
CANONICAL STRUCTURE IN THE UNIVERSE OF SETTHEORY: PART ONEJAMES CUMMINGS, MATTHEW FOREMAN, AND MENACHEM MAGIDORAbstra
t. We start by studying the relationship between two invariants iso-lated by Shelah, the sets of good and approa
hable points. As part of ourstudy of these invariants, we prove a form of \singular 
ardinal 
ompa
tness"for Jensen's square prin
iple. We then study the relationship between inter-nally approa
hable and tight stru
tures, whi
h parallels to a 
ertain extent therelationship between good and approa
hable points. In parti
ular we 
hara
-terize the tight stru
tures in terms of PCF theory and use our 
hara
terisationto prove some 
overing results for tight stru
tures, along with some results ontightness and stationary re
e
tion. Finally we prove some absoluteness theo-rems in PCF theory, dedu
e a 
overing theorem, and apply that theorem tothe study of pre
ipitous ideals.
1. Introdu
tionIt is a distinguishing feature of modern set theory that many of the most inter-esting questions are not de
ided by ZFC, the theory in whi
h we profess to work;to put it another way, ZFC admits a large variety of models. A natural responseto this is to identify invariants whi
h may take di�erent values in di�erent models,and whi
h 
odify a large amount of information about a model.Of parti
ular interest are invariants whi
h are 
anoni
al, in the sense that theAxiom of Choi
e is needed to show that they exist, but on
e shown to exist they areindependent of the 
hoi
es made. For example the un
ountable regular 
ardinalsare 
anoni
al in this sense.Shelah dis
overed a large 
lass of 
anoni
al invariants, the study of whi
h helabeled PCF theory. These invariants in
lude two whi
h are 
entral in this paper;Shelah [24, 26℄ (under some mild 
ardinal arithmeti
 assumptions on the singular
ardinal �) de�ned two stationary subsets of �+, the sets of good and approa
hablepoints. The de�nitions of these sets appear to depend on 
ertain arbitrary 
hoi
es,but (modulo the 
lub �lter) are in fa
t independent of these 
hoi
es. Other 
anoni
alstru
tures we study in this paper in
lude the stationary sets of tight and internallyapproa
hable stru
tures, and the 
olle
tion of good points on a s
ale.It is known that every approa
hable point is good and that weak forms of square,for example Jensen's weak square prin
iple ���, imply that every point is approa
h-able. Foreman and Magidor [16℄ showed that their prin
iple \Very weak square",1991 Mathemati
s Subje
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2 JAMES CUMMINGS, MATTHEW FOREMAN, AND MENACHEM MAGIDORwhi
h 
aptures some of the approa
hability implied by ���, implies many of theinteresting 
onsequen
es of ���. Cummings [5℄ showed that the assertion that everypoint is good severely 
onstrains all �+-preserving extensions of V .Our �rst motivation for the work in this paper is the problem of the relationshipbetween the sets of good and approa
hable points. This problem is trivial whenweak squares exist, but non-trivial in general. For example it is 
onsistent relativeto large 
ardinals that not every point of 
o�nality �1 in �!+1 is good. We havespe
ulated that perhaps the sets of good and approa
hable points 
oin
ide, and inSe
tion 3 we prove that under some strong stru
tural hypotheses this is the 
ase.The 
on
ept of an approa
hable ordinal is 
losely linked to that of an internallyapproa
hable (IA) stru
ture. To be more pre
ise, the set of approa
hable ordinalsof 
o�nality � 
an be 
hara
terized [16℄ as the set of ordinals whi
h have the formsup(N \ �+) for some internally approa
hable N of length and 
ardinality �.Foreman and Magidor [17℄ isolated the 
on
ept of tight stru
ture in their work onmutual stationarity and the non-saturation of the non-stationary ideal on P��, andtightness turns out to be 
losely related to the issues of goodness and approa
ha-bility. In parti
ular internally approa
hable stru
tures are tight, and if N is tightthen sup(N \ �+) is good. Our se
ond motivation for the work in this paper is theanalogy Tight stru
turesIA stru
tures = Good ordinalsApproa
hable ordinalsHere is an outline of the paper. Se
tion 2 
ontains some ba
kground material.� In se
tion 3 we prove a te
hni
al result about square-like sequen
es usingthe ma
hinery of PCF theory. We use this to show that under some stru
-tural hypotheses all good points in �!+1 of 
o�nality greater than �1 areapproa
hable, and also to show a kind of \singular 
ardinal 
ompa
tness"for square sequen
es. For example we show that if CH holds and ��n holdsfor all n < !, then there is a sequen
e hC
 : 
 2 �!+1 \ 
of(�2)i where C
is a 
lub subset of 
 with order type �2 and the C
 
ohere at 
ommon limitpoints of un
ountable 
o�nality.� In se
tion 4 we study the important property of uniformity for a stru
ture,and show that suÆ
iently uniform stru
tures 
an be re
onstru
ted fromtheir 
hara
teristi
 fun
tions.� In se
tion 5 we 
hara
terize tight stru
tures in terms of PCF theory. Wealso show that the properties of uniformity and tightness 
an sometimes bepropagated from a set of regular 
ardinals K to the set p
f(K).� In se
tion 6 we explore the relationship between tightness, 
overing prop-erties and internal approa
hability. We prove theorems showing that undersome 
ir
umstan
es tightness and internal approa
hability are equivalent.We also re
ord a remarks on the 
onne
tion between tightness and station-ary re
e
tion.� In se
tion 7 we prove some absoluteness results in PCF theory. We dedu
ea 
overing theorem, and use it to show that if I is an ideal on �1 su
h thatfor
ing with P�1=I is suÆ
iently mild then I is pre
ipitous.This paper 
ontains only ZFC results. In the sequel [7℄ we prove a series of 
omple-mentary 
onsisten
y results. We would like to thank John Krueger for 
ommentsand 
orre
tions on an earlier draft of this paper.



CANONICAL STRUCTURE 32. PreliminariesAfter a brief review of notation, we dis
uss the \
anoni
al" 
on
epts whi
h are
entral in this paper: internally approa
hable and tight stru
tures, and approa
hableand good ordinals.We write ON for the 
lass of ordinals, LIM for the limit ordinals and SUCC forthe su

essor ordinals. We write CARD for the 
lass of in�nite 
ardinals, REG forthe regular 
ardinals and SING for the singular 
ardinals. We denote by 
of(�) the
lass of ordinals of 
o�nality �, and if A is a set of ordinals we write 
f(A) for the
o�nality of A 
onsidered as an ordered set. An interval of regular 
ardinals is a setof the form REG\ [�; �) for 
ardinals � and �. We denote by �M the interpretationof a term � in a model M , and by �M the relativisation of a formula � to M . Analgebra on a set X is a stru
ture for some 
ountable �rst-order language whi
h hasX as its underlying set.2.1. Internally approa
hable and tight stru
tures. When � is an un
ountableregular 
ardinal, we will denote by H� the transitive set of those X su
h that thetransitive 
losure of X has size less than �. We denote by <� some �xed well-ordering of H�. By 
onvention when � < � we will assume that <� is the restri
tionof <� to H�.We will frequently be interested in stru
tures of the form A = (H�;2; <�); theadvantage of building in a well-ordering is that if X � H� and SkA(X) is the setof elements of H� de�nable in A with parameters from X, then SkA(X) � A andSkA(X) is the smallest substru
ture of A 
ontaining X.The de�nition of internally approa
hable stru
ture appears in Foreman, Magidorand Shelah's paper [18℄ on Martin's Maximum. These stru
tures are ubiquitousin modern set theory; see Lemma 2.3 and the remarks whi
h follow it for somemotivation.De�nition 2.1. Let � be regular and let A be some algebra expanding (H�;2; <�).Let N � A. N is internally approa
hable (IA) if and only if there exist a limitordinal Æ and a sequen
e hN� : � < Æi su
h that(1) N = S�<Æ N�.(2) For all � < Æ, hN� : � < �i 2 N .In this 
ase we will say thatN is IA of length Æ and that hN� : � < Æi is an approa
h-ing sequen
e for N . We note that if we 
an always take an approa
hing sequen
eto be 
ontinuous in the sense that if � is a limit ordinal, then N� = S�<� N�.The length Æ of the approa
hing sequen
e is not uniquely determined, but it iseasy to see that 
f(Æ) is uniquely determined; by a mild abuse of language we referto this 
o�nality as the 
o�nality of N . In their paper on de�nable 
ounterexamplesto the 
ontinuum hypothesis Foreman and Magidor [15℄ give a detailed dis
ussion ofthe lengths and 
o�nalities of approa
hing sequen
es and the sizes of the stru
turesthat appear in them.All 
ountable N are IA, and if N is approa
hed by a sequen
e of length Æ thenÆ � N . We are often 
on
erned with IA stru
tures N whi
h have length and
ardinality � for some regular un
ountable 
ardinal �. In this 
ase we 
an 
ast thede�nition in a slightly di�erent form, using the following easy lemma.



4 JAMES CUMMINGS, MATTHEW FOREMAN, AND MENACHEM MAGIDORLemma 2.2. Let � be regular and un
ountable, and let N be an IA substru
tureof A with length and 
ardinality �. Then there is a 
ontinuous approa
hing se-quen
e hM� : � < �i for M , su
h that M� is an elementary substru
ture of A with
ardinality less than � and hM� : � � �i 2M�+1 for all � < �.We will refer to in
reasing and 
ontinuous sequen
es hM� : � < �i of elementarysubmodels of A su
h that hM� : � � 
i 2 M
+1 for 
 + 1 < � as \
ontinuousinternally approa
hing 
hains of submodels".The following lemma en
apsulates some of the key properties of IA stru
tures.For simpli
ity we only 
onsider IA substru
tures with approa
hing sequen
es 
on-sisting of 
ontinuous internally approa
hing 
hains of submodels.Lemma 2.3. Let � be a regular 
ardinal. Let hM� : � < �i be a 
ontinuous in-
reasing 
hain of elementary submodels of A su
h that hM� : � � 
i 2 M
+1 for
 < �. Let M = S�<�M� and let � = jM j. Then(1) � �M , so in parti
ular � � �.(2) For all ordinals 
 2M with 
f(
) > �(a) 
f(M \ 
) = �.(b) There is a 
losed unbounded set C in sup(M \ 
) with C �M .(3) For every set X � M with jXj < �, there is Y 2 M with jY j < � andX � Y .(4) Let K 2M be a set of regular 
ardinals su
h that � < min(K) and jKj < �.Then every fun
tion in Q
2KM \ 
 is dominated pointwise by a fun
tionin M \QK.(5) Let P 2 M be a �-
losed and (�;1)-distributive for
ing poset. Then thereis a de
reasing sequen
e hpi : i < �i of 
onditions in M \ P whi
h meetsevery dense open subset of P lying in M .Proof. We sket
h the proof.(1) If � < � then hM� : � < �i in M , and so by elementarity the length � ofthis sequen
e is in M . We note that as a 
onsequen
e M� 2M also.(2) Sin
e 
f(
) > � = jM j,M \
 is bounded in 
. Sin
e 
 2M and ea
hM� isin M , the sequen
e hsup(M� \ 
) : � < �i is easily seen to be a 
ontinuousin
reasing sequen
e whi
h is 
o�nal in sup(M \ 
) and 
onsists of ordinalsin M .(3) Sin
e jXj < �, there exists � < � su
h that X �M�.(4) Let f be a fun
tion in Q�2KM \ �. We note that sin
e jKj < � �M andK 2 M , we have K � M . Sin
e jKj < �, we may �nd � < � su
h that fis in Q�2KM� \ �. We de�ne g with domain K by g(�) = sup(M� \ �).Sin
e jM�j � � < min(K) we see that g 2QK, and sin
e K and M� bothlie in M we also have g 2M . Clearly f(�) < g(�) for all � 2 K.(5) By indu
tion we 
hoose pi to be the <�-least 
ondition in P whi
h is a lowerbound for hpj : j < ii and lies in all the dense open subsets of P whi
h arein Mi. Sin
e hMj : j < ii lies in M it is easy to see that hpj : j < ii lies inM , and hen
e pi lies in M . �Property 5 is not espe
ially relevant in this paper, but it is highly signi�
ant inthe 
ontext of [18℄ and [15℄. Properties 2, 3 and 4 will all be of interest to us inwhat follows. In Se
tion 4 we will make a detailed study of stru
tures whi
h have



