n) = 0 there are in�nitelymany k su
h that nk = n.We 
onstru
t sequen
es hNk : k < !i of stru
tures and h�k : k < !i of ordinalsby re
ursion on k.� N0 = N .



CANONICAL STRUCTURE 19� If nk = n then �k is some ordinal su
h that sup(Nk \ �n) < �k < �n and�k is In-generi
 for Nk.� Nk+1 = SkA(Nk [ f�kg).The 
onstru
tion 
an pro
eed, be
ause by Lemma 6.2 the stru
ture Nk is inter-nally approa
hable of length and 
o�nality �l for every k < !. Lemmas 6.3 and6.5 imply that sup(Nk+1 \ �j) = sup(Nk \ �j) for j 6= k, so if we set N! = SkNkthen we see that� N! � A.� 
f(N! \ �l+1) = �l.� 
f(N! \ �j) = �l if f(j) = l, j > l + 1.� 
f(N! \ �j) = �0 if f(l) = 0, j > l + 1.This shows that hTn : l < n < !i is mutually stationary. �If we are willing to leave gaps between the 
ardinals where we want 
o�nality !,then we 
an redu
e the hypothesis of Theorem 6.7 to in�nitely many measurable
ardinals. Expli
itly: If there are in�nitely many measurable 
ardinals and A � !n2is su
h that for all n 2 A; n + 1 =2 A, then there is a for
ing extension where �n
arries a normal �n-
omplete ideal on �n with a dense set that is 
losed underde
reasing sequen
es of length �n�2. In the resulting model, it 
an be shown thatif f : ! ! f0; lg is su
h that f�1(0) � A, then the sequen
e of sets hTn : l < n < !iis mutually stationary. The proof is exa
tly as above.7. Good points and diagonal Prikry for
ingIn this se
tion we re
ord two for
ing 
onstru
tions involving large 
ardinals, PCFand re
e
tion. The �rst 
onstru
tion gives a simple proof that it is 
onsistent forthere to be stationarily many non-good points in �!+1.7.1. Good points. As we mentioned in the introdu
tion to this paper, variousmodels are known in whi
h the set of non-good points of 
o�nality �1 is stationaryin �!+1.� Levinski, Magidor and Shelah [16℄ have shown that the Chang's 
onje
ture(�!+1;�!) � (�1;�0) is 
onsistent, and Foreman and Magidor [11℄ haveshown that if (�!+1;�!) � (�1;�0) then the set of non-good points of
o�nality �1 is stationary.� In unpublished work Magidor [17℄ has shown that the same 
on
lusionfollows from Martin's Maximum.In this se
tion we re
ord the remark that Shelah's 
onstru
tion [14℄ for makingthe set of non-approa
hable points of 
o�nality �1 stationary also makes the set ofnon-good points stationary.We start by assuming that � is super
ompa
t and that the GCH holds. It fol-lows from GCH that there exists a s
ale hf� : � < �+!+1i in Qn<! �+n under theeventual domination ordering; to see this enumerateQn<! �+n as hg� : � < �+!+1i,write ea
h � < �!+1 as an in
reasing union SnX�n with jX�n j < �+n, and indu
-tively 
hoose f� so that f�(n) is greater than f�(n) and g�(n) for all � 2 X�n .The basi
 idea is that this s
ale 
ontains many non-good points of 
o�nality lessthan �, and that we will \miniaturise" this situation by some judi
ious 
ardinal
ollapsing. Fix j : V �! M witnessing that � is �+!+1-super
ompa
t, and notethat j is dis
ontinuous at �+n for n < ! and also at �+!+1. Let 
 = sup(j\�+!+1)



