
CANONICAL STRUCTURE IN THE UNIVERSE OF SETTHEORY: PART ONEJAMES CUMMINGS, MATTHEW FOREMAN, AND MENACHEM MAGIDORAbstrat. We start by studying the relationship between two invariants iso-lated by Shelah, the sets of good and approahable points. As part of ourstudy of these invariants, we prove a form of \singular ardinal ompatness"for Jensen's square priniple. We then study the relationship between inter-nally approahable and tight strutures, whih parallels to a ertain extent therelationship between good and approahable points. In partiular we hara-terize the tight strutures in terms of PCF theory and use our haraterisationto prove some overing results for tight strutures, along with some results ontightness and stationary reetion. Finally we prove some absoluteness theo-rems in PCF theory, dedue a overing theorem, and apply that theorem tothe study of preipitous ideals.
1. IntrodutionIt is a distinguishing feature of modern set theory that many of the most inter-esting questions are not deided by ZFC, the theory in whih we profess to work;to put it another way, ZFC admits a large variety of models. A natural responseto this is to identify invariants whih may take di�erent values in di�erent models,and whih odify a large amount of information about a model.Of partiular interest are invariants whih are anonial, in the sense that theAxiom of Choie is needed to show that they exist, but one shown to exist they areindependent of the hoies made. For example the unountable regular ardinalsare anonial in this sense.Shelah disovered a large lass of anonial invariants, the study of whih helabeled PCF theory. These invariants inlude two whih are entral in this paper;Shelah [24, 26℄ (under some mild ardinal arithmeti assumptions on the singularardinal �) de�ned two stationary subsets of �+, the sets of good and approahablepoints. The de�nitions of these sets appear to depend on ertain arbitrary hoies,but (modulo the lub �lter) are in fat independent of these hoies. Other anonialstrutures we study in this paper inlude the stationary sets of tight and internallyapproahable strutures, and the olletion of good points on a sale.It is known that every approahable point is good and that weak forms of square,for example Jensen's weak square priniple ���, imply that every point is approah-able. Foreman and Magidor [16℄ showed that their priniple \Very weak square",1991 Mathematis Subjet Classi�ation. Primary 03E35, 03E55; Seondary 03E05.Key words and phrases. PCF theory, good ordinal, approahable ordinal, the ideal I[�℄, in-ternally approahable struture, tight struture, square sequene, overing properties, preipitousideal, mutual stationarity, stationary reetion.The �rst author was partially supported by NSF Grants DMS-9703945 and DMS-0070549.The seond author was partially supported by DMS-9803126 and DMS-0101155. The seond andthird authors were partially supported by the US-Israel Binational Siene Foundation.1



2 JAMES CUMMINGS, MATTHEW FOREMAN, AND MENACHEM MAGIDORwhih aptures some of the approahability implied by ���, implies many of theinteresting onsequenes of ���. Cummings [5℄ showed that the assertion that everypoint is good severely onstrains all �+-preserving extensions of V .Our �rst motivation for the work in this paper is the problem of the relationshipbetween the sets of good and approahable points. This problem is trivial whenweak squares exist, but non-trivial in general. For example it is onsistent relativeto large ardinals that not every point of o�nality �1 in �!+1 is good. We havespeulated that perhaps the sets of good and approahable points oinide, and inSetion 3 we prove that under some strong strutural hypotheses this is the ase.The onept of an approahable ordinal is losely linked to that of an internallyapproahable (IA) struture. To be more preise, the set of approahable ordinalsof o�nality � an be haraterized [16℄ as the set of ordinals whih have the formsup(N \ �+) for some internally approahable N of length and ardinality �.Foreman and Magidor [17℄ isolated the onept of tight struture in their work onmutual stationarity and the non-saturation of the non-stationary ideal on P��, andtightness turns out to be losely related to the issues of goodness and approaha-bility. In partiular internally approahable strutures are tight, and if N is tightthen sup(N \ �+) is good. Our seond motivation for the work in this paper is theanalogy Tight struturesIA strutures = Good ordinalsApproahable ordinalsHere is an outline of the paper. Setion 2 ontains some bakground material.� In setion 3 we prove a tehnial result about square-like sequenes usingthe mahinery of PCF theory. We use this to show that under some stru-tural hypotheses all good points in �!+1 of o�nality greater than �1 areapproahable, and also to show a kind of \singular ardinal ompatness"for square sequenes. For example we show that if CH holds and ��n holdsfor all n < !, then there is a sequene hC :  2 �!+1 \ of(�2)i where Cis a lub subset of  with order type �2 and the C ohere at ommon limitpoints of unountable o�nality.� In setion 4 we study the important property of uniformity for a struture,and show that suÆiently uniform strutures an be reonstruted fromtheir harateristi funtions.� In setion 5 we haraterize tight strutures in terms of PCF theory. Wealso show that the properties of uniformity and tightness an sometimes bepropagated from a set of regular ardinals K to the set pf(K).� In setion 6 we explore the relationship between tightness, overing prop-erties and internal approahability. We prove theorems showing that undersome irumstanes tightness and internal approahability are equivalent.We also reord a remarks on the onnetion between tightness and station-ary reetion.� In setion 7 we prove some absoluteness results in PCF theory. We deduea overing theorem, and use it to show that if I is an ideal on �1 suh thatforing with P�1=I is suÆiently mild then I is preipitous.This paper ontains only ZFC results. In the sequel [7℄ we prove a series of omple-mentary onsisteny results. We would like to thank John Krueger for ommentsand orretions on an earlier draft of this paper.



CANONICAL STRUCTURE 32. PreliminariesAfter a brief review of notation, we disuss the \anonial" onepts whih areentral in this paper: internally approahable and tight strutures, and approahableand good ordinals.We write ON for the lass of ordinals, LIM for the limit ordinals and SUCC forthe suessor ordinals. We write CARD for the lass of in�nite ardinals, REG forthe regular ardinals and SING for the singular ardinals. We denote by of(�) thelass of ordinals of o�nality �, and if A is a set of ordinals we write f(A) for theo�nality of A onsidered as an ordered set. An interval of regular ardinals is a setof the form REG\ [�; �) for ardinals � and �. We denote by �M the interpretationof a term � in a model M , and by �M the relativisation of a formula � to M . Analgebra on a set X is a struture for some ountable �rst-order language whih hasX as its underlying set.2.1. Internally approahable and tight strutures. When � is an unountableregular ardinal, we will denote by H� the transitive set of those X suh that thetransitive losure of X has size less than �. We denote by <� some �xed well-ordering of H�. By onvention when � < � we will assume that <� is the restritionof <� to H�.We will frequently be interested in strutures of the form A = (H�;2; <�); theadvantage of building in a well-ordering is that if X � H� and SkA(X) is the setof elements of H� de�nable in A with parameters from X, then SkA(X) � A andSkA(X) is the smallest substruture of A ontaining X.The de�nition of internally approahable struture appears in Foreman, Magidorand Shelah's paper [18℄ on Martin's Maximum. These strutures are ubiquitousin modern set theory; see Lemma 2.3 and the remarks whih follow it for somemotivation.De�nition 2.1. Let � be regular and let A be some algebra expanding (H�;2; <�).Let N � A. N is internally approahable (IA) if and only if there exist a limitordinal Æ and a sequene hN� : � < Æi suh that(1) N = S�<Æ N�.(2) For all � < Æ, hN� : � < �i 2 N .In this ase we will say thatN is IA of length Æ and that hN� : � < Æi is an approah-ing sequene for N . We note that if we an always take an approahing sequeneto be ontinuous in the sense that if � is a limit ordinal, then N� = S�<� N�.The length Æ of the approahing sequene is not uniquely determined, but it iseasy to see that f(Æ) is uniquely determined; by a mild abuse of language we referto this o�nality as the o�nality of N . In their paper on de�nable ounterexamplesto the ontinuum hypothesis Foreman and Magidor [15℄ give a detailed disussion ofthe lengths and o�nalities of approahing sequenes and the sizes of the struturesthat appear in them.All ountable N are IA, and if N is approahed by a sequene of length Æ thenÆ � N . We are often onerned with IA strutures N whih have length andardinality � for some regular unountable ardinal �. In this ase we an ast thede�nition in a slightly di�erent form, using the following easy lemma.



4 JAMES CUMMINGS, MATTHEW FOREMAN, AND MENACHEM MAGIDORLemma 2.2. Let � be regular and unountable, and let N be an IA substrutureof A with length and ardinality �. Then there is a ontinuous approahing se-quene hM� : � < �i for M , suh that M� is an elementary substruture of A withardinality less than � and hM� : � � �i 2M�+1 for all � < �.We will refer to inreasing and ontinuous sequenes hM� : � < �i of elementarysubmodels of A suh that hM� : � � i 2 M+1 for  + 1 < � as \ontinuousinternally approahing hains of submodels".The following lemma enapsulates some of the key properties of IA strutures.For simpliity we only onsider IA substrutures with approahing sequenes on-sisting of ontinuous internally approahing hains of submodels.Lemma 2.3. Let � be a regular ardinal. Let hM� : � < �i be a ontinuous in-reasing hain of elementary submodels of A suh that hM� : � � i 2 M+1 for < �. Let M = S�<�M� and let � = jM j. Then(1) � �M , so in partiular � � �.(2) For all ordinals  2M with f() > �(a) f(M \ ) = �.(b) There is a losed unbounded set C in sup(M \ ) with C �M .(3) For every set X � M with jXj < �, there is Y 2 M with jY j < � andX � Y .(4) Let K 2M be a set of regular ardinals suh that � < min(K) and jKj < �.Then every funtion in Q2KM \  is dominated pointwise by a funtionin M \QK.(5) Let P 2 M be a �-losed and (�;1)-distributive foring poset. Then thereis a dereasing sequene hpi : i < �i of onditions in M \ P whih meetsevery dense open subset of P lying in M .Proof. We sketh the proof.(1) If � < � then hM� : � < �i in M , and so by elementarity the length � ofthis sequene is in M . We note that as a onsequene M� 2M also.(2) Sine f() > � = jM j,M \ is bounded in . Sine  2M and eahM� isin M , the sequene hsup(M� \ ) : � < �i is easily seen to be a ontinuousinreasing sequene whih is o�nal in sup(M \ ) and onsists of ordinalsin M .(3) Sine jXj < �, there exists � < � suh that X �M�.(4) Let f be a funtion in Q�2KM \ �. We note that sine jKj < � �M andK 2 M , we have K � M . Sine jKj < �, we may �nd � < � suh that fis in Q�2KM� \ �. We de�ne g with domain K by g(�) = sup(M� \ �).Sine jM�j � � < min(K) we see that g 2QK, and sine K and M� bothlie in M we also have g 2M . Clearly f(�) < g(�) for all � 2 K.(5) By indution we hoose pi to be the <�-least ondition in P whih is a lowerbound for hpj : j < ii and lies in all the dense open subsets of P whih arein Mi. Sine hMj : j < ii lies in M it is easy to see that hpj : j < ii lies inM , and hene pi lies in M . �Property 5 is not espeially relevant in this paper, but it is highly signi�ant inthe ontext of [18℄ and [15℄. Properties 2, 3 and 4 will all be of interest to us inwhat follows. In Setion 4 we will make a detailed study of strutures whih have