CANONICAL STRUCTURE 5uniform 
o�nality as in Property 2. Property 3 is a kind of internal 
overing whi
hwe dis
uss at length in Se
tion 6. Property 4 we 
all tightness and we axiomatise itin the following de�nition: a
tually we axiomatise something a little more general.De�nition 2.4. Let K be a set of regular 
ardinals, let � = 
f(�) > sup(K), andlet A = (H�;2; <�). Let M � A.Then M is tight for K if and only if(1) K 2M .(2) For all g 2Q�2M\K(M\�) there exists h 2M\QK su
h that g(�) < h(�)for all � 2M \K.We note that if jKj �M then K �M , and in this 
ase tightness has the simplerform appearing in Property 4 above: when K �M , M is tight for K exa
tly whenM \QK is 
o�nal in Q�2KM \ �. It is natural to phrase this de�nition in termsof a standard idea, the 
hara
teristi
 fun
tion of a stru
ture.De�nition 2.5. Let K be a set of regular 
ardinals and let M be a set. The
hara
teristi
 fun
tion of M (on K) is the fun
tion �KM with domain K given by�KM : � 7�! sup(M \ �).We will usually drop the supers
ript K and write �M when the set K is 
learfrom the 
ontext. Typi
ally we will be in a situation where jM j < min(K) and so�M 2QK. If a stru
ture M is su
h that K �M , then tightness of M amounts tosaying that every fun
tion inQK whi
h is pointwise dominated by �M is pointwisedominated by some fun
tion in M \QK.There are several reasons why it seems worthwhile to isolate the property oftightness. One reason is that there are many arguments in PCF theory whi
h em-ploy IA stru
tures, and on 
loser inspe
tion these arguments are typi
ally just usingthe tightness guaranteed by Lemma 2.3. Another reason is that tight stru
turesarise naturally in Foreman and Magidor's theory of mutual stationarity. We onlygive a 
ursory des
ription of the theory of mutual stationarity, for more informationsee [17℄ and the sequel to this paper [7℄.De�nition 2.6. Let K be a set of regular un
ountable 
ardinals. Let hS� : � 2 Kibe su
h that S� � � for all � 2 K.(1) If N is a set, then N meets hS� : � 2 Ki if and only if sup(N \ �) 2 S� forall � 2 N \K (equivalently �N � N \K 2Q�2N\K S�).(2) hS� : � 2 Ki is mutually stationary if and only if for every algebra A onsup(K) there exists N � A su
h that N meets hS� : � 2 Ki.It is easy to see that if hS� : � 2 Ki is mutually stationary then S� is stationaryfor ea
h �. Foreman and Magidor showed [17℄ that the 
onverse is false in general,but is true if S� � � \ 
of(!) for all �.Mutual stationarity 
an be seen as intermediate between the 
lassi
al 
on
eptof stationarity for subsets of a regular un
ountable 
ardinal, and the very general
on
ept of stationarity introdu
ed in [18℄. We re
all that if S � P(X) then S is astationary subset of P(X) if and only if for every algebra A on X there is B 2 Ssu
h that B � A. This is easily seen to be equivalent to demanding that for everyF : <!X �! X there is a non-empty B 2 S whi
h is 
losed under F . When weneed to distinguish between di�erent 
avors of stationarity we will refer to this last
on
ept as general stationarity.



6 JAMES CUMMINGS, MATTHEW FOREMAN, AND MENACHEM MAGIDORThe sequen
e hS� : � 2 Ki is mutually stationary if and only if the set of subsetsof sup(K) whi
h meet hS� : � 2 Ki is a stationary subset of P(sup(K)). By stan-dard fa
ts [18, Lemma 0℄ about general stationarity, ifX is any set with sup(K) � Xthen hS� : � 2 Ki is mutually stationary if and only if the set of subsets of X whi
hmeet hS� : � 2 Ki is a stationary subset of P(X). Subsequently we will often letX = H� for � some regular 
ardinal greater than sup(K).Two of the most useful fa
ts about stationary subsets of a regular un
ountable
ardinal � are Fodor's lemma [13℄ and Solovay's splitting theorem [27℄. It is opento what extent these results may be generalised to arbitrary mutually stationarysequen
es; Foreman and Magidor [17℄ identi�ed a 
lass of mutually stationary se-quen
es, the tightly stationary sequen
es, for whi
h versions of Fodor's lemma andSolovay's splitting theorem are available. As one might expe
t, a tightly stationarysequen
e is a sequen
e whose mutual stationarity is witnessed by tight stru
tures.De�nition 2.7. Let K be a set of regular 
ardinals and let hS� : � 2 Ki be su
hthat S� � � for all � 2 K. Let � = sup(K)+. The sequen
e hS� : � 2 Ki is tightlystationary if and only if for every algebra A on H� there is N � A su
h that N istight for K and N meets hS� : � 2 Ki.See Foreman and Magidor's paper [17℄ for the statements and proofs of Fodor'slemma and Solovay's theorem in the 
ontext of tight stationarity.2.2. Approa
hable and good points. There is a 
lose 
onne
tion between in-ternally approa
hable stru
tures and the normal ideal I[�℄ de�ned by Shelah [24,25, 26℄.De�nition 2.8. Let � be a regular un
ountable 
ardinal. S 2 I[�℄ if and only ifthere exists a 
lub subset E of � and a sequen
e ha� : � < �i of bounded subsetsof �, su
h that for all Æ 2 E \ S there is A � Æ unbounded in Æ su
h that ot(A) =
f(Æ) < Æ and for every � < Æ there is 
 < Æ su
h that A \ � = a
 .We dis
uss some alternative 
hara
terisations of I[�℄ in Se
tion 7. The followingresult appears in [16℄ as part of the proof of Claim 4.4 in that paper, and gives onedire
tion of the 
onne
tion between I[�℄ and approa
hable stru
tures.Lemma 2.9. Let � be regular and un
ountable. Let � > � and let A be an algebraexpanding (H�;2; <�). Let S 2 I[�℄. Then there is a 
lub subset F of � su
h thatfor every Æ 2 F \ S there is M � A su
h that M is IA of length and 
ardinality
f(Æ) and sup(M \ �) = Æ.To get a reasonable 
onverse we �x a regular 
ardinal � less than � and assumethat �<� = �. We let I[�; �℄ be the restri
tion of I[�℄ to 
o�nality �, that isthe ideal of those X � � su
h that X \ 
of(�) 2 I[�℄. We enumerate [�℄<� asha� : � < �i, and let S be the set of Æ 2 � \ 
of(�) su
h that there is A � Æunbounded in Æ with ot(A) = � and every proper initial segment of A enumeratedas a
 for some 
 < Æ. If we 
hoose a di�erent enumeration hb� : � < �i of [�℄<�then fa� : � < �g = fb� : � < �g for a 
lub set of � < �, so modulo the 
lub �lterS is independent of the 
hoi
e of the enumeration ha� : � < �i.It is not diÆ
ult to see that S generates I[�; �℄ modulo the 
lub �lter on �, orto put it another way S is (modulo 
lub sets) the largest subset of �\ 
of(�) whi
his in I[�℄. We will refer to S as \the set of approa
hable points of 
o�nality � in �"with the understanding that this set is well-de�ned modulo the 
lub �lter. In thissituation there is an easy 
onverse to Lemma 2.9.



CANONICAL STRUCTURE 7Lemma 2.10. Let �, � and � be regular with � < � < � and �<� = �. Letha� : � < �i be an enumeration of [�℄<� in order type �, and let S be de�ned asabove. Let N � (H�;2; <�; fha� : � < �ig) be IA of length and 
ardinality �. Thensup(N \ �) 2 S.Proof. Let N be approa
hed by hNi : i < �i, and let 
i = sup(Ni \ �). Then everyproper initial segment of h
i : i < �i lies in N , so is enumerated as a� for some� 2 N \ �. It follows that sup(N \ �) 2 S. �Summarising, if �<� = � then (modulo 
lub sets) S is the set of ordinals of theform sup(N \�) where N is IA of length and 
ardinality �. If C is any 
lub subsetof � we 
an add C to the stru
ture in the proof of Lemma 2.10, and �nd N su
hthat sup(N \�) 2 C\S; it follows that S is stationary. It is interesting to note thatthere is an attra
tive 
hara
terisation of S in terms of for
ing: results of Shelah [24℄imply that every �+-
losed for
ing poset preserves the stationarity of subsets of S,but there is a �+-
losed poset whi
h destroys the stationarity of � \ 
of(�) n S.The set S is an example of the sort of \
anoni
al invariant" dis
ussed in theintrodu
tion. We will 
ompare the set of approa
hable points with the set of goodpoints, but before we 
an de�ne the set of good points we need some PCF-theoreti
preliminaries. For more information about PCF theory we refer the reader toShelah's book [26℄, or the survey papers [3℄ and [1℄.Given a set X and an ideal I on X, we refer to the sets in I as I-small sets. Wesay that a set Y � X is I-large if X nY 2 I and is I-positive if Y =2 I. Given ordinalvalued fun
tions f and g with domain X, we say that g dominates f modulo I (andwrite f <I g) if f(x) < g(x) for an I-large set of values of x; the relation <I is astri
t partial ordering. Similarly we say g dominates f pointwise (and write f < g)if f(x) < g(x) for all x. Given an ordinal valued fun
tion f a s
ale of length � in(Qx f(x); <I) is an in
reasing and 
o�nal sequen
e of length � in (Qx f(x); <I).For Y a subset of X, a sequen
e of fun
tions in XON is pointwise in
reasingon Y if it is stri
tly in
reasing on every 
oordinate in Y . We note that a sequen
ewhi
h is pointwise in
reasing on an I-large set is <I -in
reasing, but that in generalthe 
onverse is not true. Two sequen
es hf� : � < 
i and hg� : � < 
i whi
h arein
reasing with respe
t to <I are 
o�nally interleaved (modulo I) if for all � < 
there is � < 
 su
h that f� <I g� and g� <I f� .The fun
tion g is a an exa
t upper bound (eub) for the <I -in
reasing sequen
ehf� : � < �i if and only if f� <I g for all � < �, and for every h with h <I gthere exists � < � with h <I g�. This is equivalent to hf� : � < �i being a s
ale in(Qx g(x); <I) (with the 
aveat that the fun
tions f� need only be dominated by gmodulo I, rather than literally being members of Qx g(x)). It is easy to see thatan exa
t upper bound, if one exists, is well-de�ned modulo I.A point � is good for a <I -in
reasing sequen
e ~f (of length at least �) if andonly if 
f(�) > jXj and there exists an exa
t upper bound h for hf� : � < �i withthe property that 
f(h(x)) = 
f(�) for all x. The following lemma gives some usefulequivalent 
hara
terisations of goodness: the impli
ation from 3) to 1) gives animportant 
onstru
tion prin
iple for exa
t upper bounds.Lemma 2.11. The following are equivalent for hf� : � < �i a <I-in
reasing se-quen
e with 
f(�) > jXj.(1) � is good.



8 JAMES CUMMINGS, MATTHEW FOREMAN, AND MENACHEM MAGIDOR(2) There is a sequen
e of fun
tions of length 
f(�) whi
h is pointwise in
reasingand is 
o�nally interleaved with hf� : � < �i modulo I.(3) There is a sequen
e of fun
tions of length 
f(�) whi
h is pointwise in
reasingon an I-large subset of X and is 
o�nally interleaved with hf� : � < �imodulo I.Proof. For 1) implies 2), let h be an eub su
h that 
f(h(x)) = 
f(�) for all x and�x for ea
h x a sequen
e h�xi : i < 
f(�)i in
reasing and 
o�nal in h(x); now de�negi(x) = �xi and 
he
k that hgi : i < 
f(�)i is pointwise in
reasing and 
o�nallyinterleaved with hf� : � < �i. The impli
ation from 2) to 3) is immediate. For3) implies 1) �x hgi : i < 
f(�)i pointwise in
reasing on an I-large set and 
o�nallyinterleaved with hf� : � < �i; 
he
k that the pointwise supremum of hgi : i < 
f(�)iis an exa
t upper bound for hf� : � < �i whi
h has 
o�nality 
f(�) on an I-largeset, and then alter it to get an exa
t upper bound whi
h has 
o�nality 
f(�) on allx. �As an immediate 
orollary of Lemma 2.11, if � is a good point then there is C
lub in � su
h that every point of C with 
o�nality greater than jXj is good. Sothe set of ungood points of 
o�nality greater than jXj is quite thin, in the sensethat if it is stationary then its stationarity 
an only re
e
t at points of itself.Example 2.12. If hf� : � < �i and hf 0� : � < �i are two <I-in
reasing sequen
eswith the same exa
t upper bound g then it is easy to see that they are 
o�nallyinterleaved. It follows that if � is a regular un
ountable 
ardinal there is a 
lub setof � < � su
h that hf� : � < �i and hf 0� : � < �i are 
o�nally interleaved. Thereforethe sets of good points for hf� : � < �i and hf 0� : � < �i are equivalent modulo the
lub �lter and so give an example of \
anoni
al" stru
ture.The following result by Shelah is 
entral in PCF theory.Fa
t 2.13. If � is a singular 
ardinal then there is a set K � � of regular 
ardinalssu
h that ot(K) = 
f(�) and there is a s
ale of length �+ in QK under the eventualdomination ordering.As we just pointed out, the set of good points in su
h a s
ale is essentiallyindependent of the 
hoi
e of the s
ale so has some 
laim to be 
onsidered a 
anoni
alinvariant. Of 
ourse there is still a dependen
e on K but for small values of � we
an also make a 
anoni
al 
hoi
e for K. The 
ase of most interest to us is � = �!,and in this 
ase work of Shelah shows that modulo �nite sets there is a largestK � f�n : n < !g su
h that QK has a s
ale of length �!+1 in the eventualdomination ordering. In this situation we refer to the set of good points in su
h as
ale as the good points in �!+1.The next lemma makes the 
onne
tion between s
ales, good points and IA stru
-tures. It should be 
ompared with Lemma 2.10.Lemma 2.14. Let jXj < � < � < � with �, � and � regular. Let ~f = hf� : � < �ibe a <I-in
reasing sequen
e in XON=I, and suppose there is an exa
t upper boundg for ~f su
h that 
f(g(x)) > � for all x 2 X. Let N � (H�;2; <�; f~f; gg) be an IAstru
ture of length and 
ardinality �. Then sup(N \ �) is a good point for ~f .Proof. We �x an internally approa
hing 
hain hNi : i < �i su
h that X 2 N0, X �N0, jNij < � for all i and the union of the 
hain is isN . We let gi(x) = sup(Ni\g(x))for i < �, and 
laim that hgi : i < �i will serve as a witness that sup(N \�) is good.