20 JAMES CUMMINGS, MATTHEW FOREMAN, AND MENACHEM MAGIDORand let H 2Q j(�+n) be given by H(n) = sup(j\�+n). Let j(hf� : � < �+!+1i) =hg� : � < j(�+!+1)i, and observe that by the elementarity of j and the 
losureof M the sequen
e hg� : � < j(�+!+1)i is a s
ale in Qn j(�+n) under eventualdomination. It is easy to see that H is an exa
t upper bound for hg� : � < 
i.We 
laim that there is an ina

essible Æ < � su
h that for stationarily many � 2�+!+1\
of(Æ+!+1) there an exa
t upper bound h for hf� : � < �i, with 
f(h(n)) =Æ+n for all n. If the 
laim fails then �x for ea
h Æ a 
lub CÆ witnessing the non-stationarity of the relevant set, and let C = TÆ CÆ. Sin
e C is 
lub we see that
 2 j(C), and sin
e 
f(
) = �+!+1 and hg� : � < 
i has an exa
t upper bound Hwith 
f(H(n)) = �+n for all n we get a 
ontradi
tion by elementarity.We now �x a suitable ina

essible Æ < � and let S be the stationary set of� 2 �+!+1\ 
of(Æ+!+1) su
h that there is an exa
t upper bound h for hf� : � < �i,with 
f(h(n)) = Æ+n for all n. We for
e with P � Q where P = Col(!; Æ+!) andQ = Col(Æ+!+2; < �). Let G�H be P � Q -generi
.The usual 
hain 
ondition and 
losure arguments tell us that Æ+!+1V is the new�1, �+nV = �n+3 and �+!+1V = �!+1. By Easton's lemma all Æ+!+1V -sequen
esof ordinals from V [G℄[H℄ lie in V [G℄. Sin
e P � Q is �-
.
. it is also routine to
he
k that S is still stationary in V [G℄[H℄ and that hf� : � < �+!+1i is a s
ale inQn<! �+nV .To �nish we 
laim that if � 2 S then � is not a good point in V [G℄[H℄. Supposefor a 
ontradi
tion that su
h an � is good, and �x an unbounded set A � � of ordertype Æ+!+1V and k < ! su
h that hf�(n) : � 2 Ai is stri
tly in
reasing for n > k. Aswe pointed out above, A 2 V [G℄. Sin
e P has 
ardinality Æ+! it follows that thereis B � A with B 2 V and B unbounded in �.The set B will serve as a witness that in V the point � is good of 
o�nalityÆ+!+1. This implies that an exa
t upper bound g for hf� : � < �i exists with
f(g(n)) = Æ+!+1 for all n, 
ontradi
ting the fa
t that � 2 S and that exa
t upperbounds are unique modulo �nite alteration.To summarise we have proved the following result.Theorem 7.1. If � is �+!+1-super
ompa
t then in some generi
 extension the setof non-good points of 
o�nality �1 in �!+1 is stationary.If we 
ould make Æ+!+1 into �2 by some small for
ing we 
ould get the 
onsis-ten
y of the set of non-good points of 
o�nality �2 being stationary. Unfortunatelythis kind of 
ardinal 
ollapse is provably very diÆ
ult and 
onje
tured to be im-possible [3℄.7.2. Diagonal Prikry for
ing. We showed in a previous paper [6℄ that Prikryfor
ing at a measurable 
ardinal � preserves some of the stationary re
e
tion prop-erties of �+. Here we prove a similar result for diagonal Prikry for
ing, using arather similar argument.We start by �xing some notation that we will use through this se
tion. Supposethat we are given an in
reasing !-sequen
e of measurable 
ardinals �n togetherwith a normal measure Un on ea
h �n. A 
ondition in the diagonal Prikry for
ingdetermined by these data is a sequen
e (�0; : : : �m�1; Bm; Bm+1; : : :) where �i�1 <�i < �i and Bi 2 Ui. Given 
onditions p = (�0; : : : �m�1; Bm; Bm+1; : : :) andq = (�0; : : : �n�1; Cn; Cn+1; : : :), q extends p when n � m, �i = �i for i < m and�i 2 Bi for m � i < n.