CANONICAL STRUCTURE 5uniform o�nality as in Property 2. Property 3 is a kind of internal overing whihwe disuss at length in Setion 6. Property 4 we all tightness and we axiomatise itin the following de�nition: atually we axiomatise something a little more general.De�nition 2.4. Let K be a set of regular ardinals, let � = f(�) > sup(K), andlet A = (H�;2; <�). Let M � A.Then M is tight for K if and only if(1) K 2M .(2) For all g 2Q�2M\K(M\�) there exists h 2M\QK suh that g(�) < h(�)for all � 2M \K.We note that if jKj �M then K �M , and in this ase tightness has the simplerform appearing in Property 4 above: when K �M , M is tight for K exatly whenM \QK is o�nal in Q�2KM \ �. It is natural to phrase this de�nition in termsof a standard idea, the harateristi funtion of a struture.De�nition 2.5. Let K be a set of regular ardinals and let M be a set. Theharateristi funtion of M (on K) is the funtion �KM with domain K given by�KM : � 7�! sup(M \ �).We will usually drop the supersript K and write �M when the set K is learfrom the ontext. Typially we will be in a situation where jM j < min(K) and so�M 2QK. If a struture M is suh that K �M , then tightness of M amounts tosaying that every funtion inQK whih is pointwise dominated by �M is pointwisedominated by some funtion in M \QK.There are several reasons why it seems worthwhile to isolate the property oftightness. One reason is that there are many arguments in PCF theory whih em-ploy IA strutures, and on loser inspetion these arguments are typially just usingthe tightness guaranteed by Lemma 2.3. Another reason is that tight struturesarise naturally in Foreman and Magidor's theory of mutual stationarity. We onlygive a ursory desription of the theory of mutual stationarity, for more informationsee [17℄ and the sequel to this paper [7℄.De�nition 2.6. Let K be a set of regular unountable ardinals. Let hS� : � 2 Kibe suh that S� � � for all � 2 K.(1) If N is a set, then N meets hS� : � 2 Ki if and only if sup(N \ �) 2 S� forall � 2 N \K (equivalently �N � N \K 2Q�2N\K S�).(2) hS� : � 2 Ki is mutually stationary if and only if for every algebra A onsup(K) there exists N � A suh that N meets hS� : � 2 Ki.It is easy to see that if hS� : � 2 Ki is mutually stationary then S� is stationaryfor eah �. Foreman and Magidor showed [17℄ that the onverse is false in general,but is true if S� � � \ of(!) for all �.Mutual stationarity an be seen as intermediate between the lassial oneptof stationarity for subsets of a regular unountable ardinal, and the very generalonept of stationarity introdued in [18℄. We reall that if S � P(X) then S is astationary subset of P(X) if and only if for every algebra A on X there is B 2 Ssuh that B � A. This is easily seen to be equivalent to demanding that for everyF : <!X �! X there is a non-empty B 2 S whih is losed under F . When weneed to distinguish between di�erent avors of stationarity we will refer to this lastonept as general stationarity.



6 JAMES CUMMINGS, MATTHEW FOREMAN, AND MENACHEM MAGIDORThe sequene hS� : � 2 Ki is mutually stationary if and only if the set of subsetsof sup(K) whih meet hS� : � 2 Ki is a stationary subset of P(sup(K)). By stan-dard fats [18, Lemma 0℄ about general stationarity, ifX is any set with sup(K) � Xthen hS� : � 2 Ki is mutually stationary if and only if the set of subsets of X whihmeet hS� : � 2 Ki is a stationary subset of P(X). Subsequently we will often letX = H� for � some regular ardinal greater than sup(K).Two of the most useful fats about stationary subsets of a regular unountableardinal � are Fodor's lemma [13℄ and Solovay's splitting theorem [27℄. It is opento what extent these results may be generalised to arbitrary mutually stationarysequenes; Foreman and Magidor [17℄ identi�ed a lass of mutually stationary se-quenes, the tightly stationary sequenes, for whih versions of Fodor's lemma andSolovay's splitting theorem are available. As one might expet, a tightly stationarysequene is a sequene whose mutual stationarity is witnessed by tight strutures.De�nition 2.7. Let K be a set of regular ardinals and let hS� : � 2 Ki be suhthat S� � � for all � 2 K. Let � = sup(K)+. The sequene hS� : � 2 Ki is tightlystationary if and only if for every algebra A on H� there is N � A suh that N istight for K and N meets hS� : � 2 Ki.See Foreman and Magidor's paper [17℄ for the statements and proofs of Fodor'slemma and Solovay's theorem in the ontext of tight stationarity.2.2. Approahable and good points. There is a lose onnetion between in-ternally approahable strutures and the normal ideal I[�℄ de�ned by Shelah [24,25, 26℄.De�nition 2.8. Let � be a regular unountable ardinal. S 2 I[�℄ if and only ifthere exists a lub subset E of � and a sequene ha� : � < �i of bounded subsetsof �, suh that for all Æ 2 E \ S there is A � Æ unbounded in Æ suh that ot(A) =f(Æ) < Æ and for every � < Æ there is  < Æ suh that A \ � = a .We disuss some alternative haraterisations of I[�℄ in Setion 7. The followingresult appears in [16℄ as part of the proof of Claim 4.4 in that paper, and gives onediretion of the onnetion between I[�℄ and approahable strutures.Lemma 2.9. Let � be regular and unountable. Let � > � and let A be an algebraexpanding (H�;2; <�). Let S 2 I[�℄. Then there is a lub subset F of � suh thatfor every Æ 2 F \ S there is M � A suh that M is IA of length and ardinalityf(Æ) and sup(M \ �) = Æ.To get a reasonable onverse we �x a regular ardinal � less than � and assumethat �<� = �. We let I[�; �℄ be the restrition of I[�℄ to o�nality �, that isthe ideal of those X � � suh that X \ of(�) 2 I[�℄. We enumerate [�℄<� asha� : � < �i, and let S be the set of Æ 2 � \ of(�) suh that there is A � Æunbounded in Æ with ot(A) = � and every proper initial segment of A enumeratedas a for some  < Æ. If we hoose a di�erent enumeration hb� : � < �i of [�℄<�then fa� : � < �g = fb� : � < �g for a lub set of � < �, so modulo the lub �lterS is independent of the hoie of the enumeration ha� : � < �i.It is not diÆult to see that S generates I[�; �℄ modulo the lub �lter on �, orto put it another way S is (modulo lub sets) the largest subset of �\ of(�) whihis in I[�℄. We will refer to S as \the set of approahable points of o�nality � in �"with the understanding that this set is well-de�ned modulo the lub �lter. In thissituation there is an easy onverse to Lemma 2.9.



CANONICAL STRUCTURE 7Lemma 2.10. Let �, � and � be regular with � < � < � and �<� = �. Letha� : � < �i be an enumeration of [�℄<� in order type �, and let S be de�ned asabove. Let N � (H�;2; <�; fha� : � < �ig) be IA of length and ardinality �. Thensup(N \ �) 2 S.Proof. Let N be approahed by hNi : i < �i, and let i = sup(Ni \ �). Then everyproper initial segment of hi : i < �i lies in N , so is enumerated as a� for some� 2 N \ �. It follows that sup(N \ �) 2 S. �Summarising, if �<� = � then (modulo lub sets) S is the set of ordinals of theform sup(N \�) where N is IA of length and ardinality �. If C is any lub subsetof � we an add C to the struture in the proof of Lemma 2.10, and �nd N suhthat sup(N \�) 2 C\S; it follows that S is stationary. It is interesting to note thatthere is an attrative haraterisation of S in terms of foring: results of Shelah [24℄imply that every �+-losed foring poset preserves the stationarity of subsets of S,but there is a �+-losed poset whih destroys the stationarity of � \ of(�) n S.The set S is an example of the sort of \anonial invariant" disussed in theintrodution. We will ompare the set of approahable points with the set of goodpoints, but before we an de�ne the set of good points we need some PCF-theoretipreliminaries. For more information about PCF theory we refer the reader toShelah's book [26℄, or the survey papers [3℄ and [1℄.Given a set X and an ideal I on X, we refer to the sets in I as I-small sets. Wesay that a set Y � X is I-large if X nY 2 I and is I-positive if Y =2 I. Given ordinalvalued funtions f and g with domain X, we say that g dominates f modulo I (andwrite f <I g) if f(x) < g(x) for an I-large set of values of x; the relation <I is astrit partial ordering. Similarly we say g dominates f pointwise (and write f < g)if f(x) < g(x) for all x. Given an ordinal valued funtion f a sale of length � in(Qx f(x); <I) is an inreasing and o�nal sequene of length � in (Qx f(x); <I).For Y a subset of X, a sequene of funtions in XON is pointwise inreasingon Y if it is stritly inreasing on every oordinate in Y . We note that a sequenewhih is pointwise inreasing on an I-large set is <I -inreasing, but that in generalthe onverse is not true. Two sequenes hf� : � < i and hg� : � < i whih areinreasing with respet to <I are o�nally interleaved (modulo I) if for all � < there is � <  suh that f� <I g� and g� <I f� .The funtion g is a an exat upper bound (eub) for the <I -inreasing sequenehf� : � < �i if and only if f� <I g for all � < �, and for every h with h <I gthere exists � < � with h <I g�. This is equivalent to hf� : � < �i being a sale in(Qx g(x); <I) (with the aveat that the funtions f� need only be dominated by gmodulo I, rather than literally being members of Qx g(x)). It is easy to see thatan exat upper bound, if one exists, is well-de�ned modulo I.A point � is good for a <I -inreasing sequene ~f (of length at least �) if andonly if f(�) > jXj and there exists an exat upper bound h for hf� : � < �i withthe property that f(h(x)) = f(�) for all x. The following lemma gives some usefulequivalent haraterisations of goodness: the impliation from 3) to 1) gives animportant onstrution priniple for exat upper bounds.Lemma 2.11. The following are equivalent for hf� : � < �i a <I-inreasing se-quene with f(�) > jXj.(1) � is good.