CANONICAL STRUCTURE 9Sin
e X � N0 and 
f(g(x)) > � for all x 2 X, we see that gi < g; moreover if i < jthen Ni 2 Nj , so gi 2 Nj and hen
e gi < gj .Sin
e gi 2 N and gi is dominated by the exa
t upper bound g, it follows byelementarity that gi <I f� for some � 2 N\�. On the other hand if � < sup(N\�)then there exist i < � and � 2 Ni \ � with � < �, so that range(f�) � Ni andf� < gi. �If C is 
lub in � we may add a predi
ate for C to A and produ
e a good pointof 
o�nality � lying in C. It follows that the set of good points of 
o�nality � isstationary.We 
an now prove that, as we mentioned in the introdu
tion, approa
hable pointsare good.Corollary 2.15. Let � be the su

essor of a singular 
ardinal �, let K � � be anunbounded set of regular 
ardinals with ot(K) = 
f(�) < min(K). Let ~f be a s
aleof length � in QK under eventual domination. If S 2 I[�℄ then almost all pointsof S with 
o�nality greater than 
f(�) are good for ~f .Proof. Immediate from Lemmas 2.9 and 2.14 �Re
alling that the set of approa
hable points (when it 
an be de�ned) is themaximal set in I[�℄, we see that modulo the 
lub �lter every approa
hable point of
o�nality greater than 
f(�) is good.3. Goodness, approa
hability and 
ompa
tness for squaresOne theme of this paper is the relationship between the 
on
epts of goodnessand approa
hability. As we showed in Corollary 2.15, approa
hable points aregood. In this se
tion we show that under 
ertain 
ir
umstan
es the impli
ationfrom approa
hability to goodness 
an be reversed. It is notable that the resultpresented here shows that s
ales 
an be used to derive squarelike prin
iples at �from squares below �.Sin
e approa
hable points are good, the problem \whi
h good points are ap-proa
hable" be
omes trivial if almost every point is approa
hable. We digressbrie
y to review what is known about the extent of I[�℄.It it is known that if Jensen's weak square prin
iple ��� holds then �+ 2 I[�+℄,so that large 
ardinals will be required to make models in whi
h I[�+℄ is non-trivial.If �<� = � then ��� holds, so GCH trivialises I[�℄ for � the su

essor of a regular
ardinal. Shelah has shown that if � is regular then �+ \ 
of(< �) is in I[�+℄,and that if � is singular then for all regular � < � there is a stationary subset of�+ \ 
of(�) lying in I[�+℄.If � is super
ompa
t and 
f(�) < � < �, then �+ \ 
of(< �) =2 I[�+℄. By doingsome suitable Levy 
ollapses (see [24℄ or [20℄ for details) this 
an be used to produ
ea model in whi
h �!+1 \ 
of(�1) =2 I[�!+1℄. As for su

essors of regular 
ardinals,Mit
hell's model [23℄ in whi
h there is no �2-Aronszajn tree also has the propertythat �2 \ 
of(�1) =2 I[�2℄. In re
ent work [22℄ Mit
hell has produ
ed a model inwhi
h I[�2℄ is generated modulo the 
lub �lter by the set �2 \ 
of(!).We now narrow our fo
us to the 
ardinal �!+1, where the points of 
o�nality�1 seem to play a spe
ial role. It is known (see [16℄ or [7℄) to be 
onsistent thatstationarily many points of 
o�nality �1 are not good, and it is open whether�!+1 \ 
of(6= �1) is always in I[�!+1℄. As we see shortly all points of 
o�nality



10 JAMES CUMMINGS, MATTHEW FOREMAN, AND MENACHEM MAGIDORgreater than 2�0 are good. In parti
ular under CH all points of 
o�nality greaterthan �1 are good.Before we prove the main result of this se
tion we need some te
hni
al preliminar-ies. We start with the 
on
ept of a 
ontinuous sequen
e. Let ~f be a <I -in
reasingsequen
e. The sequen
e ~f is 
ontinuous at � if and only either there is no exa
tupper bound for hf� : � < �i or f� is su
h a bound. ~f is 
ontinuous if and onlyif it is 
ontinuous at every limit �. Given an arbitrary <I -in
reasing sequen
e ~fof limit length �, we may repla
e f� for � < � limit by an exa
t upper bound forhf� : � < �i whenever su
h a bound exists, and get a 
ontinuous sequen
e whi
h is
o�nally interleaved with the original one.If � is a good point for ~f and hgi : i < 
f(�)i is in
reasing on an I-large set and
o�nally interleaved with hf� : � < �i then let g be the pointwise supremum of thesequen
e hgi : i < 
f(�)i. As we saw in Lemma 2.11 g is an exa
t upper boundfor hf� : � < �i and so by 
ontinuity f� is also an exa
t upper bound: sin
e exa
tupper bounds are unique modulo I, the fun
tions f� and g must agree on an I-largeset.Next we need an alternative 
hara
terisation of good points in s
ales of a spe
ialkind. When X is an ordered set with no last element, and I is the ideal of boundedsubsets of X, we usually write <� for <I and =� for <I . We refer to <� as theeventual domination ordering. This is the 
ontext of the \good s
ales" and \verygood s
ales" studied in our paper [8℄ on s
ales, squares and re
e
tion.In a s
ale under eventual domination the de�nition of good point 
an be simpli-�ed. To be more pre
ise the following statements are equivalent:� The ordinal � is good for ~f .� The 
o�nality of � is greater than jXj, and for every unbounded A � �there exists an unbounded B � A and x 2 X su
h that hf� : � 2 Bi ispointwise in
reasing on fy : x < yg.The proof of the forward impli
ation uses an \interleaving" argument of a typewhi
h is ubiquitous in PCF theory, so we give it in detail.Sin
e � is good, we may �x x0 2 X and hg� : � < 
f(�)i whi
h is pointwisein
reasing on fy : x0 < yg and is 
o�nally interleaved with hf� : � < �i. Thinningout the sequen
e of g� we may also assume that for every � there is 
� 2 A withg� <� f
� <� g�+1. Sin
e 
f(�) > jXj we may �nd x � x0 and an unbounded setB0 � 
f(�) su
h that g�(y) < f
�(y) < g�+1(y) for all � 2 B0 and y � x. LetB = f
� : � 2 B0g, and observe that if � and �0 are in B0 with � < �0 and y � xthen f
�(y) < g�+1(y) � g�0(y) < f
0�(y).We will also need Shelah's important Tri
hotomy theorem [26℄.Fa
t 3.1. Let I be an ideal on a set X of 
ardinality �, and let � be regular with�+ < �. Let hf� : � < �i be a <I -in
reasing sequen
e. Then one of the followingmust o

ur:(1) There is an eub g for hf� : � < �i su
h that 
f(g(x)) > � for all x.(2) There exist an ultra�lter U on X disjoint from I and sets hSx : x 2 Xiwith jSxj � �, su
h that for all � < � there is g 2 Qx2X Sx and � < �su
h that f� <U g <U f�.(3) There exists a fun
tion h su
h that if D� = fx : f�(x) < h(x)g then thesequen
e hD� : � < �i is not eventually 
onstant modulo I.



CANONICAL STRUCTURE 11If 2� < � then it is not hard to see that the se
ond and third 
ases are impossible,so that there must exist an eub g for hf� : � < �i su
h that 
f(g(x)) > � for all �.For the rest of this se
tion we �x some in�nite A � ! su
h that there is a s
ale oflength �!+1 in Qn2A �n under eventual domination. We also �x hf� : � < �!+1iwhi
h is su
h a s
ale. Altering the s
ale at limits if ne
essary, we may assume thatit has the following strengthened form of the 
ontinuity property: if 0 < k < ! and� is a good point of 
o�nality �k, then f� is an exa
t upper bound for hf� : � < �i(this is just 
ontinuity) and in addition 
f(f�(n)) = �k for all n > k.We already know that there are stationarily many good points for this s
ale inany un
ountable 
o�nality but with some 
ardinal arithmeti
 assumptions we 
ansay more.If 2�0 < �k and � 2 �!+1 is a point of 
o�nality �k then it follows from Tri-
hotomy that there is an eub g for hf� : � < �i with 
f(g(n)) > �0 for all n 2 A. Alittle analysis (see [21℄ or [4℄ for the details) shows that 
f(g(n)) = �k for 
o�nitelymany n, so that � is a good point: it follows from our assumptions on the s
alethat f� is an eub for hf� : � < �i and 
f(f�(n)) = �k for all n 2 A with n > k.The stru
tural hypothesis whi
h we need for our main result is a weakening ofsquare whi
h only refers to ordinals below �! with a �xed 
o�nality.De�nition 3.2. Let k be a natural number with k � 1. A �(�!; 
of(!k))-sequen
eis a sequen
e hC� : � 2 �! \ 
of(!k)i su
h that(1) For all �, C� is 
lub in � and ot(C�) = !k.(2) For all �, � and 
, if 
 2 lim(C�) \ lim(C�) then C� \ 
 = C� \ 
.The next lemma is similar in spirit to the results on \improving squares" in ourpaper on s
ales, squares and re
e
tion [8℄.Lemma 3.3. If ��n holds for all n with k � n < ! then there is a �(�!; 
of(!k))-sequen
e.Proof. Fix hDn� : � < �n+1i witnessing ��n , where we assume without loss of gen-erality that Dn� � � n (�n + 1) for � 2 �n+1 n (�n + 1). We de�ne C� indu
tively.Base 
ase: If � 2 �k+1 \ 
of(!k), let C� = Dk�.Su

essor 
ase: Let � 2 (�n+1n(�n+1))\
of(!k) for n > k and let �� = ot(Dn�).Sin
e 
f(�) = !k and k 6= n, we see that �� < �n. Sin
e Dn� is 
lub in �,
f(��) = 
f(�) = !k. By indu
tion C�� has already been de�ned, and we de�ne C�by 
opying C�� into Dn�. To be more pre
ise we set C� = f
 2 Dn� : ot(Dn� \ 
) 2C��g.We now 
he
k that this de�nition su

eeds. Let � 2 lim(C
) \ lim(CÆ). By ourassumption on the sets Dn�, either 
 and Æ are both less than �k+1 or they both liein �n+1 n (�n + 1) for some n > k.Case 1: 
; Æ < �k+1. In this 
ase C
 = Dk
 and CÆ = DkÆ , and it follows thatC
 \ � = Dk� = CÆ \ � by the de�ning property of a ��k -sequen
e.Case 2: �n < 
; Æ < �n+1 for n > k. In this 
ase � 2 lim(Dn
 ) \ lim(DnÆ ) and soDn
 \ � = DnÆ \ �. Moreover if � = ot(Dn
 \ �) then by the de�nition of C
 we havethat � 2 lim(C
�), and similarly � 2 lim(CÆ�). By indu
tion C
� \ � = CÆ� \ �, andso by de�nition C
 \ � = CÆ \ �. �



12 JAMES CUMMINGS, MATTHEW FOREMAN, AND MENACHEM MAGIDORThe main theorem of this se
tion shows that starting with a �(�!; 
of(!k))-sequen
e, we may lift it via PCF theory to a square-like sequen
e de�ned on the setof good points of 
o�nality !k in some s
ale of length �!+1. To be more pre
ise wede�ne the following square-like prin
iple, whi
h is obtained by allowing the 
lub setsto be de�ned only at points of some set S and weakening the 
oheren
e requirementso that it only applies at 
ommon limit points of un
ountable 
o�nality.De�nition 3.4. Let S � �!+1 \ 
of(!k) for some k > 1. A ��!�! (S)-sequen
e is asequen
e hE� : � 2 Si su
h that(1) For every � 2 S, E� is 
lub in � and ot(E�) = !k.(2) For all 
; Æ 2 S and every � of un
ountable 
o�nality whi
h is a 
ommonlimit point of E
 and EÆ, E
 \ � = EÆ \ �.Theorem 3.5. Let k be an integer with k � 2, and assume that there is a�(�!; 
of(!k))-sequen
e. If G is the set of good points of 
o�nality !k for thes
ale hf� : � < �!+1i, then there exists a ��!�! (G)-sequen
e.Proof. Dropping �nitely many points from the set A if ne
essary, we may as-sume that all points in A are greater than k. Fix a �(�!; 
of(!k))-sequen
ehC� : � 2 �! \ 
of(!k)i. By our assumptions on the s
ale and the set A, for all
 2 G the fun
tion f
 is an exa
t upper bound for hf� : � < 
i and 
f(f
(n)) = �kfor all n 2 A.Given 
 2 G, we de�ne fun
tions g
i for i < !k by setting g
i (n) equal to theith member of Cf
(n). By 
onstru
tion the sequen
e of fun
tions hg
i : i < !ki ispointwise in
reasing and is 
o�nally interleaved with hf� : � < 
i.For almost every � < 
 of un
ountable 
o�nality, there is j < !k su
h thathg
i : i < ji is 
o�nally interleaved with hf� : � < �i; the sequen
e hg
i : i < ji wit-nesses that � is good. Fix su
h � and j. By the argument of Theorem 2.11 and theuniqueness of exa
t upper bounds f� =� supi<j g
i , and sin
e Cf
(n) is 
losed wealso see that supi<j g
i (n) = g
j (n). We 
on
lude that f� =� g
j .For every 
 2 G, we now de�ne D
 = f � < 
 : 9j f� =� g
j g. The set D
 neednot be 
lub in 
, and so we let E
 be the 
losure of D
 in 
. We will show thathE
 : 
 2 Gi is a ��!�! (G)-sequen
e.If � is an a

umulation point of D
 with un
ountable 
o�nality, then there isa unique k su
h that the fun
tions fg
j : j < kg are 
o�nally interleaved withff� : � < �g. It follows that � is good, and so by 
ontinuity we have f� =� g
k andthus � 2 D
 .It is easy to see that ot(D
) = !k and we just showed that D
 is 
losed undersuprema of un
ountable 
o�nality. Now let 
; Æ be members of G. We 
laim that if� is a 
ommon a

umulation point of D
 and DÆ with un
ountable 
o�nality, thenD
 \ � = DÆ \ �.Sin
e � is in D
 , there is j with 
f(�) = 
f(j) su
h that f�(n) = g
j (n) for alllarge n, so that f�(n) 2 lim(Cf
(n)) for all large n. Similarly there is k su
h thatf�(n) = gÆk(n) and f�(n) 2 lim(CfÆ(n)) for all large n.It follows that Cf
(n) \ f�(n) = CfÆ(n) \ f�(n) for all large n, and hen
e thatj = k and that g
i = gÆi for i < j. If � 2 D
 \ � then f� =� g
i for some i < j, andso f� =� gÆi and � 2 DÆ \ �; similarly DÆ \ � � D
 \ �, so D
 \ � = DÆ \ �.It is now routine to verify that hE
 : 
 2 Si is a ��!�! (G)-sequen
e. �Theorem 3.5 has the following striking 
orollary.



CANONICAL STRUCTURE 13Corollary 3.6. Let CH hold and let ��n hold for all n < !. Then for every integerm � 2 there exists a ��!�! (
of !m)-sequen
e.Remark 3.7. With a little work we 
an put Corollary 3.6 in a more pleasingway. Extending our notation, let ��!�n (
of(�k)) be the statement that there existshC� : � 2 �n+1 \ 
of(�k)i with C� 
lub in �, and the C� 
ohering at 
ommon limitpoints of un
ountable 
o�nality. Let CH hold, let k � 2; then if ��!�n (
of(�k)) holdsfor all suÆ
iently large �nite n, it holds for n = !. The proof is an easy variationon the one given above.Theorem 3.5 also supplies a partial answer to the problem whi
h motivates thispaper, the relationship between goodness and approa
hability. It is easy to seethat if there is a ��!�! (S)-sequen
e then S 2 I[�!+1℄, and so Theorem 3.5 has thefollowing 
orollary.Corollary 3.8. If ��n holds for all �nite n then in �!+1 all good points of 
o�nalitygreater than �1 are approa
hable.We 
an also dedu
e some results about stationary re
e
tion.Corollary 3.9. Let CH hold and let ��n hold for all n < !. For all integers mand n su
h that 0 < m < n there is a stationary subset of �!+1 \ 
of(�m) whi
hdoes not re
e
t at any point of �!+1 \ 
of(�n).Proof. Let hC� : � 2 �!+1 \ 
of(�n)i be a ��!�! (
of !n)-sequen
e. Let S be the setof points of 
o�nality �m whi
h o

ur as limit points of some C�, and given � 2 Slet D� be the unique set su
h that D� = C� \ � when � 2 lim(C�).For any 
lub subset D of �!+1, we 
an �nd � 2 lim(D) with 
f(�) = �n. ThenD \C� is 
lub in � and so we 
an �nd � 2 lim(C� \D) with 
f(�) = �m. Clearly� 2 D \ S so that S is stationary.Applying Fodor's lemma we may �nd T � S stationary and 
 su
h that ot(D�) =
 for all � 2 T . For ea
h � of 
o�nality �n the 
lub set lim(C�) meets T exa
tlyon
e, so that the stationarity of T does not re
e
t at any point of 
o�nality �n. �In our paper [9℄ it is shown that it is 
onsistent that ��n holds for 0 < n <! but ��! fails. This is a
hieved by arranging that every stationary subset of�!+1 \ 
of(!) re
e
ts at some point of �!+1 \ 
of(�1). In the sequel [7℄ to thispaper we show that it is 
onsistent that the least � for whi
h �� fails should bethe �rst ina

essible 
ardinal.We 
an also 
ombine the ��!�! (
of !m)-sequen
es of Corollary 3.6 for di�erentvalues of m and get a weakening of the prin
iple ��!;! [8℄.Corollary 3.10. Let CH hold and let ��n hold for all n < !. Then there existshC
 : 
 < �!+1i su
h that for every limit ordinal 
(1) C
 is a 
ountable family of subsets of 
, ea
h with order type less than �!.(2) For every C 2 C
 and every � 2 lim(C) with un
ountable 
o�nality, C\� 2C�.Similar arguments 
an be used with some other square like prin
iples. The fol-lowing \Strong Non-Re
e
tion" prin
iple was introdu
ed by Dzamonja and Shelah[11℄, and has been used by Cummings, Dzamonja and Shelah [6, 10℄ in the investi-gation of stationary re
e
tion.



14 JAMES CUMMINGS, MATTHEW FOREMAN, AND MENACHEM MAGIDORDe�nition 3.11. Let � and � be regular and un
ountable with � < �. ThenSNR(�; �) holds if and only if there is f : � �! � su
h that for all � 2 � \ 
of(�)there is C 
lub in � su
h that f � C is stri
tly in
reasing.This prin
iple is true in L for all � whi
h are not weakly 
ompa
t and all � < �.It implies that every stationary subset of � has a stationary subset whi
h re
e
tsat no point of 
o�nality �.Dzamonja and Shelah [12℄ have studied the 
ardinal u(�) whi
h is de�ned to bethe least � > � su
h that SNR(�; �) fails. In parti
ular they have shown by anelaborate for
ing argument that u(�) 
an be the su

essor of a singular 
ardinal.The following theorem, whi
h is proved in the same way as Theorem 3.5, seems tohave some bearing on problems of this type.Theorem 3.12 (Cummings [4℄). Suppose that k < ! and that SNR(�n;�k) holdsfor all large n < !. Then there is f : �!+1 �! �k su
h that for all good � 2�!+1 \ 
of(�k) there is C 
lub in � su
h that f � C \ f
 : ! < 
f(
) < �kg isstri
tly in
reasing.One rather unsatisfying feature of some results in this se
tion is the appearan
eof the Continuum Hypothesis among the hypotheses. CH is only being used toderive \all points of �!+1 \ 
of(> �1) are good", and it is quite possible that thisstatement is a
tually true in ZFC. For some dis
ussion of the diÆ
ulties asso
iatedwith attempting to show that this statement is 
onsistently false see [5℄.4. UniformityIn this se
tion we develop the idea of uniformity for a stru
ture. The main pointis that suÆ
iently uniform stru
tures 
an be re
onstru
ted from a small amount ofdata.We re
all from Lemma 2.3 that ifM is an IA stru
ture of size � with a 
ontinuousapproa
hing sequen
e of length � then 
f(M \ 
) = � for all ordinals 
 2 M su
hthat 
f(
) > �. This is the prototype for the uniformity properties we will 
onsider.De�nition 4.1. Let M � (H�;2; <�), let K be a set of regular 
ardinals and let� be a 
ardinal. Then M is �-uniform on K if and only if 
f(M \ �) = � for all� 2 K \M , and is weakly �-uniform on K if and only if 
f(M \ �) � � for all� 2 K \M .This property arises naturally in the study of mutual stationarity. A stru
turewhi
h meets a sequen
e of stationary sets all 
onsisting of ordinals of 
o�nality �will automati
ally be �-uniform on the relevant set of regular 
ardinals.A parti
ularly interesting 
ase for our purposes will o

ur when K is an intervalof 
ardinals and M 
ontains a large enough initial segment of the ordinals.De�nition 4.2. Let M � (H�;2; <�) and let �, � and � be 
ardinals with � �� < � � �. The stru
ture M is �-uniform (resp. weakly �-uniform) between � and� if and only if(1) � �M .(2) The stru
ture M is �-uniform (resp. weakly �-uniform) on the interval ofregular 
ardinals f� 2 REG : � < � < �g.IfM is �-uniform between � and � we say thatM is �-uniform past �, and similarlyfor weak uniformity.



CANONICAL STRUCTURE 15This kind of uniformity arises naturally in the study of IA stru
tures. If M isan IA stru
ture with an approa
hing 
hain of length � and � = jM j �M , then Mis �-uniform past �.LetM � (H�;2; <�). If 
 is any limit ordinal inM , then 
f(
) is inM and thereexists inM an in
reasing 
o�nal map f from 
f(
) to 
. Restri
ting f to 
f(
)\Mwe get a 
o�nal map from 
f(
) \M to 
 \M , so that 
f(
) \M and 
 \M havethe same 
o�nality. In parti
ular if M is �-uniform on K then 
f(
 \M) = � forall ordinals 
 2M su
h that 
f(
) 2 K, and similarly for weak uniformity. If M is�-weakly uniform between � and � and � 2 M is an ordinal of 
o�nality less thanor equal to � it follows that M \ � is unbounded in �. If 
f(�) is stri
tly between� and �, then 
f(M \ �) � �.Before dis
ussing the impli
ations of weak uniformity, we re
all a well-knownvariation on the 
losed unbounded �lter. Given a regular 
ardinal � and a limitordinal � with � � 
f(�), we say that a set A � � is a < �-
lub subset of � if A isunbounded in �, and sup(x) 2 A for every x � A with jxj < �. If � is un
ountablethen the 
olle
tion of < �-
lub sets generates a 
f(�)-
omplete �lter, whi
h is infa
t the restri
tion of the 
lub �lter to the set of points of 
o�nality less than �.Lemma 4.3. Let M be �-weakly uniform between � and �. Then(1) For every bounded subset x of M \ � with jxj < �, sup(x) 2M .(2) For every regular � with � < � � sup(M \ �)(a) 
f(M \ �) � �.(b) There exists E �M \ � whi
h is < �-
lub in sup(M \ �).(Note that in item 2, we do not require that � 2M .)Proof. For 
laim 1, we may as well assume that x has limit order type. Let � =sup(x) and 
 = min(M n�), where 
learly both � and 
 are limit ordinals less than� and M \ 
 = M \ �. Suppose for a 
ontradi
tion that 
 > �. Then 
f(
) > �,be
ause otherwiseM\
 would be unbounded in 
. Sin
e 
 2M and � < 
f(
) < �we have 
f(M \ 
) � �, but this is impossible be
ause 
f(M \ �) = 
f(�) � jxj < �and M \ � =M \ 
.For 
laim 2, we �x a regular � with � < � � sup(M \ �). Suppose for a
ontradi
tion that 
f(M \ �) < � and �x x �M \ � 
o�nal in M \ � with jxj < �.Sin
e � � � < �, M \ � is bounded in �. Sin
e � � sup(M \ �), x is a boundedsubset of M \ � and so by the �rst 
laim sup(x) = sup(M \ �) 2 M . This is a
ontradi
tion sin
e M \ � is bounded in �. If we now �x any 
o�nal set D �M \ �and let E be the 
losure of D under suprema of size less than �, then E � M \ �and E is a < �-
lub set as required. �It is notable that 
laim 2) of Lemma 4.3 applies to regular 
ardinals whi
h donot lie inM . Before we 
an exploit Lemma 4.3 we need some more or less standardfa
ts about rebuilding stru
tures.The idea of Lemmas 4.4 and 4.5 �rst appears in the proof by Solovay that theSingular Cardinals Hypothesis holds above a strongly 
ompa
t 
ardinal. Lemma4.5 will �nd an immediate appli
ation in Theorem 4.6 where we show that suf-�
iently uniform stru
tures are determined by their 
hara
teristi
 fun
tions: themore general Lemma 4.4 will be useful later in the 
overing results of Se
tion 7.Lemma 4.4. Let � be a 
ardinal, let K be an interval of regular 
ardinals withmin(K) = �+ and let � be a regular 
ardinal with sup(K) < �. Let M0 and M1 betwo elementary substru
tures of (H�;2; <�) su
h that