CANONICAL STRUCTURE 21We refer to the �nite sequen
e (�0; : : : �m�1) as the lower part of the 
ondition(�0; : : : �m�1; Bm; Bm+1; : : :). It is well-known that diagonal Prikry for
ing has thePrikry property, in the sense that any question about the for
ing extension 
an bede
ided by shrinking the measure one sets in a 
ondition, or to put it another waywithout 
hanging the lower part.We now let � = Sn �n and suppose that �+ has the following re
e
tion property:for all n, any stationary susbet of �+\
of(< �n) re
e
ts at some point in �+\
of(<�n). This will be the 
ase for example if all of the �n are strongly 
ompa
t. We
laim that this re
e
tion property is preserved by the diagonal Prikry for
ing.To see this �x n, a 
ondition p and a name _T for a stationary subset of �+\
of(<�n). By extending p if ne
essary we may assume that the lower part of p has lengthat least n. For ea
h lower part x whi
h extends the lower part of p we let Tx bethe set of � su
h that some extension of p with lower part x for
es � into _T ; sin
ethere are only � possibilities for x, we may �nd x su
h that Tx is stationary.By hypothesis there is 
 < �+ with 
f(
) < �n su
h that Tx \ 
 is stationary.We now �x C � 
 with order type 
f(
), and then use the 
ompleteness of themeasures Uj for j � n to �nd a single 
ondition q with lower part x su
h that qfor
es that C \ Tx � _T . Then q for
es that _T re
e
ts at 
 and we are done.We summarise the results of this dis
ussion in a theorem.Theorem 7.2. Let h�n : n < !i be an in
reasing sequen
e of measurable 
ardinalswith supremum �, and suppose that for every n every stationary susbet of �+\
of(<�n) re
e
ts at some point in �+\
of(< �n). Then this re
e
tion property still holdsin the generi
 extension by any diagonal Prikry for
ing de�ned from some sequen
eof normal measures on the �n.Gitik and Magidor have devised several for
ing posets for adding many diagonalPrikry sequen
es simultaneously. It would be interesting to 
ombine their methodswith those of Theorem 7.2.8. Refle
tion and Martin's maximum revisitedForeman, Magidor and Shelah [13℄ showed that Martin's Maximum implies thatfor all � � �2, every stationary subset of [H�℄�0 re
e
ts to a stru
ture of sizeand uniform 
o�nality �1. We showed in the last se
tion of [6℄ that for
ing overa model of MM+ we 
an get the 
onsisten
y of this kind of re
e
tion with theexisten
e of two stationary subsets of a regular 
ardinal � � �2 whi
h do notre
e
t simultaneously, and Larson [15℄ independently obtained similar results. Thefollowing result generalises and sharpens these theorems: note in parti
ular thatwe are re
e
ting to an IA stru
ture and that we are only using MM (rather thanMM+) in the ground model.Theorem 8.1. Assume Martin's Maximum. Let � be a regular 
ardinal with � > �1and let � be a (possibly �nite) 
ardinal with � � �1. Then there is a for
ing posetP whi
h adds no bounded subsets of � and su
h that in V P(1) There are � stationary subsets of � \ 
of(!) whi
h do not re
e
t simulta-neously.(2) For every � > �1, every set of fewer than � stationary subsets of [H�℄�0simultaneously re
e
ts to an internally approa
hable set in [H�℄�1 .In parti
ular, every 
olle
tion of less than � stationary subsets of �\ 
of(!) simul-taneously re
e
ts.



22 JAMES CUMMINGS, MATTHEW FOREMAN, AND MENACHEM MAGIDORProof. We let P be the natural poset for partitioning � \ 
of(!) into � many sta-tionary sets whi
h do not re
e
t simultaneously. Conditions in P are fun
tions psu
h that p : ��(�\
of(!)) �! 2 for some � < �, with the properties that for ea
hi we have p(�; i) = 1 for exa
tly one � < �, and that for every � 2 (�+1)\ 
of(�1)there are � < � and C 
lub in � su
h that f � f�g � C is identi
ally zero.It is easy to see that P is 
ountably 
losed and is �-strategi
ally 
losed (a winningstrategy for player II is to pi
k a 
oordinate � < � and to write zero at that
oordinate whenever it is her turn to play). It is also easy to see that P adds apartition of � \ 
of(!) into � stationary sets whi
h do not re
e
t simultaneously.By Martin's Maximum the non-stationary ideal on �1 is �2-saturated in V . We
laim that this is also the 
ase in V P. To see this let h _Ai : i < �2i be a P-name fora 
ounterexample to saturation, and note that V and V P have the same subsetsof �1; in parti
ular they agree on the question of whether a subset of �1 is 
lub,stationary or non-stationary. Sin
e � � �2 we may use the strategi
 