8 JAMES CUMMINGS, MATTHEW FOREMAN, AND MENACHEM MAGIDOR(2) There is a sequene of funtions of length f(�) whih is pointwise inreasingand is o�nally interleaved with hf� : � < �i modulo I.(3) There is a sequene of funtions of length f(�) whih is pointwise inreasingon an I-large subset of X and is o�nally interleaved with hf� : � < �imodulo I.Proof. For 1) implies 2), let h be an eub suh that f(h(x)) = f(�) for all x and�x for eah x a sequene h�xi : i < f(�)i inreasing and o�nal in h(x); now de�negi(x) = �xi and hek that hgi : i < f(�)i is pointwise inreasing and o�nallyinterleaved with hf� : � < �i. The impliation from 2) to 3) is immediate. For3) implies 1) �x hgi : i < f(�)i pointwise inreasing on an I-large set and o�nallyinterleaved with hf� : � < �i; hek that the pointwise supremum of hgi : i < f(�)iis an exat upper bound for hf� : � < �i whih has o�nality f(�) on an I-largeset, and then alter it to get an exat upper bound whih has o�nality f(�) on allx. �As an immediate orollary of Lemma 2.11, if � is a good point then there is Club in � suh that every point of C with o�nality greater than jXj is good. Sothe set of ungood points of o�nality greater than jXj is quite thin, in the sensethat if it is stationary then its stationarity an only reet at points of itself.Example 2.12. If hf� : � < �i and hf 0� : � < �i are two <I-inreasing sequeneswith the same exat upper bound g then it is easy to see that they are o�nallyinterleaved. It follows that if � is a regular unountable ardinal there is a lub setof � < � suh that hf� : � < �i and hf 0� : � < �i are o�nally interleaved. Thereforethe sets of good points for hf� : � < �i and hf 0� : � < �i are equivalent modulo thelub �lter and so give an example of \anonial" struture.The following result by Shelah is entral in PCF theory.Fat 2.13. If � is a singular ardinal then there is a set K � � of regular ardinalssuh that ot(K) = f(�) and there is a sale of length �+ in QK under the eventualdomination ordering.As we just pointed out, the set of good points in suh a sale is essentiallyindependent of the hoie of the sale so has some laim to be onsidered a anonialinvariant. Of ourse there is still a dependene on K but for small values of � wean also make a anonial hoie for K. The ase of most interest to us is � = �!,and in this ase work of Shelah shows that modulo �nite sets there is a largestK � f�n : n < !g suh that QK has a sale of length �!+1 in the eventualdomination ordering. In this situation we refer to the set of good points in suh asale as the good points in �!+1.The next lemma makes the onnetion between sales, good points and IA stru-tures. It should be ompared with Lemma 2.10.Lemma 2.14. Let jXj < � < � < � with �, � and � regular. Let ~f = hf� : � < �ibe a <I-inreasing sequene in XON=I, and suppose there is an exat upper boundg for ~f suh that f(g(x)) > � for all x 2 X. Let N � (H�;2; <�; f~f; gg) be an IAstruture of length and ardinality �. Then sup(N \ �) is a good point for ~f .Proof. We �x an internally approahing hain hNi : i < �i suh that X 2 N0, X �N0, jNij < � for all i and the union of the hain is isN . We let gi(x) = sup(Ni\g(x))for i < �, and laim that hgi : i < �i will serve as a witness that sup(N \�) is good.



CANONICAL STRUCTURE 9Sine X � N0 and f(g(x)) > � for all x 2 X, we see that gi < g; moreover if i < jthen Ni 2 Nj , so gi 2 Nj and hene gi < gj .Sine gi 2 N and gi is dominated by the exat upper bound g, it follows byelementarity that gi <I f� for some � 2 N\�. On the other hand if � < sup(N\�)then there exist i < � and � 2 Ni \ � with � < �, so that range(f�) � Ni andf� < gi. �If C is lub in � we may add a prediate for C to A and produe a good pointof o�nality � lying in C. It follows that the set of good points of o�nality � isstationary.We an now prove that, as we mentioned in the introdution, approahable pointsare good.Corollary 2.15. Let � be the suessor of a singular ardinal �, let K � � be anunbounded set of regular ardinals with ot(K) = f(�) < min(K). Let ~f be a saleof length � in QK under eventual domination. If S 2 I[�℄ then almost all pointsof S with o�nality greater than f(�) are good for ~f .Proof. Immediate from Lemmas 2.9 and 2.14 �Realling that the set of approahable points (when it an be de�ned) is themaximal set in I[�℄, we see that modulo the lub �lter every approahable point ofo�nality greater than f(�) is good.3. Goodness, approahability and ompatness for squaresOne theme of this paper is the relationship between the onepts of goodnessand approahability. As we showed in Corollary 2.15, approahable points aregood. In this setion we show that under ertain irumstanes the impliationfrom approahability to goodness an be reversed. It is notable that the resultpresented here shows that sales an be used to derive squarelike priniples at �from squares below �.Sine approahable points are good, the problem \whih good points are ap-proahable" beomes trivial if almost every point is approahable. We digressbriey to review what is known about the extent of I[�℄.It it is known that if Jensen's weak square priniple ��� holds then �+ 2 I[�+℄,so that large ardinals will be required to make models in whih I[�+℄ is non-trivial.If �<� = � then ��� holds, so GCH trivialises I[�℄ for � the suessor of a regularardinal. Shelah has shown that if � is regular then �+ \ of(< �) is in I[�+℄,and that if � is singular then for all regular � < � there is a stationary subset of�+ \ of(�) lying in I[�+℄.If � is superompat and f(�) < � < �, then �+ \ of(< �) =2 I[�+℄. By doingsome suitable Levy ollapses (see [24℄ or [20℄ for details) this an be used to produea model in whih �!+1 \ of(�1) =2 I[�!+1℄. As for suessors of regular ardinals,Mithell's model [23℄ in whih there is no �2-Aronszajn tree also has the propertythat �2 \ of(�1) =2 I[�2℄. In reent work [22℄ Mithell has produed a model inwhih I[�2℄ is generated modulo the lub �lter by the set �2 \ of(!).We now narrow our fous to the ardinal �!+1, where the points of o�nality�1 seem to play a speial role. It is known (see [16℄ or [7℄) to be onsistent thatstationarily many points of o�nality �1 are not good, and it is open whether�!+1 \ of(6= �1) is always in I[�!+1℄. As we see shortly all points of o�nality



10 JAMES CUMMINGS, MATTHEW FOREMAN, AND MENACHEM MAGIDORgreater than 2�0 are good. In partiular under CH all points of o�nality greaterthan �1 are good.Before we prove the main result of this setion we need some tehnial preliminar-ies. We start with the onept of a ontinuous sequene. Let ~f be a <I -inreasingsequene. The sequene ~f is ontinuous at � if and only either there is no exatupper bound for hf� : � < �i or f� is suh a bound. ~f is ontinuous if and onlyif it is ontinuous at every limit �. Given an arbitrary <I -inreasing sequene ~fof limit length �, we may replae f� for � < � limit by an exat upper bound forhf� : � < �i whenever suh a bound exists, and get a ontinuous sequene whih iso�nally interleaved with the original one.If � is a good point for ~f and hgi : i < f(�)i is inreasing on an I-large set ando�nally interleaved with hf� : � < �i then let g be the pointwise supremum of thesequene hgi : i < f(�)i. As we saw in Lemma 2.11 g is an exat upper boundfor hf� : � < �i and so by ontinuity f� is also an exat upper bound: sine exatupper bounds are unique modulo I, the funtions f� and g must agree on an I-largeset.Next we need an alternative haraterisation of good points in sales of a speialkind. When X is an ordered set with no last element, and I is the ideal of boundedsubsets of X, we usually write <� for <I and =� for <I . We refer to <� as theeventual domination ordering. This is the ontext of the \good sales" and \verygood sales" studied in our paper [8℄ on sales, squares and reetion.In a sale under eventual domination the de�nition of good point an be simpli-�ed. To be more preise the following statements are equivalent:� The ordinal � is good for ~f .� The o�nality of � is greater than jXj, and for every unbounded A � �there exists an unbounded B � A and x 2 X suh that hf� : � 2 Bi ispointwise inreasing on fy : x < yg.The proof of the forward impliation uses an \interleaving" argument of a typewhih is ubiquitous in PCF theory, so we give it in detail.Sine � is good, we may �x x0 2 X and hg� : � < f(�)i whih is pointwiseinreasing on fy : x0 < yg and is o�nally interleaved with hf� : � < �i. Thinningout the sequene of g� we may also assume that for every � there is � 2 A withg� <� f� <� g�+1. Sine f(�) > jXj we may �nd x � x0 and an unbounded setB0 � f(�) suh that g�(y) < f�(y) < g�+1(y) for all � 2 B0 and y � x. LetB = f� : � 2 B0g, and observe that if � and �0 are in B0 with � < �0 and y � xthen f�(y) < g�+1(y) � g�0(y) < f0�(y).We will also need Shelah's important Trihotomy theorem [26℄.Fat 3.1. Let I be an ideal on a set X of ardinality �, and let � be regular with�+ < �. Let hf� : � < �i be a <I -inreasing sequene. Then one of the followingmust our:(1) There is an eub g for hf� : � < �i suh that f(g(x)) > � for all x.(2) There exist an ultra�lter U on X disjoint from I and sets hSx : x 2 Xiwith jSxj � �, suh that for all � < � there is g 2 Qx2X Sx and � < �suh that f� <U g <U f�.(3) There exists a funtion h suh that if D� = fx : f�(x) < h(x)g then thesequene hD� : � < �i is not eventually onstant modulo I.