16 JAMES CUMMINGS, MATTHEW FOREMAN, AND MENACHEM MAGIDOR� � �M0 \M1.� For every � 2 K, M0 \M1 \ � is 
o�nal in M0 \ �.Then M0 \ sup(K) �M1 \ sup(K).Proof. Clearly M0 \ � = M1 \ � = �. We show by indu
tion on � 2 K thatM0 \ � �M1 \ �. There is nothing to do when � is a limit 
ardinal, so let � = �+where M0 \ � �M1 \ � by indu
tion. If � 2M0 \ � there is � 2M0 \M1 \ � with� < �, and we �x f the <�-least bije
tion from � to j�j. Sin
e � 2 M0 \M1 andf is de�ned from � we have f 2 M0 \M1, and sin
e � < �+ we have j�j � �. Sof(�) 2M0 \ �, and sin
e M0 \ � �M1 \ � we 
on
lude that f(�) 2M1 \ � and so� 2M1. Thus M0 \ � �M1 \ � and the indu
tion goes through. �We note that we are not assuming that K �M here.Lemma 4.5. If we strengthen the hypotheses of Lemma 4.4 by adding the demandthat M0 \M1 \ � is also 
o�nal in M1 \ � for all � 2 K, then we may strengthenthe 
on
lusion to M0 \ sup(K) =M1 \ sup(K).Proof. Immediate from Lemma 4.4. �Theorem 4.6. Let � be an un
ountable 
ardinal. Let K be an interval of regular
ardinals with min(K) = �+ and let � be a regular 
ardinal with sup(K) < �. LetM � (H�;2; <�) be �-weakly uniform between � and supf�+ : � 2 Kg. ThenM \ sup(K) is determined by �KM and sup(M \K).Proof. Suppose that M and N are both substru
tures of (H�;2; <�) whi
h are �-weakly uniform between � and supf�+ : � 2 Kg, with �KM = �KN and sup(N \K) =sup(M\K). Then N\K =M\K. By Lemma 4.3, for every � 2 K\M ea
h of thesets M \ � and N \ � 
ontains a set whi
h is < �-
lub in sup(M \ �) = sup(N \ �).The interse
tion of two < �-
lub sets is < �-
lub, so M \ N \ � is unbounded inM \ � and N \ �. By Lemma 4.5 M \ sup(K) = N \ sup(K). �We will only be using Theorem 4.6 in the spe
ial 
ase when K � M . It willbe useful later to know that the pro
ess of re
onstru
ting M \ sup(K) from �KM issimply de�nable.Lemma 4.7. Let K, �, �, � be as in the last lemma and suppose that M;N �(H(�);2; <�) with �KM 2 N . Then M \ sup(K) 2 N .Proof. Sin
e K = dom(�KM ) we see that K 2 N , and thus sup(K) 2 N and � 2 N .We may also �nd �� 2 N su
h that M is ��-weakly uniform.Let hg� : � < sup(K)i be su
h that g� is the <�-least bije
tion from � to j�j,and de�ne partial fun
tions g and h from sup(K)� sup(K) to sup(K) byg(�; �) = g�(�); h(�; 
) = g�1� (
):Sin
e g and h are de�ned from parameters in N , they are members of N . Theargument in the proof of Lemma 4.5 shows that M \ sup(K) 
an be 
omputed asfollows: for ea
h ~C = hC� : � 2 Ki su
h that C� is < ��-
lub in �M (�) for ea
h�, 
ompute the 
losure X( ~C) of � [ (S� C�) under g and h, and then take theinterse
tion of all the sets X( ~C). It follows that M \ sup(K) 2 N . �



CANONICAL STRUCTURE 175. Tight stru
tures and PCFRe
all from de�nition 2.4 that if K is a set of regular 
ardinals and M is astru
ture with K 2M and K �M , then M is tight for K if and only if M \QKis 
o�nal in Q�2KM \ �. For the rest of this se
tion we will make the followingBlanket assumption: We are given a set K of regular 
ardinals and a stru
tureM � (H�;2; <�) su
h that K 2M , K �M and jM j < min(K).We note that sin
e jM j < min(K), we have �KM 2 QK. Also sin
e K � M wehave jKj < min(K) so that K is a \progressive" set of regular 
ardinals, and themethods of PCF theory 
an be applied to K.The main idea will be to analyse tightness for M in terms of the PCF-theoreti
properties of K. The key new points in the analysis (whi
h are 
losely related) willbe that under some reasonable 
ir
umstan
es we 
an dis
ern whether a stru
tureM is tight by inspe
ting M \ON , and 
an re
onstru
t a tight stru
ture M from a�nite set of ordinal parameters.We summarize the main interest in tight stru
tures by the following points:
(1) Tight stru
tures are 
anoni
ally determined by a �nite number of 
anon-i
al ordinal parameters, i.e. good ordinals. (Theorem 5.3) In parti
ular,the stationary set of tight stru
tures is 
anoni
ally well-ordered. This is
learly not possible for arbitrary stru
tures as they outnumber the possible
olle
tions of ordinal parameters.(2) A tight elementary substru
ture of an H(�) is determined by the its \
ar-dinal stru
ture". This is impli
it in the statement and expli
it in the proofof Theorem 7.3.(3) Internally approa
hable stru
tures share the two previous points (whi
h iswhy they were used in the original PCF theory.) However, given a stru
tureN � (H(�);2; <�), to determine whether N is tight (in an absolute wayfrom knowledge of the regular 
ardinals) one must only know �N � �!+1(i.e. N 's tra
e on the ordinals), but to determine whether N \ H(�!+1)is internally approa
hable seems to require 
onsiderably more informationand 
on
eivably might not be an absolute question.

We summarize the last point by the slogan that being tight is an \exterior" question,but being internally approa
hable is an \internal" question.The results of this se
tion generalise a result by Foreman and Magidor [17,Se
tion 7.3℄ whi
h analyses uniform stru
tures whi
h are tight forK = f�n : n < !gunder the assumption that max p
f(K) = �!+1. They are also related to work byShelah analysing the 
hara
teristi
 fun
tions of 
ertain IA stru
tures in terms ofPCF.For our purposes the most important results are Theorems 5.2 and 5.3, whi
hgive a detailed analysis of tightness forM under the assumptions that p
f(K) �Mand M is uniform on K. Theorem 5.5 shows that we 
an drop the assumptionthat p
f(K) � M and demand only weak uniformity for M on K; the pri
e wepay is that we need extra te
hni
al assumptions and we get a somewhat weaker
on
lusion. Theorem 5.6 shows that we 
an sometimes propagate tightness from Kto p
f(K).



18 JAMES CUMMINGS, MATTHEW FOREMAN, AND MENACHEM MAGIDORAs a warmup for the style of argument whi
h we will be using in this se
tion, weshow that if M is tight for K then some uniformity properties 
an be propagatedfrom K to p
f(K).Theorem 5.1. Let M be tight for K and let � be a 
ardinal with � > jKj. If M is�-weakly uniform on K, then M is �-weakly uniform on p
f(K). If M is �-uniformon K, then M is �-uniform on p
f(K).Proof. Suppose thatM is �-weakly uniform on K. Given � 2M\p
f(K), let us �xU 2M an ultra�lter on K and hf� : � < �i 2M in
reasing and 
o�nal in QK=U .Suppose for a 
ontradi
tion that 
f(M \ �) < �. We �x A � M \ � 
o�nal withorder type 
f(M \ �), and note that if � 2 A then f�(�) 2 M \ � for all � 2 K.If we de�ne g(�) = sup�2A f�(�) for all � 2 K, then g(�) < sup(M \ �) be
ause
f(M \ �) � � > jAj. Sin
e M is tight there is h 2 M \QK with g < h, and byelementarity there is � 2M \ � with h <U f�. So g <U f�, but this is impossiblebe
ause by 
onstru
tion f� � g.Now suppose that M is �-uniform on K, and use this to �nd a pointwise in-
reasing sequen
e hgi : i < �i of fun
tions whose ranges are 
ontained in M andwhose pointwise supremum is �M . As above let � 2M \p
f(K) and �x U 2M anultra�lter on K and hf� : � < �i 2 M in
reasing and 
o�nal in QK=U . It is easyto see by tightness and elementarity that hf� : � 2M \ �i is 
o�nally interleavedwith hgi : i < �i, so 
f(M \ �) = �. �We re
all that we have a set K of regular 
ardinals su
h that jKj < min(K).This is a situation in whi
h Shelah's PCF theory gives an analysis of p
f(K) interms of the PCF generators, and we give a brief review of this analysis.As usual we let J<� be the ideal of sets A � K su
h that every ultra�lter U
ontaining A gives an ultrapower QK=U of 
o�nality less than �. The sequen
e ofideals J<� is in
reasing with � and is 
ontinuous at limit 
ardinals.By standard results from PCF theory we �x a sequen
e of sets hB� : � 2 p
f(K)iwith B� � K for ea
h �, su
h that B� generates J<�+ over J<�: that is to say thatfor A � K we have A 2 J<�+ () A n B� 2 J<�. An easy indu
tion argumentshows that J<� is the ideal of sets whi
h are 
overed by a �nite union of sets infB� : � < �g.It is known that p
f(K) has a maximum element, and a

ordingly we will 
hooseBmax p
f(K) = K. By standard fa
ts from PCF theory we may �x a matrix offun
tions hf�� : � < �; � 2 p
f(K)i su
h that hf�� : � < �i is a 
ontinuous s
ale inQB�=J<� for every � 2 p
f(K).We �x � some suÆ
iently large regular 
ardinal and let A be the stru
ture(H�;2; <�; fKg; hB�i; hf��i). We will analyse tightness ofM for K in terms of PCFtheory, assuming that M � A, p
f(K) �M and M is uniform on K.Theorem 5.2. Let � be regular and un
ountable, and suppose that jKj < � <min(K). Suppose that M � A where M is �-uniform on K and p
f(K) � M .Then the following are equivalent:(1) M is tight for K.(2) For every � 2 p
f(K), sup(M \ �) is a good point of 
o�nality � forhf�� : � < �i and f�sup(M\�) =J<� �B�M .