losure of P tobuild a de
reasing 
hain hpi : i < �2i of 
onditions in P su
h that pi 
 _Ai = �Bi forsome Bi 2 V . Then hBi : i < �2i is a 
ounterexample to saturation in V , whi
h isa 
ontradi
tion.We let hTj : j < �i be the sequen
e of stationary subsets of � added by P. Let� < � be a 
ardinal, let � be a 
ardinal in V P and let h _Si : i < �i be a sequen
e ofP-names for stationary subsets of [H�℄�0 . (So there are at most 
ountably manysets Si.) Let � be the maximum of � and �. We work towards showing that Pfor
es that the sets Si re
e
t simultaneously.We now work in V P. For ea
h i < � we will say that Si is so
ial if there existsj < � su
h that for stationarily many N 2 [H�℄�0 , N\H� 2 Si and sup(N\�) 2 Tj .In this 
ase we let j(i) be the least j with this property. If Si is not so
ial we saythat Si is antiso
ial. If � < �1 then all Si are so
ial, but if � = �1 this is notne
essarily the 
ase.Let j� < � be least su
h that j� 6= j(i) for any so
ial Si. Sin
e there are only
ountably many sets Si we may �x a 
lub set Cbad in [H�℄�0 su
h that if Si isantiso
ial, then sup(N \ �) =2 Tj� for every N 2 Cbad su
h that N \H� 2 Si.We now use a fa
t from [13℄:Claim. Suppose that the non-stationary ideal on !1 is �2-saturated and S � [H�℄�0is stationary. Then there is a 
losed unbounded set C � [H�℄�0 su
h that for allstationary T � f N \ !1 : N 2 C \ S g there are stationarily many N 2 C \ Ssu
h that N \ !1 2 T .Proof. (Sket
h) First note that if C;D are 
lub sets in [H�℄�0 and there is a � 2 !1su
h that for all N 2 C if � 2 N then N 2 D, then fN \ !1 : N 2 Cg � fN \ !1 :N 2 Dg modulo the non-stationary ideal on !1.Now build a sequen
e of 
losed unbounded sets hC� : � < ��i for some �� � !2by indu
tion. Let C0 = [H�℄�0 and given C� 
hoose C�+1 � C� if possible so thatf N \ !1 : N 2 C�+1 g ( f N \ !1 : N 2 C� g modulo the non-stationary ideal.If this is not possible, then we set �� = � + 1. At limit stages we take diagonalinterse
tions.Sin
e the non-stationary ideal on !1 is �2-saturated, there is a �� < !2 wherethis sequen
e stops. If �� = �+1, then C = C� satis�es the 
on
lusion of the 
laim.�By the 
laim we 
an �x for ea
h i < � a stationary set Ui � �1 su
h that
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ial then for every stationary T � Ui there are stationarily manyN 2 [H�℄�0 su
h that N \H� 2 Si, sup(N \ �) 2 Tj(i) and N \ �1 2 T .(2) If Si is antiso
ial then for every stationary T � Ui there are stationarilymany N 2 [H�℄�0 su
h that N \H� 2 Si and N \ �1 2 T .Thinning out if ne
essary we arrange that the Ui are pairwise disjoint. By the
losure of P we see that hUi : i < �i 2 V , and so working below a suitable 
onditionin P we may assume that we have a �xed sequen
e hUi : i < �i whi
h is in V .Still working in V P we de�ne Q to be Col(�1; HV� ). If F : �1 ' HV� is thebije
tion added by Q then in V P�Q we let si = fÆ < �1 : F\Æ \ H� 2 Sig andtj = fÆ < �1 : sup(F\Æ \ �) 2 Tjg. Working in V P�Q we de�ne a poset R ;
onditions in R are 
losed bounded subsets of �1 
onsisting of ordinals Æ su
h thatÆ =2 tj� , and su
h that Æ 2 Ui implies F\Æ \H� 2 Si for ea
h i. The ordering on Ris end-extension.With a view to applying Martin's Maximum, we 
laim that P�Q �R is stationaryset preserving. Let S be a stationary subset of �1. It is 
lear by the strategi
 