CANONICAL STRUCTURE 11If 2� < � then it is not hard to see that the seond and third ases are impossible,so that there must exist an eub g for hf� : � < �i suh that f(g(x)) > � for all �.For the rest of this setion we �x some in�nite A � ! suh that there is a sale oflength �!+1 in Qn2A �n under eventual domination. We also �x hf� : � < �!+1iwhih is suh a sale. Altering the sale at limits if neessary, we may assume thatit has the following strengthened form of the ontinuity property: if 0 < k < ! and� is a good point of o�nality �k, then f� is an exat upper bound for hf� : � < �i(this is just ontinuity) and in addition f(f�(n)) = �k for all n > k.We already know that there are stationarily many good points for this sale inany unountable o�nality but with some ardinal arithmeti assumptions we ansay more.If 2�0 < �k and � 2 �!+1 is a point of o�nality �k then it follows from Tri-hotomy that there is an eub g for hf� : � < �i with f(g(n)) > �0 for all n 2 A. Alittle analysis (see [21℄ or [4℄ for the details) shows that f(g(n)) = �k for o�nitelymany n, so that � is a good point: it follows from our assumptions on the salethat f� is an eub for hf� : � < �i and f(f�(n)) = �k for all n 2 A with n > k.The strutural hypothesis whih we need for our main result is a weakening ofsquare whih only refers to ordinals below �! with a �xed o�nality.De�nition 3.2. Let k be a natural number with k � 1. A �(�!; of(!k))-sequeneis a sequene hC� : � 2 �! \ of(!k)i suh that(1) For all �, C� is lub in � and ot(C�) = !k.(2) For all �, � and , if  2 lim(C�) \ lim(C�) then C� \  = C� \ .The next lemma is similar in spirit to the results on \improving squares" in ourpaper on sales, squares and reetion [8℄.Lemma 3.3. If ��n holds for all n with k � n < ! then there is a �(�!; of(!k))-sequene.Proof. Fix hDn� : � < �n+1i witnessing ��n , where we assume without loss of gen-erality that Dn� � � n (�n + 1) for � 2 �n+1 n (�n + 1). We de�ne C� indutively.Base ase: If � 2 �k+1 \ of(!k), let C� = Dk�.Suessor ase: Let � 2 (�n+1n(�n+1))\of(!k) for n > k and let �� = ot(Dn�).Sine f(�) = !k and k 6= n, we see that �� < �n. Sine Dn� is lub in �,f(��) = f(�) = !k. By indution C�� has already been de�ned, and we de�ne C�by opying C�� into Dn�. To be more preise we set C� = f 2 Dn� : ot(Dn� \ ) 2C��g.We now hek that this de�nition sueeds. Let � 2 lim(C) \ lim(CÆ). By ourassumption on the sets Dn�, either  and Æ are both less than �k+1 or they both liein �n+1 n (�n + 1) for some n > k.Case 1: ; Æ < �k+1. In this ase C = Dk and CÆ = DkÆ , and it follows thatC \ � = Dk� = CÆ \ � by the de�ning property of a ��k -sequene.Case 2: �n < ; Æ < �n+1 for n > k. In this ase � 2 lim(Dn ) \ lim(DnÆ ) and soDn \ � = DnÆ \ �. Moreover if � = ot(Dn \ �) then by the de�nition of C we havethat � 2 lim(C�), and similarly � 2 lim(CÆ�). By indution C� \ � = CÆ� \ �, andso by de�nition C \ � = CÆ \ �. �



12 JAMES CUMMINGS, MATTHEW FOREMAN, AND MENACHEM MAGIDORThe main theorem of this setion shows that starting with a �(�!; of(!k))-sequene, we may lift it via PCF theory to a square-like sequene de�ned on the setof good points of o�nality !k in some sale of length �!+1. To be more preise wede�ne the following square-like priniple, whih is obtained by allowing the lub setsto be de�ned only at points of some set S and weakening the oherene requirementso that it only applies at ommon limit points of unountable o�nality.De�nition 3.4. Let S � �!+1 \ of(!k) for some k > 1. A ��!�! (S)-sequene is asequene hE� : � 2 Si suh that(1) For every � 2 S, E� is lub in � and ot(E�) = !k.(2) For all ; Æ 2 S and every � of unountable o�nality whih is a ommonlimit point of E and EÆ, E \ � = EÆ \ �.Theorem 3.5. Let k be an integer with k � 2, and assume that there is a�(�!; of(!k))-sequene. If G is the set of good points of o�nality !k for thesale hf� : � < �!+1i, then there exists a ��!�! (G)-sequene.Proof. Dropping �nitely many points from the set A if neessary, we may as-sume that all points in A are greater than k. Fix a �(�!; of(!k))-sequenehC� : � 2 �! \ of(!k)i. By our assumptions on the sale and the set A, for all 2 G the funtion f is an exat upper bound for hf� : � < i and f(f(n)) = �kfor all n 2 A.Given  2 G, we de�ne funtions gi for i < !k by setting gi (n) equal to theith member of Cf(n). By onstrution the sequene of funtions hgi : i < !ki ispointwise inreasing and is o�nally interleaved with hf� : � < i.For almost every � <  of unountable o�nality, there is j < !k suh thathgi : i < ji is o�nally interleaved with hf� : � < �i; the sequene hgi : i < ji wit-nesses that � is good. Fix suh � and j. By the argument of Theorem 2.11 and theuniqueness of exat upper bounds f� =� supi<j gi , and sine Cf(n) is losed wealso see that supi<j gi (n) = gj (n). We onlude that f� =� gj .For every  2 G, we now de�ne D = f � <  : 9j f� =� gj g. The set D neednot be lub in , and so we let E be the losure of D in . We will show thathE :  2 Gi is a ��!�! (G)-sequene.If � is an aumulation point of D with unountable o�nality, then there isa unique k suh that the funtions fgj : j < kg are o�nally interleaved withff� : � < �g. It follows that � is good, and so by ontinuity we have f� =� gk andthus � 2 D .It is easy to see that ot(D) = !k and we just showed that D is losed undersuprema of unountable o�nality. Now let ; Æ be members of G. We laim that if� is a ommon aumulation point of D and DÆ with unountable o�nality, thenD \ � = DÆ \ �.Sine � is in D , there is j with f(�) = f(j) suh that f�(n) = gj (n) for alllarge n, so that f�(n) 2 lim(Cf(n)) for all large n. Similarly there is k suh thatf�(n) = gÆk(n) and f�(n) 2 lim(CfÆ(n)) for all large n.It follows that Cf(n) \ f�(n) = CfÆ(n) \ f�(n) for all large n, and hene thatj = k and that gi = gÆi for i < j. If � 2 D \ � then f� =� gi for some i < j, andso f� =� gÆi and � 2 DÆ \ �; similarly DÆ \ � � D \ �, so D \ � = DÆ \ �.It is now routine to verify that hE :  2 Si is a ��!�! (G)-sequene. �Theorem 3.5 has the following striking orollary.



CANONICAL STRUCTURE 13Corollary 3.6. Let CH hold and let ��n hold for all n < !. Then for every integerm � 2 there exists a ��!�! (of !m)-sequene.Remark 3.7. With a little work we an put Corollary 3.6 in a more pleasingway. Extending our notation, let ��!�n (of(�k)) be the statement that there existshC� : � 2 �n+1 \ of(�k)i with C� lub in �, and the C� ohering at ommon limitpoints of unountable o�nality. Let CH hold, let k � 2; then if ��!�n (of(�k)) holdsfor all suÆiently large �nite n, it holds for n = !. The proof is an easy variationon the one given above.Theorem 3.5 also supplies a partial answer to the problem whih motivates thispaper, the relationship between goodness and approahability. It is easy to seethat if there is a ��!�! (S)-sequene then S 2 I[�!+1℄, and so Theorem 3.5 has thefollowing orollary.Corollary 3.8. If ��n holds for all �nite n then in �!+1 all good points of o�nalitygreater than �1 are approahable.We an also dedue some results about stationary reetion.Corollary 3.9. Let CH hold and let ��n hold for all n < !. For all integers mand n suh that 0 < m < n there is a stationary subset of �!+1 \ of(�m) whihdoes not reet at any point of �!+1 \ of(�n).Proof. Let hC� : � 2 �!+1 \ of(�n)i be a ��!�! (of !n)-sequene. Let S be the setof points of o�nality �m whih our as limit points of some C�, and given � 2 Slet D� be the unique set suh that D� = C� \ � when � 2 lim(C�).For any lub subset D of �!+1, we an �nd � 2 lim(D) with f(�) = �n. ThenD \C� is lub in � and so we an �nd � 2 lim(C� \D) with f(�) = �m. Clearly� 2 D \ S so that S is stationary.Applying Fodor's lemma we may �nd T � S stationary and  suh that ot(D�) = for all � 2 T . For eah � of o�nality �n the lub set lim(C�) meets T exatlyone, so that the stationarity of T does not reet at any point of o�nality �n. �In our paper [9℄ it is shown that it is onsistent that ��n holds for 0 < n <! but ��! fails. This is ahieved by arranging that every stationary subset of�!+1 \ of(!) reets at some point of �!+1 \ of(�1). In the sequel [7℄ to thispaper we show that it is onsistent that the least � for whih �� fails should bethe �rst inaessible ardinal.We an also ombine the ��!�! (of !m)-sequenes of Corollary 3.6 for di�erentvalues of m and get a weakening of the priniple ��!;! [8℄.Corollary 3.10. Let CH hold and let ��n hold for all n < !. Then there existshC :  < �!+1i suh that for every limit ordinal (1) C is a ountable family of subsets of , eah with order type less than �!.(2) For every C 2 C and every � 2 lim(C) with unountable o�nality, C\� 2C�.Similar arguments an be used with some other square like priniples. The fol-lowing \Strong Non-Reetion" priniple was introdued by Dzamonja and Shelah[11℄, and has been used by Cummings, Dzamonja and Shelah [6, 10℄ in the investi-gation of stationary reetion.