CANONICAL STRUCTURE 19Proof. For the forward dire
tion, assume M is tight. Sin
e 
f(M \ �) = � for all� 2 K, we may �nd a pointwise in
reasing sequen
e hgi : i < �i in QK whosepointwise supremum is �KM .Fix � 2 p
f(K). We 
laim that hgi � B� : i < �i is 
o�nally interleaved withhf�� : � 2M \ �i modulo J<�. For all � 2 M \ �, f�� 2 M and so f�� is pointwisedominated by �B�M . Sin
e jKj < �, there exists i < � su
h that f�� is dominatedpointwise by gi � B�. Conversely if i < � then it follows from the tightness ofM that gi is dominated pointwise by some fun
tion in M , and so by elementaritygi <J<� f�� for some � 2M \ �.It follows that 
f(M \ �) = � and sup(M \ �) is a good point of 
o�nality �.By Lemma 2.11 f�sup(M\�) agrees modulo J<� with the pointwise supremum of thegi � B�, that is to say f�sup(M\�) =J<� �B�M .For the 
onverse dire
tion, assume that for every � 2 p
f(K), sup(M \ �) is agood point of 
o�nality � for hf�� : � < �i and f�sup(M\�) =J<� �B�M . Let h be afun
tion in QK whi
h is pointwise dominated by �KM . For every � in p
f(K) wehave h <J<� f�sup(M\�). Sin
e sup(M \ �) is a good point it follows that f�sup(M\�)is an exa
t upper bound for hf� : � 2M \ �i. Hen
e for every � 2 p
f(K) there is� 2M \ � with h <J<� f�� .We will indu
tively build a de
reasing sequen
e �0 > �1 > �2 > �j of membersof p
f(K) together with ordinals �i 2 M \ �i. We will also build a de
reasingsequen
e of sets D0 � D1 � D2 : : : su
h that Di 2 J<�i , halting when we rea
h astage with Di = ;.We let �0 = maxp
f(K), and re
all that B�0 = K. We 
hoose �0 2M \�0 su
hthat h <J<�0 f�0�0 . Let D0 = f� : h(�) � f�0�0 (�)g, so that D0 2 J<�0 .Suppose that we have de�ned �i, �i and Di for i � j. We stop if Dj = ;.Otherwise we 
hoose �j+1 to be the unique member of p
f(K) with Dj 2 J<�+j+1and Dj =2 J<�j+1 , and 
hoose �j+1 2 M \ �j+1 su
h that h <J<�j+1 f�j+1�j+1 . Nowwe let Dj+1 = f� 2 Dj : � =2 B�j+1 or h(�) � f�j+1�j+1 (�)g:Sin
e B�j+1 generates J<�+j+1 and h <J<�j+1 f�j+1�j+1 , we see that Dj+1 2 J<�j+1 .Sin
e the des
ending sequen
e of �i 
an only have �nite length, the 
onstru
tionmust terminate. Let j be the last stage, so Dj = ;. For ea
h � 2 K, let i beminimal with � =2 Di. By de�nition we must have � 2 B�i and h(�) < f�i�i (�). We
on
lude that h is pointwise dominated by the pointwise supremum of ff�i�i : i � jg,and sin
e this fun
tion lies in M we have proved that M is tight. �The following result will play an important role when we analyse the relationshipbetween tightness and internal approa
hability in Se
tion 6. It is a generalizationof Shelah's analysis of internally approa
hable stru
tures used to bound powers ofsingular 
ardinals. It is important for the purposes of that se
tion to note that ea
hof the sets B�i n Ei is in M , and ea
h of the indi
es sup(M \ �i) is 
omputed in auniform way from M .Theorem 5.3. Let � be regular and un
ountable, and suppose that jKj < � <min(K). Suppose that M is �-uniform on K and p
f(K) �M .



20 JAMES CUMMINGS, MATTHEW FOREMAN, AND MENACHEM MAGIDORIf M is tight for K then there exist �0; : : : �j 2 p
f(K) and E0; : : : Ej withEi 2M \ J<�i su
h that K = Si(B�i n Ei) and �M is the pointwise supremum ofthe fun
tions f�isup(N\�i) � (B�i n Ei) for i � j.Proof. By Theorem 5.2, f�sup(M\�) =J<� �B�M for all � 2 p
f(K).We argue in a way whi
h parallels the last part of the proof of Theorem 5.2. Asthere we build a de
reasing sequen
e �0 > �1 > : : : of elements of p
f(K), and alsosets Di with Di 2 J<�i whi
h this time are not ne
essarily de
reasing. We alsobuild sets Ei 2 M \ J<�i su
h that Di � Ei, and 
hoose Di+1 as a subset of Eirather than Di.Let �0 = maxp
f(K) and D0 = f� : �M (�) 6= f�0sup(M\�0)(�)g, so that D0 2J<�0 . Suppose now that we have 
onstru
ted the ordinals �0; �1 : : : �j , togetherwith the sets D0; : : :Dj and E0; : : : Ej�1.If Dj = ; we set Ej = ; and stop the 
onstru
tion. If Dj 6= ; we 
hoose �j+1 asthe unique member of p
f(K) su
h that Dj 2 J<�+j+1 and Dj =2 J<�j+1 . We 
hooseEj to be some �nite union of sets in fB� : � � �j+1g su
h that Dj � Ej .We note that Ej 2 J<�+j+1 \ M , and that sin
e Dj =2 J<�j+1 we must haveB�j+1 � Ej . LetDj+1 = f� 2 Ej : � =2 B�j+1 or �M (�) 6= f�j+1sup(M\�j+1)(�)g:Sin
e Ej nB�j+1 is 
overed by a �nite union of sets from fB� : � < �j+1g, and thefun
tions �M and f�j+1sup(M\�j+1)(�) agree on a J<�j+1-large subset of B�j+1 , we seethat Dj+1 2 J<�j+1 .Sin
e the sequen
e of �i is de
reasing we eventually rea
h a stage j with Dj = ;,and so we halt the 
onstru
tion after setting Ej = ;. To �nish we need to 
he
kthat �M is the pointwise supremum of the fun
tions f�isup(M\�i) � (B�i n Ei) fori � j.Let � 2 B�i n Ei for some i � j. Sin
e Di � Ei, � 2 B�i n Di . By the
onstru
tion of Di we know that f� 2 B�i : f�isup(M\�i)(�) 6= �M (�)g is a subset ofDi, so f�isup(M\�i)(�) = �M (�).Given � 2 K, let i be minimal su
h that � =2 Ei. If i = 0 then � 2 B�0 be
ausewe 
hose B�0 = K. If i > 0 then � 2 Ei�1, and sin
e � =2 Di we see that � 2 B�i .It follows that every element of K appears in B�i nEi for some i. �Remark 5.4. For an appli
ation whi
h we will make of Theorems 5.2 and 5.3 inSe
tion 7, we note that we only needed the s
ales ff�� : � < �g to be 
ontinuous atgood points of 
o�nality �.Now we give an alternative 
hara
terisation of tightness for M in the style ofTheorem 5.2, dropping the assumption that p
f(K) � M and weakening the uni-formity assumption to weak uniformity. As we remarked earlier, this analysis owesa debt to Shelah's analysis of the 
hara
teristi
 fun
tions of IA stru
tures. Forte
hni
al reasons we will not be using 
ontinuous s
ales, but rather s
ales with ate
hni
al property 
alled !-
lub minimality.Let us be given an index set X, an ideal I on X and a <I -in
reasing sequen
e ~f .If 
f(�) > jXj, we de�ne a fun
tion f�� by letting f��(�) be the least ordinal of theform sup�2E f�(�) for E an !-
lub subset of �. We note that if E is some !-
lub



CANONICAL STRUCTURE 21subset of � with f��(�) = sup�2E f�(�), then f��(�) = sup�2F f�(�) for any F � Ewith F an !-
lub subset of �.Sin
e the interse
tion of jXj-many !-
lub subsets of � is !-
lub, we may �x asingle !-
lub subset F of � su
h that f�� (�) = sup�2F f�(�) for all � 2 F ; it followsthat f�� is an upper bound modulo I for hf� : � < �i. We say that the sequen
e ~fis !-
lub minimal at � if f�� = f� . Returning to the 
ontext of this se
tion, it isroutine to 
he
k that if I is an ideal on K with t
f(QK=I) = � then we may �nda s
ale hf� : � < �i in QK=I whi
h is !-
lub minimal at every � < � su
h thatjKj < 
f(�) < min(K); by a slight abuse of language we will say that su
h a s
aleis !-
lub minimal in QK=I.We will �x a matrix of fun
tions hf�� : � < �; � 2 p
f(K)i su
h that hf�� : � < �iis a an !-
lub minimal s
ale in QB�=J<� for every � 2 p
f(K). Let A be thestru
ture (H�;2; <�; fKg; hB�i; hf��i). We will assume that M � A.We are now ready to use our te
hni
al assumption of !-
lub minimality. SupposethatM is jKj+-weakly uniform between � and �, where all 
ardinals inM \p
f(K)are greater than � and less than �. Let � 2 M \ p
f(K) and let 
 = sup(M \ �).By Lemma 4.3 there is E � M \ � whi
h is !-
lub in 
. Sin
e jM j < min(K) wesee that 
f(
) < min(K), and sin
e � lies in an interval where M is weakly uniformwe also see that 
f(
) > jKj. So by the assumption of !-
lub minimality, we may�nd F � E su
h that F is !-
lub in 
 and f�
 (�) = sup�2F f�� (�) for all � 2 K.Sin
e F � E �M , K �M and � 2M it follows easily that f�
 � �B�M .We 
an now give a 
hara
terisation of tightness.Theorem 5.5. Let M be jKj+-weakly uniform between � and �, where all 
ardinalsin M \ p
f(K) are greater than � and less than �. Then the following 
onditionson M are equivalent.(1) M is tight for K.(2) For every � 2M \ p
f(K), if 
 = sup(M \ �) then(a) f�
 � �B�M .(b) There is A � B� su
h that A 2 M \ J<� and f� 2 B� : f�
 (�) <�M (�)g � A.(
) f�
 is an exa
t upper bound for hf�� : � < 
i modulo J<� in the fol-lowing strengthened sense: for all f < f�
 there exist � 2 M \ � andB 2M \ J<� su
h that f� 2 B� : f�� (�) � f(�)g � B.Proof. 1) implies 2). We have already seen that the uniformity hypothesis on Mimplies that f�
 � �B�M . Sin
e M is tight we may �nd a fun
tion g 2 M \QKsu
h that for all � 2 K, f�
 (�) < �M (�) implies that f�
 (�) < g(�). By !-
lubminimality we know that f�
 is the pointwise supremum of ff�� : � 2 Fg for someF �M whi
h is !-
lub in 
, and we may �nd � 2 F so large that f�� dominates gmodulo J<�. Now sin
e f�� � f�
 we see that for � 2 Kf�
 (�) < �M (�) =) f�
 (�) < g(�) =) f��(�) < g(�);so that if we set A = f� 2 B� : f��(�) < g(�)g then A is as required. Now letf < f�
 . Sin
e f�
 � �M and M is tight, we may �nd h 2 M su
h that f < h andthen �nd � 2 F su
h that f�� dominates h modulo J<�. Nowf�� (�) � f(�) =) f�� (�) � h(�);



22 JAMES CUMMINGS, MATTHEW FOREMAN, AND MENACHEM MAGIDORand if we set B = f� 2 B� : f�� (�) � h(�)g then B is as required.2) implies 1). Let f 2 QK with f < �KM . The 
onstru
tion is very similar tothat for Theorem 5.2. We 
onstru
t a de
reasing sequen
e of ordinals �0 > �1 > : : :with �i 2M \ p
f(K), together with ordinals �i 2M \ �i and sets Bi 2M \ J�i ,in su
h a way that if � 2 Bi�1 nBi then f(�) < f�i�i (�).Let �0 = maxp
f(K) and 
0 = sup(M\�0), and observe that by b) the fun
tionsf�0
0 and �M agree outside a set inM \J<�0 . By 
) we 
an �nd a set B0 2M \J<�0su
h that f(�) < f�0
0 (�) for � =2 B0.If at stage i we have Bi 6= ;, then 
hoose �i+1 minimal with Bi =2 J<�i+1 , notingthat �i+1 2 M be
ause Bi 2 M . Now we apply b) and 
) to �nd Bi+1 2 J<�i+1and �i+1 2M \ �i+1 su
h that f(�) < f�i+1�i+1 (�) for � 2 Bi nBi+1.As usual, the 
onstru
tion must terminate with Bi = ;. Then f is pointwisedominated by the supremum of the fun
tions f�j�j for j < i, and this fun
tion liesin M . �Under 
ertain 
ir
umstan
es we 
an do an analysis of tightness as in Theorem5.5 under a weaker uniformity hypothesis. It is known that if K is an interval ofregular 
ardinals then p
f(K) is also an interval of 
ardinals. If K is an interval, Mis tight for K and M is jKj+-weakly uniform in some interval 
ontaining K thenit follows from Theorem 5.1 that M is weakly uniform in an interval 
ontainingp
f(K), and so the analysis of Theorem 5.5 applies.It follows from Theorem 5.1 that ifM is tight some information about 
o�nalities
an be propagated from K to p
f(K). The next result shows that under slightlystronger assumptions the same is true for the property of tightness itself. The ideaof taking pointwise suprema of fun
tions from many s
ales 
omes from Shelah'sproof that p
f(p
f(K)) = p
f(K).Theorem 5.6. Let p
f(K) � M and let M be j p
f(K)j+-weakly uniform on K.If M is tight for K then M is tight for p
f(K).Proof. Let L = p
f(K), and let F 2Q�2LM \ �. We de�ne f 2QK byf : � 7! sup�2L f�F (�)(�) + 1:Sin
e L � M , we see that f�F (�) 2 M and f�F (�)(�) 2 M \ � for all � 2 L and� 2 K. Sin
e 
f(M \ �) > jLj it follows that f(�) < sup(M \ �) for all � 2 K.Sin
eM is tight for K, there is g 2M\QK whi
h dominates f pointwise. Sin
ehf�� : � < �; � 2 p
f(K)i 2 M and the sequen
e hf�� : � < �i is a s
ale for ea
h �,it follows by elementarity that there is G 2M \QL su
h that g <J<� f�G(�) for all� 2 L. We now see that for ea
h � 2 L we havef�F (�) < f < g <J<� f�G(�);so that G dominates F pointwise and we have shown that M is tight for L. �Theorem 5.6 allows us a pra
ti
al alternative to Theorem 5.5:Corollary 5.7. Let M be jKj+-weakly uniform (resp. �-uniform with jKj < � <min(K)) between � and �, where all 
ardinals in M \ p
f(K) are greater than �and less than �. Let M 0 be the Skolem hull of M [ p
f(K) in (H(�); �; <�). Thenthe following 
onditions on M are equivalent.(1) M is tight for K.