losureof P that S is still stationary in V P, and we will work in V P to argue that Q � Rpreserves the stationarity of S. Let _C be a Q � R -name for a 
lub subset of �1 andlet (q0; 
0) 2 Q � R . As usual when we are proving the preservation of stationarity,our goal is to �nd (q; 
) � (q0; 
0) for
ing that _C meets S.Shrinking S if ne
essary, and using the fa
t that there are only 
ountably manysets Ui, we may assume that either S is disjoint from every Ui or S � Ui for somei. We will treat these 
ases separately, and will also break up the se
ond 
asea

ording to the so
iality or otherwise of Si. We start by �xing some large regular
ardinal �.Case 1: S is disjoint from every Ui. In this 
ase we will 
hoose a 
ountableM � H�
ontaining everything relevant su
h that Æ =def M \�1 2 S and sup(M \ �) =2 Tj� .We then build a 
hain h(qn; 
n) : n < !i of 
onditions in M \ Q � R whi
h meetsevery dense subset of Q � R lying in M , and let q = S qn and 
 = S 
n.It is 
lear that q 2 Q and q for
es that F\Æ =M \HV� . Sin
e sup(M \�) =2 Tj� ,q for
es that Æ =2 tj� and so (q; 
[fÆg) is a 
ondition in Q �R . This 
ondition for
esthat Æ 2 _C and we are done.Case 2a: S � Ui for a so
ial Si. In this 
ase we 
hoose a 
ountable M � H� su
hthat Æ =def M \ �1 2 S, M \H� 2 Si and sup(M \ �) 2 Tj(i); this is possible bythe 
hoi
e of j(i) and Ui. We de�ne q and 
 as in 
ase 1, and again q for
es thatF\Æ = M \HV� .Sin
e j(i) 6= j�, q for
es that Æ =2 tj� . By the 
hoi
e of M we also see that qfor
es Æ 2 si. Thus (q; 
 [ fÆg) is a 
ondition in Q � R and we are done.Case 2b: S � Ui for an antiso
ial Si. In this 
ase we 
hoose M � H� su
h thatÆ =def M \ �1 2 S, M \H� 2 Si and M \H� 2 Cbad. It follows from the 
hoi
eof Cbad that sup(M \ �) =2 Tj� , and we may now pro
eed as in Case 2a.We note that in the 
ourse of proving the 
laim, we also showed that if C is the
lub set added by R then C \ Ui is stationary for every i.To �nish the argument we will now apply Martin's Maximum to P � Q � R as inthe last se
tion of [6℄. Meeting suitable dense sets we produ
e p, F and C togetherwith j� < � and disjoint stationary Ui � �1 su
h that(1) dom(p) = � � � for some � < � of 
o�nality �1, with p : � � � �! 2.



24 JAMES CUMMINGS, MATTHEW FOREMAN, AND MENACHEM MAGIDOR(2) F : �1 �! H� and F\�1 is internally approa
hable (this approa
habilityis easy to arrange, observing that for ea
h 
 < �1 the set of (p; q; r) su
hthat q � 
 2 range(q) is dense)(3) supF\�1 \ � = �.(4) C is 
lub in �1 and C \ Ui is stationary for every i.(5) p(j�; sup(F\Æ \ �)) = 0 for every Æ 2 C.(6) For every �� < �, p � � � �� 2 P.(7) For every Æ 2 C \ Ui, there is some �� < � su
h that p � � � �� for
es thatF\Æ \H� 2 Si.Sin
e we have arranged that p(j�; �) = 0 for a 
lub set of � < �, p is itself a
ondition in P. For ea
h i we have arranged that C \ Ui is stationary and that pfor
es fF\Æ \H� : Æ 2 C \ Uig � Si, so that p for
es Si to re
e
t to F\�1. �9. The least 
ardinal where square failsWe showed [4℄ that if ��n holds for every n < ! and CH holds then a 
ertainweakening of ��! holds. We then showed [5℄ that it is 
onsistent for the full ��!to fail under these 
ir
umstan
es. In this se
tion we show that the least 
ardinalwhere square fails 
an be the least ina