14 JAMES CUMMINGS, MATTHEW FOREMAN, AND MENACHEM MAGIDORDe�nition 3.11. Let � and � be regular and unountable with � < �. ThenSNR(�; �) holds if and only if there is f : � �! � suh that for all � 2 � \ of(�)there is C lub in � suh that f � C is stritly inreasing.This priniple is true in L for all � whih are not weakly ompat and all � < �.It implies that every stationary subset of � has a stationary subset whih reetsat no point of o�nality �.Dzamonja and Shelah [12℄ have studied the ardinal u(�) whih is de�ned to bethe least � > � suh that SNR(�; �) fails. In partiular they have shown by anelaborate foring argument that u(�) an be the suessor of a singular ardinal.The following theorem, whih is proved in the same way as Theorem 3.5, seems tohave some bearing on problems of this type.Theorem 3.12 (Cummings [4℄). Suppose that k < ! and that SNR(�n;�k) holdsfor all large n < !. Then there is f : �!+1 �! �k suh that for all good � 2�!+1 \ of(�k) there is C lub in � suh that f � C \ f : ! < f() < �kg isstritly inreasing.One rather unsatisfying feature of some results in this setion is the appearaneof the Continuum Hypothesis among the hypotheses. CH is only being used toderive \all points of �!+1 \ of(> �1) are good", and it is quite possible that thisstatement is atually true in ZFC. For some disussion of the diÆulties assoiatedwith attempting to show that this statement is onsistently false see [5℄.4. UniformityIn this setion we develop the idea of uniformity for a struture. The main pointis that suÆiently uniform strutures an be reonstruted from a small amount ofdata.We reall from Lemma 2.3 that ifM is an IA struture of size � with a ontinuousapproahing sequene of length � then f(M \ ) = � for all ordinals  2 M suhthat f() > �. This is the prototype for the uniformity properties we will onsider.De�nition 4.1. Let M � (H�;2; <�), let K be a set of regular ardinals and let� be a ardinal. Then M is �-uniform on K if and only if f(M \ �) = � for all� 2 K \M , and is weakly �-uniform on K if and only if f(M \ �) � � for all� 2 K \M .This property arises naturally in the study of mutual stationarity. A struturewhih meets a sequene of stationary sets all onsisting of ordinals of o�nality �will automatially be �-uniform on the relevant set of regular ardinals.A partiularly interesting ase for our purposes will our when K is an intervalof ardinals and M ontains a large enough initial segment of the ordinals.De�nition 4.2. Let M � (H�;2; <�) and let �, � and � be ardinals with � �� < � � �. The struture M is �-uniform (resp. weakly �-uniform) between � and� if and only if(1) � �M .(2) The struture M is �-uniform (resp. weakly �-uniform) on the interval ofregular ardinals f� 2 REG : � < � < �g.IfM is �-uniform between � and � we say thatM is �-uniform past �, and similarlyfor weak uniformity.



CANONICAL STRUCTURE 15This kind of uniformity arises naturally in the study of IA strutures. If M isan IA struture with an approahing hain of length � and � = jM j �M , then Mis �-uniform past �.LetM � (H�;2; <�). If  is any limit ordinal inM , then f() is inM and thereexists inM an inreasing o�nal map f from f() to . Restriting f to f()\Mwe get a o�nal map from f() \M to  \M , so that f() \M and  \M havethe same o�nality. In partiular if M is �-uniform on K then f( \M) = � forall ordinals  2M suh that f() 2 K, and similarly for weak uniformity. If M is�-weakly uniform between � and � and � 2 M is an ordinal of o�nality less thanor equal to � it follows that M \ � is unbounded in �. If f(�) is stritly between� and �, then f(M \ �) � �.Before disussing the impliations of weak uniformity, we reall a well-knownvariation on the losed unbounded �lter. Given a regular ardinal � and a limitordinal � with � � f(�), we say that a set A � � is a < �-lub subset of � if A isunbounded in �, and sup(x) 2 A for every x � A with jxj < �. If � is unountablethen the olletion of < �-lub sets generates a f(�)-omplete �lter, whih is infat the restrition of the lub �lter to the set of points of o�nality less than �.Lemma 4.3. Let M be �-weakly uniform between � and �. Then(1) For every bounded subset x of M \ � with jxj < �, sup(x) 2M .(2) For every regular � with � < � � sup(M \ �)(a) f(M \ �) � �.(b) There exists E �M \ � whih is < �-lub in sup(M \ �).(Note that in item 2, we do not require that � 2M .)Proof. For laim 1, we may as well assume that x has limit order type. Let � =sup(x) and  = min(M n�), where learly both � and  are limit ordinals less than� and M \  = M \ �. Suppose for a ontradition that  > �. Then f() > �,beause otherwiseM\ would be unbounded in . Sine  2M and � < f() < �we have f(M \ ) � �, but this is impossible beause f(M \ �) = f(�) � jxj < �and M \ � =M \ .For laim 2, we �x a regular � with � < � � sup(M \ �). Suppose for aontradition that f(M \ �) < � and �x x �M \ � o�nal in M \ � with jxj < �.Sine � � � < �, M \ � is bounded in �. Sine � � sup(M \ �), x is a boundedsubset of M \ � and so by the �rst laim sup(x) = sup(M \ �) 2 M . This is aontradition sine M \ � is bounded in �. If we now �x any o�nal set D �M \ �and let E be the losure of D under suprema of size less than �, then E � M \ �and E is a < �-lub set as required. �It is notable that laim 2) of Lemma 4.3 applies to regular ardinals whih donot lie inM . Before we an exploit Lemma 4.3 we need some more or less standardfats about rebuilding strutures.The idea of Lemmas 4.4 and 4.5 �rst appears in the proof by Solovay that theSingular Cardinals Hypothesis holds above a strongly ompat ardinal. Lemma4.5 will �nd an immediate appliation in Theorem 4.6 where we show that suf-�iently uniform strutures are determined by their harateristi funtions: themore general Lemma 4.4 will be useful later in the overing results of Setion 7.Lemma 4.4. Let � be a ardinal, let K be an interval of regular ardinals withmin(K) = �+ and let � be a regular ardinal with sup(K) < �. Let M0 and M1 betwo elementary substrutures of (H�;2; <�) suh that



16 JAMES CUMMINGS, MATTHEW FOREMAN, AND MENACHEM MAGIDOR� � �M0 \M1.� For every � 2 K, M0 \M1 \ � is o�nal in M0 \ �.Then M0 \ sup(K) �M1 \ sup(K).Proof. Clearly M0 \ � = M1 \ � = �. We show by indution on � 2 K thatM0 \ � �M1 \ �. There is nothing to do when � is a limit ardinal, so let � = �+where M0 \ � �M1 \ � by indution. If � 2M0 \ � there is � 2M0 \M1 \ � with� < �, and we �x f the <�-least bijetion from � to j�j. Sine � 2 M0 \M1 andf is de�ned from � we have f 2 M0 \M1, and sine � < �+ we have j�j � �. Sof(�) 2M0 \ �, and sine M0 \ � �M1 \ � we onlude that f(�) 2M1 \ � and so� 2M1. Thus M0 \ � �M1 \ � and the indution goes through. �We note that we are not assuming that K �M here.Lemma 4.5. If we strengthen the hypotheses of Lemma 4.4 by adding the demandthat M0 \M1 \ � is also o�nal in M1 \ � for all � 2 K, then we may strengthenthe onlusion to M0 \ sup(K) =M1 \ sup(K).Proof. Immediate from Lemma 4.4. �Theorem 4.6. Let � be an unountable ardinal. Let K be an interval of regularardinals with min(K) = �+ and let � be a regular ardinal with sup(K) < �. LetM � (H�;2; <�) be �-weakly uniform between � and supf�+ : � 2 Kg. ThenM \ sup(K) is determined by �KM and sup(M \K).Proof. Suppose that M and N are both substrutures of (H�;2; <�) whih are �-weakly uniform between � and supf�+ : � 2 Kg, with �KM = �KN and sup(N \K) =sup(M\K). Then N\K =M\K. By Lemma 4.3, for every � 2 K\M eah of thesets M \ � and N \ � ontains a set whih is < �-lub in sup(M \ �) = sup(N \ �).The intersetion of two < �-lub sets is < �-lub, so M \ N \ � is unbounded inM \ � and N \ �. By Lemma 4.5 M \ sup(K) = N \ sup(K). �We will only be using Theorem 4.6 in the speial ase when K � M . It willbe useful later to know that the proess of reonstruting M \ sup(K) from �KM issimply de�nable.Lemma 4.7. Let K, �, �, � be as in the last lemma and suppose that M;N �(H(�);2; <�) with �KM 2 N . Then M \ sup(K) 2 N .Proof. Sine K = dom(�KM ) we see that K 2 N , and thus sup(K) 2 N and � 2 N .We may also �nd �� 2 N suh that M is ��-weakly uniform.Let hg� : � < sup(K)i be suh that g� is the <�-least bijetion from � to j�j,and de�ne partial funtions g and h from sup(K)� sup(K) to sup(K) byg(�; �) = g�(�); h(�; ) = g�1� ():Sine g and h are de�ned from parameters in N , they are members of N . Theargument in the proof of Lemma 4.5 shows that M \ sup(K) an be omputed asfollows: for eah ~C = hC� : � 2 Ki suh that C� is < ��-lub in �M (�) for eah�, ompute the losure X( ~C) of � [ (S� C�) under g and h, and then take theintersetion of all the sets X( ~C). It follows that M \ sup(K) 2 N . �



CANONICAL STRUCTURE 175. Tight strutures and PCFReall from de�nition 2.4 that if K is a set of regular ardinals and M is astruture with K 2M and K �M , then M is tight for K if and only if M \QKis o�nal in Q�2KM \ �. For the rest of this setion we will make the followingBlanket assumption: We are given a set K of regular ardinals and a strutureM � (H�;2; <�) suh that K 2M , K �M and jM j < min(K).We note that sine jM j < min(K), we have �KM 2 QK. Also sine K � M wehave jKj < min(K) so that K is a \progressive" set of regular ardinals, and themethods of PCF theory an be applied to K.The main idea will be to analyse tightness for M in terms of the PCF-theoretiproperties of K. The key new points in the analysis (whih are losely related) willbe that under some reasonable irumstanes we an disern whether a strutureM is tight by inspeting M \ON , and an reonstrut a tight struture M from a�nite set of ordinal parameters.We summarize the main interest in tight strutures by the following points:
(1) Tight strutures are anonially determined by a �nite number of anon-ial ordinal parameters, i.e. good ordinals. (Theorem 5.3) In partiular,the stationary set of tight strutures is anonially well-ordered. This islearly not possible for arbitrary strutures as they outnumber the possibleolletions of ordinal parameters.(2) A tight elementary substruture of an H(�) is determined by the its \ar-dinal struture". This is impliit in the statement and expliit in the proofof Theorem 7.3.(3) Internally approahable strutures share the two previous points (whih iswhy they were used in the original PCF theory.) However, given a strutureN � (H(�);2; <�), to determine whether N is tight (in an absolute wayfrom knowledge of the regular ardinals) one must only know �N � �!+1(i.e. N 's trae on the ordinals), but to determine whether N \ H(�!+1)is internally approahable seems to require onsiderably more informationand oneivably might not be an absolute question.