CANONICAL STRUCTURE 23(2) M 0 is tight for p
f(K) and jKj+-weakly uniform (resp. �-uniform) onp
f(K).(3) For every � 2 p
f(K), sup(M 0 \ �) is a good point of 
o�nality at least �+(resp. of 
o�nality �) for hf�� : � < �i and f�sup(M 0\�) =J<� �B�M 0 .Proof. By Fa
t 6.2 we know that j p
f(K)j < jKj+4. ThusM 0 � skH(�)(M[jKj+3).Standard arguments show that for all � 2 KnjKj+3; sup(M \�) = sup(skH(�)(M [jKj+3) \ �). Suppose now that M is tight for K.By the results in the last paragraph, M 0 is tight for K and by Theorem 5.6, M 0is tight for p
f(K). Moreover, by Theorem 5.1, M 0 is jKj+-weakly uniform (resp.�-uniform) on p
f(K). Hen
e 1 implies 2. Again by the previous paragraph it is
lear that 2 implies 1By Theorem 5.2, 2 and 3 are equivalent for M 0. �6. Tightness, approa
hability and refle
tionIn this se
tion we prove a general 
overing theorem for tight stru
tures, anduse it to show that 
ertain tight uniform stru
tures are IA. We also dis
uss the
onne
tion between tightness and stationary re
e
tion.We start with some general dis
ussion of 
overing properties of stru
tures. Sup-pose that �, � and � are regular 
ardinals with � < � < �. We 
onsider substru
-tures N � (H�;2; <�; f�; �g) su
h that jN j = � and � � N .Given a set Z with � � Z, we let P�Z be the set of x � Z su
h that jxj < � andx\ � 2 �. In in
reasing order of strength we may 
onsider the following propertiesof N :Internally 
o�nal in P��: N \P�(N \�) is 
o�nal (in the in
lusion ordering) inP�(N \ �)Internally stationary in P��: N \ P�(N \ �) is stationary in P�(N \ �).Internally 
lub in P��: N \ P�(N \ �) 
ontains a 
lub in P�(N \ �).Internally approa
hable in P�H�: N \H� is IA of length and 
ardinality �.The following easy lemma shows that some 
ardinal arithmeti
 assumptions sim-plify the pi
ture.Lemma 6.1. Let �, � and � be regular 
ardinals with � < � < � and let N �(H�;2; <�; f�; �g) be su
h that jN j = � and � � N .If �<� = � and N is internally 
o�nal in P��, then P�(N \�) � N , from whi
hit follows that N is IA in P�H�.For the rest of this se
tion we will be studying stru
tures N whi
h are tight forsome interval K of regular 
ardinals. One reason for this is that we wish to applythe results of Se
tion 4 on re
overing stru
tures from their 
hara
teristi
 fun
tions,and these results require an interval of regular 
ardinals. Another reason is thatwe 
an use the following result of Shelah.Fa
t 6.2 (Shelah). Let K be an interval of regular 
ardinals with jKj < min(K).Then � p
f(K) is an interval of regular 
ardinals, whi
h has a largest element.� j p
f(K)j � jKj+3.� p
f(p
f(K)) = p
f(K).



24 JAMES CUMMINGS, MATTHEW FOREMAN, AND MENACHEM MAGIDORRemark 6.3. If K is an in�nite interval of regular 
ardinals with jKj < min(K),then it follows from Fa
t 6.2 that by deleting a suitable �nite initial segment k ofK we 
an obtain an interval L with j p
f(L)j < min(L).Remark 6.4. It is a viable 
onje
ture that j p
f(A)j = jAj for all A with jAj <min(A).Before stating and proving the very general Theorem 6.5, we digress brie
y to
onsider what is perhaps the most interesting spe
ial 
ase. Let K = f�n : 0 < n <!g, and suppose for simpli
ity that p
f(K) is 
ountable, say p
f(K) = f��+1 : � ��g for some 
ountable �.Let m > 0 and let � be a large regular 
ardinal. Let N � H� be su
h that�m = jN j � N , and let N be �m-uniform and tight on f�n : m < n < !g. ByTheorems 5.1 and 5.6 N is �m-uniform and tight on f��+1 : m � � � �g.Under these 
ir
umstan
es, it will follow from Theorem 6.5 that if m > 1 thenN is internally stationary in P�m(��+1). In 
onjun
tion with some extra 
ardinalarithmeti
 assumptions as in Lemma 6.1, it will follow that N \ H��+1 is IA oflength and 
ardinality �m. This is an instan
e of one of the motivating theses ofthis paper, that tightness plus uniformity is very 
lose to internal approa
hability.Theorem 6.5. Let � be an un
ountable regular 
ardinal. Let L be an interval ofregular 
ardinals su
h that min(L) = �++, jLj < �, and L = p
f(L). Let � be alarge regular 
ardinal and let N � (H�;2; <�; fLg) be su
h that jN j = �+ and N is�+-uniform between �+ and max(L)+ and N is tight for L. Then N is internallystationary in P�+(max(L)).Proof. Fix some algebra A on N \ max(L). We build an in
reasing sequen
ehMi : i < �i su
h that for all i(1) Mi � N , with � �Mi and jMij = �.(2) Mi \max(L) � A.(3) Mi \ �+ < Mi+1 \ �+.(4) �LMi is pointwise dominated by some fun
tion in Mi+1 \QL.The last demand on Mi is the 
ru
ial one, and it is possible to satisfy it be
auseN is tight and �+-uniform. We let M = SiMi and L� = f�+g [ L, and note thatp
f(L�) = L�. As usual we will let hB� : � 2 L�i be the <�-minimal sequen
e ofgenerators for L�, hf�� : � 2 L�; � < �i the <�-least matrix of fun
tions su
h thathf�� : � < �i is a 
ontinuous s
ale in QB�=J<�.By 
onstru
tion �L�Mi is pointwise dominated by �L�Mi+1 , so that M is �-uniformbetween �+ and max(L)+. Sin
e jL�j < � the 
onstru
tion also guarantees that Mis tight for L�.By Theorem 5.3 the fun
tion �L�M is the pointwise supremum of �nitely manyfun
tions of the form f�sup(M\�) � (B� n E�), where E� 2 M . By Lemma 4.3N \max(L) is �-
losed in sup(N \max(L)), so in parti
ular sup(M \ �) 2 N forall �.It follows that �L�M 2 N . By Lemma 4.7 we see that M \max(L) 2 N , and by
onstru
tionM\max(L) � A andM 2 P�+(N\�). This shows thatN\P�+(N\�)is stationary. �As we mentioned before proving Theorem 6.5, we 
an use the theorem to showthat sometimes tight plus uniform equals IA. The following 
orollary gives thesimplest interesting 
ase.



CANONICAL STRUCTURE 25Corollary 6.6. Let 2�1 = �2 and 2�! = �!+1. Let � be a large regular 
ardinaland let N � (H�;2; <�) be �2-uniform between �2 and �!, and tight for f�n : 2 <n < !g. Then N \H�!+1 is IA of length and 
ardinality �2.For stru
tures of size �1 we have less than satisfa
tory results whi
h we illustratewith the following example:Example 6.7. Suppose that �! is a strong limit and 2�! = �!+1. Let N �H(�!+2) have 
ardinality �1 and uniform 
o�nality !1. Suppose that sup(N\�!+1)is an approa
hable ordinal 
 and �N =� f
. Then N is internally approa
hable.To see this, let M be the internally approa
hable stru
ture that has 
ardinality !1with �M =� f
. Then for some !l, the Skolem hull of N [!l and the Skolem hull ofM [ !l have the same 
hara
teristi
 fun
tion and hen
e the two Skolem hulls haveequal interse
tion in �!+1. In parti
ular, the Skolem hull of N [�l is 
losed under!-sequen
es below �!+1. One 
an sees indu
tively that if Skolem hull of N [�l�i is
losed under !-sequen
e then so is the Skolem hull of N \ �l�(i+1). In parti
ular,N is 
losed under !-sequen
es below �!+1 and is thus internally approa
hable below�!+1.Foreman and Magidor [15℄ showed that there is a 
lose 
onne
tion between in-ternal approa
hability, uniformity and stationary re
e
tion for sets of stru
tures.In parti
ular they showed that� Let � be super
ompa
t, let � and � be regular un
ountable 
ardinals lessthan � with � < �. Let G be generi
 for Col(�;< �), then in V [G℄ thefollowing stationary re
e
tion prin
iple holds:Every stationary set of IA substru
tures of (H�;2; <�) of length and 
ar-dinality � re
e
ts to some substru
ture of 
ardinality �.� Let � � !3 and let Sij be the set of N � (H�;2; <�) su
h that jN j = �1,�1 � N , 
f(N \ �2) = �i and 
f(N \ �3) = �j .Then only S11 
an have the property that every stationary subset isre
e
ting.The following result indi
ates that tightness is also relevant to problems aboutstationary re
e
tion.Theorem 6.8. Let K be a 
ountable set of regular 
ardinals and let S be a station-ary set of elementary substru
tures of (H�;2; <�), su
h that every element of S istight for K. Let M be su
h that S re
e
ts to M . Then M � (H�;2; <�) and M istight for K.Proof. Let t be a Skolem term and let ~a be a �nite sequen
e of parameters fromM . There is N � M su
h that N 2 S and all the members of ~a 
ome from N .Sin
e N is 
losed under t and N �M , t(~a) 2M as required.Note that sin
e K is 
ountable, K � N for all N 2 S. Let f 2 Q�2K K \M ,and �nd N 2 S su
h that N � M and f � N . Sin
e N is tight for K there isg 2 N \QK whi
h dominates f , and g 2M sin
e N �M . �Foreman and Todor
evi
 [19℄ have de�ned a notion of tightness for 
ountablestru
tures, and have used this to investigate stationary re
e
tion in [H�℄�0 .7. PCF absoluteness, 
overing and pre
ipitous idealsIn this se
tion we prove a version of the 
overing lemma and apply it to a problemabout pre
ipitous ideals. Our 
overing lemma states roughly that if V and W are



26 JAMES CUMMINGS, MATTHEW FOREMAN, AND MENACHEM MAGIDORinner models with V �W , and the PCF stru
tures of V and W are similar enoughthen every set of ordinals in W is 
overed by a set of the same size lying in V . Thekey idea of the proof is that the 
hara
teristi
 fun
tions of 
ertain IA stru
tures inW 
an (as in Se
tion 5) be des
ribed in terms of the PCF stru
ture of W , and so(by the PCF resemblan
e hypothesis) these 
hara
teristi
 fun
tions will be elementsof V .We start with a result whi
h says that suÆ
iently similar universes have similarPCF stru
tures.Theorem 7.1. Let V be an inner model of W , and in V let K be a set of regular
ardinals with jKj < min(K). Assume that for all � 2 [min(K);max(p
f(K))V ℄, if� is regular in V then � is regular in W . Assume also that for every f 2 (QK)Wthere is g 2 (QK)V with f < g. Then(1) JV<� = JW<� \ V for all 
ardinals � � min(K).(2) Any sequen
e of PCF generators for K in V is still a sequen
e of PCFgenerators for K in W .(3) p
f(K)V = p
f(K)W .Proof. We start by proving that JV<� = JW<�\V for all � 2 [min(K);max(p
f(K))V ℄,by indu
tion on �. This is 
lear for � = min(K). For � singular we have J<� =J<�+ = S�<� J<� , so it remains to show that if � is regular and JV<� = JW<� \ Vthen JV<�+ = JW<�+ \ V .Suppose �rst that A 2 JV<�+ . If A 2 JV<� then we are done, otherwise we�x a s
ale ~f of length � in (QA=J<�)V . By the indu
tion hypothesis and ourassumptions on V and W , ~f is a s
ale in (QA=J<�)W and so A 2 JW<�+ .Now suppose that A 2 JW<�+ \ V . Let D 2 V be any V -ultra�lter on K withA 2 D, and in W extend D to �D a W -ultra�lter. By our assumptions on V andW the map  : [f ℄D 7! [f ℄ �D is a 
o�nal order-preserving fun
tion from (QA=D)Vto (QA= �D)W . Sin
e A 2 JW<�+ the W -
o�nality of (QA= �D)W is at most �, andthe existen
e of  and our assumptions on V and W imply that the V -
o�nality of(QA=D)V is at most �. Therefore A 2 JV<�+ .Next we show that PCF generators agree between V and W . We note thatwe 
an identify the maximum of p
f(K) as the least � su
h that K 2 J<�+ ,so that V and W agree on the value of the maximum element in p
f(K). We
all this 
ommon value �max. In V we �x a sequen
e hBV� : min(K) � � � �maxisu
h that BV� generates JV<�+ over JV<�, and similarly we �x in W a sequen
ehBW� : min(K) � � � �maxi su
h that BW� generates JW<�+ over JW<�. We 
hoosethese generators so that BV� = ; for � =2 p
f(K)V , and similarly BW� = ; for� =2 p
f(K)W . We also 
hoose BV�max = BW�max = K.We will show by indu
tion that BW� and BV� are equal modulo JW<� for all �.Sin
e BV� is in JW<�+ and BW� is a generator, we see that BV� is 
ontained in BW�modulo JW<� for all �. Let � be least su
h that BW� and BV� are unequal moduloJW<�. We now adjust the BW� , repla
ing BW� by BV� for � < �; this is legitimate bythe 
hoi
e of �. Let C = BW� nBV� so that C =2 JW<� but C 2 JW<�+ .Now let � be least su
h that C is 
overed by some set BV�0 [ : : : BV�n [BV� with�0 < : : : < �n < �; su
h a � exists be
ause BV� = K. Suppose for a 
ontradi
tionthat � � �; then � < � sin
e C is disjoint from BV� . Now BV� = BW� for � < �,