essible.Theorem 9.1. It is 
onsistent from large 
ardinals that the least � where �� failsis the least ina

essible 
ardinal.Zeman pointed out that 
onsisten
y that square �rst fails at the �rst ina

essibleis a Mahlo 
ardinal. The model he 
onstru
ts is the \usual" model V Col(�;�), where� is the �rst ina

esible 
ardinal. The \usual" arguments show that square fails at� in this model, and moreover, that if square held below � in the ground model, itholds below � in this model. Nonetheless we give the proof below as it seems thatit may be useful in some other 
ontext.Proof. (Sket
h) Let GCH hold, let � be super
ompa
t and let � be the least ina
-
essible 
ardinal greater than �. For
e that �� holds for every � with � < � by aReverse Easton iteration P of length �. Note that P preserves 
ardinals, preservesthe ina

essibility of � and has 
ardinality �. Now let Q be the Cohen for
ingAdd(�0; �), so that in V P�Q the 
ardinal � is the least ina

essible 
ardinal.We show that �� fails in V P�Q by showing that every stationary subset of �+re
e
ts. Let T be a stationary subset of �+ in V P�Q , and use the fa
t that P � Qhas size � to �nd a set U � T su
h that U 2 V and U is stationary in V . Sin
e �is super
ompa
t U re
e
ts to some point � of 
o�nality Æ+, for some ina

essible Æwith Æ < �. We �nish by showing that P �Q preserves the stationarity of stationarysubsets of Æ+, from whi
h it follows that T \ � is stationary in V P�Q .We fa
tor P as PÆ � PÆ , where PÆ adds the �� sequen
es for � < Æ and PÆ addsthem for � � Æ. Sin
e PÆ is Æ+-
.
. and PÆ is < Æ+-strategi
ally 
losed in V PÆ ,for
ing with P preserves stationary subsets of Æ+; sin
e Q is is 
.
.
 the same is trueof P � Q . �10. A limiting resultIn this last se
tion of the paper we prove a result whi
h limits the possibilities for
reating a super
ompa
t 
ardinal by for
ing in the presen
e of weak squares. This



CANONICAL STRUCTURE 25result was motivated by the question \to what extent are weak squares 
ompatiblewith stationary re
e
tion?" A natural s
enario for making a model with weaksquare at � and some re
e
tion is to make a model of ��� where some � with� < � 
an be made super
ompa
t by \mild" for
ing. Ben-David and Shelah [2℄attempted to give a proof of the 
onsisten
y of weak square with re
e
tion inwhi
h a generi
 super
ompa
t embedding is resurre
ted by 
ountably 
losed for
ing,but the theorem that follows shows that their approa
h to the problem 
annotwork. See our paper on squares and re
e
tion [6℄ for a 
onsisten
y proof that usesthe te
hnique of resurre
ting super
ompa
t 
ardinals, but where the for
ing whi
hresurre
ts super
ompa
tness is stationary set preserving for more deli
ate reasons.A 
ardinal � is generi
ally �- super
ompa
t by 
ountably 
losed for
ing i� thereis a 
ountable 
losed for
ing P su
h that in V P, there is an elementary embeddingj : V !M with M a transitive 
lass and j\� 2M .Theorem 10.1. Let � < � be 
ardinals with � regular, � strong limit and 
f(�) = !.If ��� holds then � is not generi
ally �+-super
ompa
t by a 
ountably 
losed for
ingwhi
h preserves � and �+.Proof. We wish to �x a sequen
e whi
h witnesses ��� and has some additionalproperties. Starting with an arbitrary ���-sequen
e, we �rst repla
e ea
h set C� byits 
losure under the power set operation; sin
e � is strong limit and the elementsof C have order type less than �, the resulting set still has size at most �. We haveprodu
ed a sequen
e hC� : � < �+i su
h that for all �(1) C� is a set of subsets of � and jC�j � �.(2) If C is in C� then(a) P(C) � C�.(b) For every � < � with sup(C \ �) = �, C \ � 2 C� .(3) C� 
ontains at least one set whi
h is 
lub in � and has order-type 
f(�).Now let P be some 
ountably 
losed for
ing poset whi
h preserves � and �+,let V1 be some generi
 extension by P. Suppose that in V1, the generi
 �+-super
ompa
tness of � is witnessed by j : V �!M .Let 
 = sup j\�+, so that 
f(
) = 
fM (
) = �+ and 
 < j(�+). Let the image ofour original ���-sequen
e under j be hCj� : � < j(�+)i, and �x C 2 Cj
 whi
h is 
lubin 
 and has order-type �+. The embedding j is 
ontinuous at points of 
o�nality!, so that j\�+ \ C is !-
lub in 
. Let _C name C.Claim. There do not exist p 2 P and an unbounded subset D of �+ su
h thatp 
 j\D � _C.Proof. If su
h p and D exist, let � be an a