We summarize the last point by the slogan that being tight is an \exterior" question,but being internally approahable is an \internal" question.The results of this setion generalise a result by Foreman and Magidor [17,Setion 7.3℄ whih analyses uniform strutures whih are tight forK = f�n : n < !gunder the assumption that max pf(K) = �!+1. They are also related to work byShelah analysing the harateristi funtions of ertain IA strutures in terms ofPCF.For our purposes the most important results are Theorems 5.2 and 5.3, whihgive a detailed analysis of tightness forM under the assumptions that pf(K) �Mand M is uniform on K. Theorem 5.5 shows that we an drop the assumptionthat pf(K) � M and demand only weak uniformity for M on K; the prie wepay is that we need extra tehnial assumptions and we get a somewhat weakeronlusion. Theorem 5.6 shows that we an sometimes propagate tightness from Kto pf(K).



18 JAMES CUMMINGS, MATTHEW FOREMAN, AND MENACHEM MAGIDORAs a warmup for the style of argument whih we will be using in this setion, weshow that if M is tight for K then some uniformity properties an be propagatedfrom K to pf(K).Theorem 5.1. Let M be tight for K and let � be a ardinal with � > jKj. If M is�-weakly uniform on K, then M is �-weakly uniform on pf(K). If M is �-uniformon K, then M is �-uniform on pf(K).Proof. Suppose thatM is �-weakly uniform on K. Given � 2M\pf(K), let us �xU 2M an ultra�lter on K and hf� : � < �i 2M inreasing and o�nal in QK=U .Suppose for a ontradition that f(M \ �) < �. We �x A � M \ � o�nal withorder type f(M \ �), and note that if � 2 A then f�(�) 2 M \ � for all � 2 K.If we de�ne g(�) = sup�2A f�(�) for all � 2 K, then g(�) < sup(M \ �) beausef(M \ �) � � > jAj. Sine M is tight there is h 2 M \QK with g < h, and byelementarity there is � 2M \ � with h <U f�. So g <U f�, but this is impossiblebeause by onstrution f� � g.Now suppose that M is �-uniform on K, and use this to �nd a pointwise in-reasing sequene hgi : i < �i of funtions whose ranges are ontained in M andwhose pointwise supremum is �M . As above let � 2M \pf(K) and �x U 2M anultra�lter on K and hf� : � < �i 2 M inreasing and o�nal in QK=U . It is easyto see by tightness and elementarity that hf� : � 2M \ �i is o�nally interleavedwith hgi : i < �i, so f(M \ �) = �. �We reall that we have a set K of regular ardinals suh that jKj < min(K).This is a situation in whih Shelah's PCF theory gives an analysis of pf(K) interms of the PCF generators, and we give a brief review of this analysis.As usual we let J<� be the ideal of sets A � K suh that every ultra�lter Uontaining A gives an ultrapower QK=U of o�nality less than �. The sequene ofideals J<� is inreasing with � and is ontinuous at limit ardinals.By standard results from PCF theory we �x a sequene of sets hB� : � 2 pf(K)iwith B� � K for eah �, suh that B� generates J<�+ over J<�: that is to say thatfor A � K we have A 2 J<�+ () A n B� 2 J<�. An easy indution argumentshows that J<� is the ideal of sets whih are overed by a �nite union of sets infB� : � < �g.It is known that pf(K) has a maximum element, and aordingly we will hooseBmax pf(K) = K. By standard fats from PCF theory we may �x a matrix offuntions hf�� : � < �; � 2 pf(K)i suh that hf�� : � < �i is a ontinuous sale inQB�=J<� for every � 2 pf(K).We �x � some suÆiently large regular ardinal and let A be the struture(H�;2; <�; fKg; hB�i; hf��i). We will analyse tightness ofM for K in terms of PCFtheory, assuming that M � A, pf(K) �M and M is uniform on K.Theorem 5.2. Let � be regular and unountable, and suppose that jKj < � <min(K). Suppose that M � A where M is �-uniform on K and pf(K) � M .Then the following are equivalent:(1) M is tight for K.(2) For every � 2 pf(K), sup(M \ �) is a good point of o�nality � forhf�� : � < �i and f�sup(M\�) =J<� �B�M .



CANONICAL STRUCTURE 19Proof. For the forward diretion, assume M is tight. Sine f(M \ �) = � for all� 2 K, we may �nd a pointwise inreasing sequene hgi : i < �i in QK whosepointwise supremum is �KM .Fix � 2 pf(K). We laim that hgi � B� : i < �i is o�nally interleaved withhf�� : � 2M \ �i modulo J<�. For all � 2 M \ �, f�� 2 M and so f�� is pointwisedominated by �B�M . Sine jKj < �, there exists i < � suh that f�� is dominatedpointwise by gi � B�. Conversely if i < � then it follows from the tightness ofM that gi is dominated pointwise by some funtion in M , and so by elementaritygi <J<� f�� for some � 2M \ �.It follows that f(M \ �) = � and sup(M \ �) is a good point of o�nality �.By Lemma 2.11 f�sup(M\�) agrees modulo J<� with the pointwise supremum of thegi � B�, that is to say f�sup(M\�) =J<� �B�M .For the onverse diretion, assume that for every � 2 pf(K), sup(M \ �) is agood point of o�nality � for hf�� : � < �i and f�sup(M\�) =J<� �B�M . Let h be afuntion in QK whih is pointwise dominated by �KM . For every � in pf(K) wehave h <J<� f�sup(M\�). Sine sup(M \ �) is a good point it follows that f�sup(M\�)is an exat upper bound for hf� : � 2M \ �i. Hene for every � 2 pf(K) there is� 2M \ � with h <J<� f�� .We will indutively build a dereasing sequene �0 > �1 > �2 > �j of membersof pf(K) together with ordinals �i 2 M \ �i. We will also build a dereasingsequene of sets D0 � D1 � D2 : : : suh that Di 2 J<�i , halting when we reah astage with Di = ;.We let �0 = maxpf(K), and reall that B�0 = K. We hoose �0 2M \�0 suhthat h <J<�0 f�0�0 . Let D0 = f� : h(�) � f�0�0 (�)g, so that D0 2 J<�0 .Suppose that we have de�ned �i, �i and Di for i � j. We stop if Dj = ;.Otherwise we hoose �j+1 to be the unique member of pf(K) with Dj 2 J<�+j+1and Dj =2 J<�j+1 , and hoose �j+1 2 M \ �j+1 suh that h <J<�j+1 f�j+1�j+1 . Nowwe let Dj+1 = f� 2 Dj : � =2 B�j+1 or h(�) � f�j+1�j+1 (�)g:Sine B�j+1 generates J<�+j+1 and h <J<�j+1 f�j+1�j+1 , we see that Dj+1 2 J<�j+1 .Sine the desending sequene of �i an only have �nite length, the onstrutionmust terminate. Let j be the last stage, so Dj = ;. For eah � 2 K, let i beminimal with � =2 Di. By de�nition we must have � 2 B�i and h(�) < f�i�i (�). Weonlude that h is pointwise dominated by the pointwise supremum of ff�i�i : i � jg,and sine this funtion lies in M we have proved that M is tight. �The following result will play an important role when we analyse the relationshipbetween tightness and internal approahability in Setion 6. It is a generalizationof Shelah's analysis of internally approahable strutures used to bound powers ofsingular ardinals. It is important for the purposes of that setion to note that eahof the sets B�i n Ei is in M , and eah of the indies sup(M \ �i) is omputed in auniform way from M .Theorem 5.3. Let � be regular and unountable, and suppose that jKj < � <min(K). Suppose that M is �-uniform on K and pf(K) �M .



20 JAMES CUMMINGS, MATTHEW FOREMAN, AND MENACHEM MAGIDORIf M is tight for K then there exist �0; : : : �j 2 pf(K) and E0; : : : Ej withEi 2M \ J<�i suh that K = Si(B�i n Ei) and �M is the pointwise supremum ofthe funtions f�isup(N\�i) � (B�i n Ei) for i � j.Proof. By Theorem 5.2, f�sup(M\�) =J<� �B�M for all � 2 pf(K).We argue in a way whih parallels the last part of the proof of Theorem 5.2. Asthere we build a dereasing sequene �0 > �1 > : : : of elements of pf(K), and alsosets Di with Di 2 J<�i whih this time are not neessarily dereasing. We alsobuild sets Ei 2 M \ J<�i suh that Di � Ei, and hoose Di+1 as a subset of Eirather than Di.Let �0 = maxpf(K) and D0 = f� : �M (�) 6= f�0sup(M\�0)(�)g, so that D0 2J<�0 . Suppose now that we have onstruted the ordinals �0; �1 : : : �j , togetherwith the sets D0; : : :Dj and E0; : : : Ej�1.If Dj = ; we set Ej = ; and stop the onstrution. If Dj 6= ; we hoose �j+1 asthe unique member of pf(K) suh that Dj 2 J<�+j+1 and Dj =2 J<�j+1 . We hooseEj to be some �nite union of sets in fB� : � � �j+1g suh that Dj � Ej .We note that Ej 2 J<�+j+1 \ M , and that sine Dj =2 J<�j+1 we must haveB�j+1 � Ej . LetDj+1 = f� 2 Ej : � =2 B�j+1 or �M (�) 6= f�j+1sup(M\�j+1)(�)g:Sine Ej nB�j+1 is overed by a �nite union of sets from fB� : � < �j+1g, and thefuntions �M and f�j+1sup(M\�j+1)(�) agree on a J<�j+1-large subset of B�j+1 , we seethat Dj+1 2 J<�j+1 .Sine the sequene of �i is dereasing we eventually reah a stage j with Dj = ;,and so we halt the onstrution after setting Ej = ;. To �nish we need to hekthat �M is the pointwise supremum of the funtions f�isup(M\�i) � (B�i n Ei) fori � j.Let � 2 B�i n Ei for some i � j. Sine Di � Ei, � 2 B�i n Di . By theonstrution of Di we know that f� 2 B�i : f�isup(M\�i)(�) 6= �M (�)g is a subset ofDi, so f�isup(M\�i)(�) = �M (�).Given � 2 K, let i be minimal suh that � =2 Ei. If i = 0 then � 2 B�0 beausewe hose B�0 = K. If i > 0 then � 2 Ei�1, and sine � =2 Di we see that � 2 B�i .It follows that every element of K appears in B�i nEi for some i. �Remark 5.4. For an appliation whih we will make of Theorems 5.2 and 5.3 inSetion 7, we note that we only needed the sales ff�� : � < �g to be ontinuous atgood points of o�nality �.Now we give an alternative haraterisation of tightness for M in the style ofTheorem 5.2, dropping the assumption that pf(K) � M and weakening the uni-formity assumption to weak uniformity. As we remarked earlier, this analysis owesa debt to Shelah's analysis of the harateristi funtions of IA strutures. Fortehnial reasons we will not be using ontinuous sales, but rather sales with atehnial property alled !-lub minimality.Let us be given an index set X, an ideal I on X and a <I -inreasing sequene ~f .If f(�) > jXj, we de�ne a funtion f�� by letting f��(�) be the least ordinal of theform sup�2E f�(�) for E an !-lub subset of �. We note that if E is some !-lub