CANONICAL STRUCTURE 27and it follows that C 2 JW<�, whi
h is a 
ontradi
tion: so � > �. Note that BV� 6= ;so that � 2 p
f(K)V .Let D = BV�0 [ : : : BV�n [ BV� . Working in V �nd hg� : � < �i su
h that g� 2(QD)V and hg� � BV� : � < �i is in
reasing and 
o�nal in (QBV� )V modulo JV<� �BV� . Working in W �nd hh� : � < �i su
h that h� 2 (QD)V and hh� � C : � < �iis in
reasing and 
o�nal in (QC)W modulo JW<� � C.Sin
e � > � we may �nd h� whi
h dominates g� on C modulo JW<� for unbound-edly many � < �, and may then �nd g� su
h that(1) h� dominates g� modulo JW<� � C.(2) g� dominates h� modulo JV<� � BV� .We �nd Æ1; : : : Æn su
h that Æ1 < : : : Æn < � and f� 2 C : h�(�) � g�(�)g �BWÆ1 [: : :[BWÆn . Note that BWÆi = BVÆi . We also �nd �1; : : : �p su
h that �1 < : : : �p < �and f� 2 BV� : h�(�) � g�(�)g � BV�1 [ : : : [BV�p .We 
laim that C is 
overed by the union of the BV�i , BVÆi and BV�i . To see thisobserve that if � 2 C then at least one of the following must hold:� � 2 BV�i for some i.� � 2 C \BV� and h�(�) � g�(�), in whi
h 
ase � 2 BVÆi for some i.� � 2 C \BV� and h�(�) � g�(�), in whi
h 
ase � 2 BV�i for some i.This 
ontradi
ts the minimal 
hoi
e of �. It follows that as we 
laimed the setsBV� and BW� agree modulo JW� for all �. In parti
ular the BV� will serve as asequen
e of generators in W .It remains to be seen that p
f(K)V = p
f(K)W . This is immediate by thefollowing 
omputation: given any sequen
e B� su
h that B� generates J<�+ overJ<� , p
f(K) is the set of � su
h that B� is not 
overed by a �nite union of B� for� < �. �A small te
hni
al diÆ
ulty is 
aused by the fa
t that the property of being the
hara
teristi
 fun
tion of some stru
ture is not obviously downwards absolute. Wewill resolve this diÆ
ulty using Lemma 4.4 and the following result.Lemma 7.2. Let V and W be inner models of set theory with V �W . In V let Kbe an interval of regular 
ardinals with jKj < � and min(K) = �+ for some regularun
ountable �. Assume that in W the 
ardinal � is still regular and K is still aninterval of regular 
ardinals. Let f 2 V be su
h that for all � with � < � < sup(K),f(�;�) is a bije
tion between � and j�j.Let � be some suÆ
iently large regular 
ardinal of W , and in W let N � (H�;2; <�; fKg; f) be an IA stru
ture of length and 
ardinality �. If �KN 2 V then thereis B 2 V su
h that N \ sup(K) � B � sup(K) and jBj = �.Proof. Sin
e N is IA of length �, we may �x hC� : � 2 Ki lying in W with C� �N \ � and C� 
lub in sup(N \ �) of order type �. Sin
e �KN 2 V and 
o�nalitiesagree, we may �nd in V a sequen
e hD� : � 2 Ki with D� 
lub in sup(N \ �) oforder type �.Now let M0 = N \ sup(K) and note that M0 � (sup(K); f). Let M1 be the hullin (sup(K); f) of �[S�D�, and note that M1 2 V and jM1j = �. The hypothesesof Lemma 4.4 are satis�ed be
ause for ea
h � 2 K the set C� \ D� is 
ontainedin M0 \M1 \ � and is 
o�nal in M0 \ �. It follows that M0 � M1 so we may setB =M1. �



28 JAMES CUMMINGS, MATTHEW FOREMAN, AND MENACHEM MAGIDORTheorem 7.3. Let V and W be inner models of set theory with V � W . In Vlet � be regular and let � > � be a 
ardinal. Let K = REGV \ [�; �℄ and supposethat V and W agree on regular 
ardinals in the interval [�;max(p
f(K)V )℄, K isprogressive and (QK)V is 
o�nal in (QK)W .Let A � �. Then there is B 2 V su
h that A � B and jBjW � maxf�; jAjW g.Proof. We will prove this by indu
tion on sup(A). We way assume that sup(A) > �,sin
e otherwise we may set B = �+ 1. For the rest of this proof 
ardinalities and
o�nalities should be understood as 
omputed in W , though we will ta
itly use theagreement between 
ardinalities of V and W at several points.Case 0: sup(A) is not a 
ardinal. Let f 2 V be a bije
tion between sup(A)and j sup(A)j, and let A� be the image of A under f . By indu
tion we may �ndB� � j sup(A)j su
h that A� � B� and jB�j � maxf�; jAjg, and we may then let Bbe the inverse image of B� under f .Case 1: sup(A) is regular. In this 
ase jAj = sup(A) and we let B = sup(A).Case 2: sup(A) is singular. If jAj = sup(A) then we may set B = sup(A), so wenow assume that jAj < sup(A). By our hypotheses on K we may �nd � regularwith maxf�; jAj; jKj+4g < � < sup(A). We set K0 = (�+; sup(A)) \REG.Let L = p
f(K0) where by Fa
t 6.2 jLj < � and L = p
f(L). We �x in V asequen
e ~B = hB� : � 2 Li of PCF generators for K0, and a matrix of fun
tions~f = hf�i : � 2 L; i < �i su
h that hf�i : i < �i is a 
ontinuous s
ale in QB�=J<� .By Theorem 7.1, ~B is still a sequen
e of PCF generators in W . It is 
lear thathf�i : i < �i is still a s
ale in W , and we 
laim that additionally this s
ale is still
ontinuous at good points of 
o�nality �.We use Fa
t 3.1, the Tri
hotomy Theorem of Shelah. Let � 2 L, and in W let� < � be a point of 
o�nality � whi
h is good for the s
ale hf�i : i < �i. We beginby arguing that in V there must exist an eub for hf�i : i < �i whose values have
o�nality at least �.If this is not the 
ase then in V we must be either in Case 2 or Case 3 from Fa
t3.1. It is easy to see that the properties of being in Case 2 or Case 3 are upwardsabsolute from V to W , in fa
t the witnesses from V will work in W as long as weextend the ultra�lter in V for Case 2 to an ultra�lter in W . Sin
e we have an eubfor hf�i : i < �i of uniform 
o�nality � in W , it follows from Fa
t 3.1 that in W weare not in Case 2 or Case 3, so that in V there is an eub for hf�i : i < �i whosevalues have 
o�nality at least �.By 
ontinuity in V , f�� is an eub whose values have 
o�nality at least � almosteverywhere in V . By the hypothesis on the resemblan
e between V and W , f��retains these properties in W . It follows that the s
ale hf�i : i < �i is 
ontinuous at�. We also �x in V a fun
tion f from sup(K0)2 to sup(K0) 
oding some informationabout 
ardinalities, as in Lemma 7.2.We now build N � (H�;2; <�; fK0g; f) where A � N and N is IA of lengthand 
ardinality �. By theorem 5.3 �K0N is the pointwise supremum of �nitely manyfun
tions of the form f�i � (B� n E�) where E� is the union of a �nite subset offB� : � < �g.It follows that �K0N 2 V . The hypotheses of Lemma 7.2 are satis�ed so we may�nd C in V su
h that jCj = � < sup(A) and A � C. Now let g 2 V be a bije
tion



CANONICAL STRUCTURE 29between C and �, and let A� be the image of A under g. Now we may use theindu
tion hypothesis to 
over A� by a suitable B�, and then pull ba
k along g toget a suitable B 
overing A. �Remark 7.4. Theorem 7.3 is a
tually an equivalen
e. The 
overing statement inthe 
on
lusion implies that V and W agree on regular 
ardinals between � and �,and also implies that (QK)V is 
o�nal in (QK)W .In order to be able to state the next result in a 
ompa
t way, we make thefollowing ad ho
 de�nition.De�nition 7.5. Let V and W be inner models of set theory with V � W . In V ,let � be regular and let � > � be a 
ardinal. We say that W weakly resembles Von [�; �) if and only if the hypotheses of Theorem 7.3 are satis�ed.For ba
kground on the theory of pre
ipitous ideals we refer the reader to Fore-man's survey paper [14℄. The following result belongs to a genre of theorems inwhi
h we are given an ideal I on a 
ardinal � and some information about preserva-tion of 
ardinals when for
ing with P�=I, and we 
on
lude that I must be pre
ip-itous. This line of inquiry was begun by Baumgartner and Taylor[2℄, who provedfor example that under GCH a 
ountably 
losed ideal on �1 whose quotient algebrapreserves �2 is ne
essarily pre
ipitous.Theorem 7.6. Let I be a 
ountably 
omplete ideal on �1. Let � = 2�1 , and supposeit is for
ed by P�1=I that V [G℄ weakly resembles V on [�2; �). Then I is pre
ipitous.Proof. Let G be a generi
 ultra�lter on (P�1)V and letM = Ult(V;G). We observethat by our hypotheses �V2 = �V [G℄1 and re
all the standard fa
t that �V2 is an initialsegment of the well-founded part ofM . It must be the 
ase that �V2 = �M1 , for if notthen in M there is a surje
tion from ! onto some larger M -ordinal, 
ontradi
tingthe fa
t that �V2 = �V [G℄1 .Suppose for a 
ontradi
tion that M is not well-founded, and in V [G℄ 
hoosea sequen
e hfi : i 2 !i su
h that fi 2 V , fi : �V1 �! ON and fi+1 <G fi forall i. Sin
e P�1=I has the �+-
.
. we may �nd C 2 V su
h that jCj � � andrange(fi) � C for all i.By Theorem 7.3 we may �nd B � C su
h that B 2 V , jBjV = �V2 andrange(fi) � B for all i. Working in V , we write B = Sj<�2 Bj where the Bjare in
reasing and jBj j = �1. In V [G℄ this gives a representation of B as an in-
reasing union of 
ountable sets. Sin
e Si range(fi) is 
ountable in V [G℄ we 
an�x a j su
h that range(fi) � Bj for all i. Now let 
 be the order type of Bj ,let h : Bj ' 
 be order preserving and let f�i = h Æ fi. Then hf�i : i 2 !i is aG-de
reasing sequen
e of fun
tions from �1 to 
, and so to get a 
ontradi
tion weneed only show that jG(
) is well-founded for all 
 < �V2 .Suppose for a 
ontradi
tion that jG(
) is ill-founded, and 
hoose a bije
tionF 2M between �M1 and jG(
).Sin
e �M1 = �V [G℄1 , we may �nd Æ < �V [G℄1 su
h that in V [G℄ the set F\Æ 
ontainsan in�nite de
reasing sequen
e of M -ordinals.Working inV [G℄, let T be the tree of all �nite sequen
es (�0; : : : �i) from Æ su
hthat F (�i) > F (�i+1) for all i. The tree T is in the well-founded part ofM . ClearlyT is well-founded in M , and is not well-founded in V [G℄.



30 JAMES CUMMINGS, MATTHEW FOREMAN, AND MENACHEM MAGIDORThe tree T is 
ountable inM , and so inM there is a rank fun
tion � : T �! �M1 .Sin
e �M1 is well-founded, this 
ontradi
ts the existen
e of a bran
h of T in V [G℄.We 
on
lude that M is well-founded and so that I is a pre
ipitous ideal. �
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