umulation point of D su
h that 
f(�) =! and ot(D \ �) � �. The embedding j must be 
ontinuous at �, so p for
es thatj(�) is an a

umulation point of j( _C), and so by 
oheren
e that j( _C)\j(�) 2 Cjj(�).If x is any 
ountable subset of D \ � then p for
es that j(x) = j\x and thatj\x � j( _C) \ j(�), so p for
es that j(x) 2 Cjj(�). By elementarity x 2 C�. This isimpossible be
ause there are �! possibilities for x and �! � �+ > jC�j. �Given � < �+, let �� be a term for the least � > � with j(�) 2 _C; we say thatp bounds �� if and only if there is 
 < �+ su
h that p 
 �� � 
. Not that if p doesnot bound �� and � > � then p does not bound ��.Claim. For every p there is an � < �+ su
h that p does not bound ��.



26 JAMES CUMMINGS, MATTHEW FOREMAN, AND MENACHEM MAGIDORProof. Suppose that p bounds �� for every �, and de�ne D to be the !-
lub set ofpoints � su
h that 
f(�) = ! and p 
 �� < � for every � < �. If � 2 D then it isfor
ed that j is 
ontinuous at �, so that p for
es j(�) to be a limit point of _C andhen
e p 
 j(�) 2 _C. This 
ontradi
ts the previous 
laim. �Claim. There exist a tree of 
onditions hps : s 2 <!�i and an in
reasing sequen
eh�i : i < !i of ordinals from �+ su
h that(1) If t extends s then pt � ps.(2) The 
ondition ps does not bound ��lh(s).(3) For ea
h i < �, ps_i de
ides ��lh(s) as some ordinal �(s_i) with �(s_i) <�lh(s)+1.(4) If i 6= j then �(s_i) 6= �(s_j).Proof. We observe that if p does not bound �� and � > � then p does not bound��. We start by setting p0 = 1P and 
hoosing �0 su
h that p0 does not bound��0. Having de�ned �n and ps for lh(s) = n, we use the fa
t that no ps bounds ��nto 
hoose the ps_i and �(s_i) appropriately; we then 
hoose �n+1 above all the�(t) for lh(t) = n+ 1, with the property that ��n+1 is not bounded by any pt withlh(t) = n+ 1. �Let �! = supi<! �i. For ea
h f 2 !� let pf be a lower bound for hpf�n : n < !iand let xf = f �(f � n) : n < ! g. By 
onstru
tion ea
h pf for
es that j(�!) is alimit point of C, so that arguing as in the proof of our �rst 
laim pf 
 j(xf ) 2 Cjj(�!)and hen
e xf 2 C�! .By 
onstru
tion the xf are all distin
t, and there are �! possibilities for f .Therefore jC�! j > �, 
ontradi
tion! It follows that j 
an not be a generi
 �+-super
ompa
t embedding in V P. �Referen
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