CANONICAL STRUCTURE 21subset of � with f��(�) = sup�2E f�(�), then f��(�) = sup�2F f�(�) for any F � Ewith F an !-lub subset of �.Sine the intersetion of jXj-many !-lub subsets of � is !-lub, we may �x asingle !-lub subset F of � suh that f�� (�) = sup�2F f�(�) for all � 2 F ; it followsthat f�� is an upper bound modulo I for hf� : � < �i. We say that the sequene ~fis !-lub minimal at � if f�� = f� . Returning to the ontext of this setion, it isroutine to hek that if I is an ideal on K with tf(QK=I) = � then we may �nda sale hf� : � < �i in QK=I whih is !-lub minimal at every � < � suh thatjKj < f(�) < min(K); by a slight abuse of language we will say that suh a saleis !-lub minimal in QK=I.We will �x a matrix of funtions hf�� : � < �; � 2 pf(K)i suh that hf�� : � < �iis a an !-lub minimal sale in QB�=J<� for every � 2 pf(K). Let A be thestruture (H�;2; <�; fKg; hB�i; hf��i). We will assume that M � A.We are now ready to use our tehnial assumption of !-lub minimality. SupposethatM is jKj+-weakly uniform between � and �, where all ardinals inM \pf(K)are greater than � and less than �. Let � 2 M \ pf(K) and let  = sup(M \ �).By Lemma 4.3 there is E � M \ � whih is !-lub in . Sine jM j < min(K) wesee that f() < min(K), and sine � lies in an interval where M is weakly uniformwe also see that f() > jKj. So by the assumption of !-lub minimality, we may�nd F � E suh that F is !-lub in  and f� (�) = sup�2F f�� (�) for all � 2 K.Sine F � E �M , K �M and � 2M it follows easily that f� � �B�M .We an now give a haraterisation of tightness.Theorem 5.5. Let M be jKj+-weakly uniform between � and �, where all ardinalsin M \ pf(K) are greater than � and less than �. Then the following onditionson M are equivalent.(1) M is tight for K.(2) For every � 2M \ pf(K), if  = sup(M \ �) then(a) f� � �B�M .(b) There is A � B� suh that A 2 M \ J<� and f� 2 B� : f� (�) <�M (�)g � A.() f� is an exat upper bound for hf�� : � < i modulo J<� in the fol-lowing strengthened sense: for all f < f� there exist � 2 M \ � andB 2M \ J<� suh that f� 2 B� : f�� (�) � f(�)g � B.Proof. 1) implies 2). We have already seen that the uniformity hypothesis on Mimplies that f� � �B�M . Sine M is tight we may �nd a funtion g 2 M \QKsuh that for all � 2 K, f� (�) < �M (�) implies that f� (�) < g(�). By !-lubminimality we know that f� is the pointwise supremum of ff�� : � 2 Fg for someF �M whih is !-lub in , and we may �nd � 2 F so large that f�� dominates gmodulo J<�. Now sine f�� � f� we see that for � 2 Kf� (�) < �M (�) =) f� (�) < g(�) =) f��(�) < g(�);so that if we set A = f� 2 B� : f��(�) < g(�)g then A is as required. Now letf < f� . Sine f� � �M and M is tight, we may �nd h 2 M suh that f < h andthen �nd � 2 F suh that f�� dominates h modulo J<�. Nowf�� (�) � f(�) =) f�� (�) � h(�);



22 JAMES CUMMINGS, MATTHEW FOREMAN, AND MENACHEM MAGIDORand if we set B = f� 2 B� : f�� (�) � h(�)g then B is as required.2) implies 1). Let f 2 QK with f < �KM . The onstrution is very similar tothat for Theorem 5.2. We onstrut a dereasing sequene of ordinals �0 > �1 > : : :with �i 2M \ pf(K), together with ordinals �i 2M \ �i and sets Bi 2M \ J�i ,in suh a way that if � 2 Bi�1 nBi then f(�) < f�i�i (�).Let �0 = maxpf(K) and 0 = sup(M\�0), and observe that by b) the funtionsf�00 and �M agree outside a set inM \J<�0 . By ) we an �nd a set B0 2M \J<�0suh that f(�) < f�00 (�) for � =2 B0.If at stage i we have Bi 6= ;, then hoose �i+1 minimal with Bi =2 J<�i+1 , notingthat �i+1 2 M beause Bi 2 M . Now we apply b) and ) to �nd Bi+1 2 J<�i+1and �i+1 2M \ �i+1 suh that f(�) < f�i+1�i+1 (�) for � 2 Bi nBi+1.As usual, the onstrution must terminate with Bi = ;. Then f is pointwisedominated by the supremum of the funtions f�j�j for j < i, and this funtion liesin M . �Under ertain irumstanes we an do an analysis of tightness as in Theorem5.5 under a weaker uniformity hypothesis. It is known that if K is an interval ofregular ardinals then pf(K) is also an interval of ardinals. If K is an interval, Mis tight for K and M is jKj+-weakly uniform in some interval ontaining K thenit follows from Theorem 5.1 that M is weakly uniform in an interval ontainingpf(K), and so the analysis of Theorem 5.5 applies.It follows from Theorem 5.1 that ifM is tight some information about o�nalitiesan be propagated from K to pf(K). The next result shows that under slightlystronger assumptions the same is true for the property of tightness itself. The ideaof taking pointwise suprema of funtions from many sales omes from Shelah'sproof that pf(pf(K)) = pf(K).Theorem 5.6. Let pf(K) � M and let M be j pf(K)j+-weakly uniform on K.If M is tight for K then M is tight for pf(K).Proof. Let L = pf(K), and let F 2Q�2LM \ �. We de�ne f 2QK byf : � 7! sup�2L f�F (�)(�) + 1:Sine L � M , we see that f�F (�) 2 M and f�F (�)(�) 2 M \ � for all � 2 L and� 2 K. Sine f(M \ �) > jLj it follows that f(�) < sup(M \ �) for all � 2 K.SineM is tight for K, there is g 2M\QK whih dominates f pointwise. Sinehf�� : � < �; � 2 pf(K)i 2 M and the sequene hf�� : � < �i is a sale for eah �,it follows by elementarity that there is G 2M \QL suh that g <J<� f�G(�) for all� 2 L. We now see that for eah � 2 L we havef�F (�) < f < g <J<� f�G(�);so that G dominates F pointwise and we have shown that M is tight for L. �Theorem 5.6 allows us a pratial alternative to Theorem 5.5:Corollary 5.7. Let M be jKj+-weakly uniform (resp. �-uniform with jKj < � <min(K)) between � and �, where all ardinals in M \ pf(K) are greater than �and less than �. Let M 0 be the Skolem hull of M [ pf(K) in (H(�); �; <�). Thenthe following onditions on M are equivalent.(1) M is tight for K.



CANONICAL STRUCTURE 23(2) M 0 is tight for pf(K) and jKj+-weakly uniform (resp. �-uniform) onpf(K).(3) For every � 2 pf(K), sup(M 0 \ �) is a good point of o�nality at least �+(resp. of o�nality �) for hf�� : � < �i and f�sup(M 0\�) =J<� �B�M 0 .Proof. By Fat 6.2 we know that j pf(K)j < jKj+4. ThusM 0 � skH(�)(M[jKj+3).Standard arguments show that for all � 2 KnjKj+3; sup(M \�) = sup(skH(�)(M [jKj+3) \ �). Suppose now that M is tight for K.By the results in the last paragraph, M 0 is tight for K and by Theorem 5.6, M 0is tight for pf(K). Moreover, by Theorem 5.1, M 0 is jKj+-weakly uniform (resp.�-uniform) on pf(K). Hene 1 implies 2. Again by the previous paragraph it islear that 2 implies 1By Theorem 5.2, 2 and 3 are equivalent for M 0. �6. Tightness, approahability and refletionIn this setion we prove a general overing theorem for tight strutures, anduse it to show that ertain tight uniform strutures are IA. We also disuss theonnetion between tightness and stationary reetion.We start with some general disussion of overing properties of strutures. Sup-pose that �, � and � are regular ardinals with � < � < �. We onsider substru-tures N � (H�;2; <�; f�; �g) suh that jN j = � and � � N .Given a set Z with � � Z, we let P�Z be the set of x � Z suh that jxj < � andx\ � 2 �. In inreasing order of strength we may onsider the following propertiesof N :Internally o�nal in P��: N \P�(N \�) is o�nal (in the inlusion ordering) inP�(N \ �)Internally stationary in P��: N \ P�(N \ �) is stationary in P�(N \ �).Internally lub in P��: N \ P�(N \ �) ontains a lub in P�(N \ �).Internally approahable in P�H�: N \H� is IA of length and ardinality �.The following easy lemma shows that some ardinal arithmeti assumptions sim-plify the piture.Lemma 6.1. Let �, � and � be regular ardinals with � < � < � and let N �(H�;2; <�; f�; �g) be suh that jN j = � and � � N .If �<� = � and N is internally o�nal in P��, then P�(N \�) � N , from whihit follows that N is IA in P�H�.For the rest of this setion we will be studying strutures N whih are tight forsome interval K of regular ardinals. One reason for this is that we wish to applythe results of Setion 4 on reovering strutures from their harateristi funtions,and these results require an interval of regular ardinals. Another reason is thatwe an use the following result of Shelah.Fat 6.2 (Shelah). Let K be an interval of regular ardinals with jKj < min(K).Then � pf(K) is an interval of regular ardinals, whih has a largest element.� j pf(K)j � jKj+3.� pf(pf(K)) = pf(K).



24 JAMES CUMMINGS, MATTHEW FOREMAN, AND MENACHEM MAGIDORRemark 6.3. If K is an in�nite interval of regular ardinals with jKj < min(K),then it follows from Fat 6.2 that by deleting a suitable �nite initial segment k ofK we an obtain an interval L with j pf(L)j < min(L).Remark 6.4. It is a viable onjeture that j pf(A)j = jAj for all A with jAj <min(A).Before stating and proving the very general Theorem 6.5, we digress briey toonsider what is perhaps the most interesting speial ase. Let K = f�n : 0 < n <!g, and suppose for simpliity that pf(K) is ountable, say pf(K) = f��+1 : � ��g for some ountable �.Let m > 0 and let � be a large regular ardinal. Let N � H� be suh that�m = jN j � N , and let N be �m-uniform and tight on f�n : m < n < !g. ByTheorems 5.1 and 5.6 N is �m-uniform and tight on f��+1 : m � � � �g.Under these irumstanes, it will follow from Theorem 6.5 that if m > 1 thenN is internally stationary in P�m(��+1). In onjuntion with some extra ardinalarithmeti assumptions as in Lemma 6.1, it will follow that N \ H��+1 is IA oflength and ardinality �m. This is an instane of one of the motivating theses ofthis paper, that tightness plus uniformity is very lose to internal approahability.Theorem 6.5. Let � be an unountable regular ardinal. Let L be an interval ofregular ardinals suh that min(L) = �++, jLj < �, and L = pf(L). Let � be alarge regular ardinal and let N � (H�;2; <�; fLg) be suh that jN j = �+ and N is�+-uniform between �+ and max(L)+ and N is tight for L. Then N is internallystationary in P�+(max(L)).Proof. Fix some algebra A on N \ max(L). We build an inreasing sequenehMi : i < �i suh that for all i(1) Mi � N , with � �Mi and jMij = �.(2) Mi \max(L) � A.(3) Mi \ �+ < Mi+1 \ �+.(4) �LMi is pointwise dominated by some funtion in Mi+1 \QL.The last demand on Mi is the ruial one, and it is possible to satisfy it beauseN is tight and �+-uniform. We let M = SiMi and L� = f�+g [ L, and note thatpf(L�) = L�. As usual we will let hB� : � 2 L�i be the <�-minimal sequene ofgenerators for L�, hf�� : � 2 L�; � < �i the <�-least matrix of funtions suh thathf�� : � < �i is a ontinuous sale in QB�=J<�.By onstrution �L�Mi is pointwise dominated by �L�Mi+1 , so that M is �-uniformbetween �+ and max(L)+. Sine jL�j < � the onstrution also guarantees that Mis tight for L�.By Theorem 5.3 the funtion �L�M is the pointwise supremum of �nitely manyfuntions of the form f�sup(M\�) � (B� n E�), where E� 2 M . By Lemma 4.3N \max(L) is �-losed in sup(N \max(L)), so in partiular sup(M \ �) 2 N forall �.It follows that �L�M 2 N . By Lemma 4.7 we see that M \max(L) 2 N , and byonstrutionM\max(L) � A andM 2 P�+(N\�). This shows thatN\P�+(N\�)is stationary. �As we mentioned before proving Theorem 6.5, we an use the theorem to showthat sometimes tight plus uniform equals IA. The following orollary gives thesimplest interesting ase.



CANONICAL STRUCTURE 25Corollary 6.6. Let 2�1 = �2 and 2�! = �!+1. Let � be a large regular ardinaland let N � (H�;2; <�) be �2-uniform between �2 and �!, and tight for f�n : 2 <n < !g. Then N \H�!+1 is IA of length and ardinality �2.For strutures of size �1 we have less than satisfatory results whih we illustratewith the following example:Example 6.7. Suppose that �! is a strong limit and 2�! = �!+1. Let N �H(�!+2) have ardinality �1 and uniform o�nality !1. Suppose that sup(N\�!+1)is an approahable ordinal  and �N =� f. Then N is internally approahable.To see this, let M be the internally approahable struture that has ardinality !1with �M =� f. Then for some !l, the Skolem hull of N [!l and the Skolem hull ofM [ !l have the same harateristi funtion and hene the two Skolem hulls haveequal intersetion in �!+1. In partiular, the Skolem hull of N [�l is losed under!-sequenes below �!+1. One an sees indutively that if Skolem hull of N [�l�i islosed under !-sequene then so is the Skolem hull of N \ �l�(i+1). In partiular,N is losed under !-sequenes below �!+1 and is thus internally approahable below�!+1.Foreman and Magidor [15℄ showed that there is a lose onnetion between in-ternal approahability, uniformity and stationary reetion for sets of strutures.In partiular they showed that� Let � be superompat, let � and � be regular unountable ardinals lessthan � with � < �. Let G be generi for Col(�;< �), then in V [G℄ thefollowing stationary reetion priniple holds:Every stationary set of IA substrutures of (H�;2; <�) of length and ar-dinality � reets to some substruture of ardinality �.� Let � � !3 and let Sij be the set of N � (H�;2; <�) suh that jN j = �1,�1 � N , f(N \ �2) = �i and f(N \ �3) = �j .Then only S11 an have the property that every stationary subset isreeting.The following result indiates that tightness is also relevant to problems aboutstationary reetion.Theorem 6.8. Let K be a ountable set of regular ardinals and let S be a station-ary set of elementary substrutures of (H�;2; <�), suh that every element of S istight for K. Let M be suh that S reets to M . Then M � (H�;2; <�) and M istight for K.Proof. Let t be a Skolem term and let ~a be a �nite sequene of parameters fromM . There is N � M suh that N 2 S and all the members of ~a ome from N .Sine N is losed under t and N �M , t(~a) 2M as required.Note that sine K is ountable, K � N for all N 2 S. Let f 2 Q�2K K \M ,and �nd N 2 S suh that N � M and f � N . Sine N is tight for K there isg 2 N \QK whih dominates f , and g 2M sine N �M . �Foreman and Todorevi [19℄ have de�ned a notion of tightness for ountablestrutures, and have used this to investigate stationary reetion in [H�℄�0 .7. PCF absoluteness, overing and preipitous idealsIn this setion we prove a version of the overing lemma and apply it to a problemabout preipitous ideals. Our overing lemma states roughly that if V and W are



26 JAMES CUMMINGS, MATTHEW FOREMAN, AND MENACHEM MAGIDORinner models with V �W , and the PCF strutures of V and W are similar enoughthen every set of ordinals in W is overed by a set of the same size lying in V . Thekey idea of the proof is that the harateristi funtions of ertain IA strutures inW an (as in Setion 5) be desribed in terms of the PCF struture of W , and so(by the PCF resemblane hypothesis) these harateristi funtions will be elementsof V .We start with a result whih says that suÆiently similar universes have similarPCF strutures.Theorem 7.1. Let V be an inner model of W , and in V let K be a set of regularardinals with jKj < min(K). Assume that for all � 2 [min(K);max(pf(K))V ℄, if� is regular in V then � is regular in W . Assume also that for every f 2 (QK)Wthere is g 2 (QK)V with f < g. Then(1) JV<� = JW<� \ V for all ardinals � � min(K).(2) Any sequene of PCF generators for K in V is still a sequene of PCFgenerators for K in W .(3) pf(K)V = pf(K)W .Proof. We start by proving that JV<� = JW<�\V for all � 2 [min(K);max(pf(K))V ℄,by indution on �. This is lear for � = min(K). For � singular we have J<� =J<�+ = S�<� J<� , so it remains to show that if � is regular and JV<� = JW<� \ Vthen JV<�+ = JW<�+ \ V .Suppose �rst that A 2 JV<�+ . If A 2 JV<� then we are done, otherwise we�x a sale ~f of length � in (QA=J<�)V . By the indution hypothesis and ourassumptions on V and W , ~f is a sale in (QA=J<�)W and so A 2 JW<�+ .Now suppose that A 2 JW<�+ \ V . Let D 2 V be any V -ultra�lter on K withA 2 D, and in W extend D to �D a W -ultra�lter. By our assumptions on V andW the map  : [f ℄D 7! [f ℄ �D is a o�nal order-preserving funtion from (QA=D)Vto (QA= �D)W . Sine A 2 JW<�+ the W -o�nality of (QA= �D)W is at most �, andthe existene of  and our assumptions on V and W imply that the V -o�nality of(QA=D)V is at most �. Therefore A 2 JV<�+ .Next we show that PCF generators agree between V and W . We note thatwe an identify the maximum of pf(K) as the least � suh that K 2 J<�+ ,so that V and W agree on the value of the maximum element in pf(K). Weall this ommon value �max. In V we �x a sequene hBV� : min(K) � � � �maxisuh that BV� generates JV<�+ over JV<�, and similarly we �x in W a sequenehBW� : min(K) � � � �maxi suh that BW� generates JW<�+ over JW<�. We hoosethese generators so that BV� = ; for � =2 pf(K)V , and similarly BW� = ; for� =2 pf(K)W . We also hoose BV�max = BW�max = K.We will show by indution that BW� and BV� are equal modulo JW<� for all �.Sine BV� is in JW<�+ and BW� is a generator, we see that BV� is ontained in BW�modulo JW<� for all �. Let � be least suh that BW� and BV� are unequal moduloJW<�. We now adjust the BW� , replaing BW� by BV� for � < �; this is legitimate bythe hoie of �. Let C = BW� nBV� so that C =2 JW<� but C 2 JW<�+ .Now let � be least suh that C is overed by some set BV�0 [ : : : BV�n [BV� with�0 < : : : < �n < �; suh a � exists beause BV� = K. Suppose for a ontraditionthat � � �; then � < � sine C is disjoint from BV� . Now BV� = BW� for � < �,



CANONICAL STRUCTURE 27and it follows that C 2 JW<�, whih is a ontradition: so � > �. Note that BV� 6= ;so that � 2 pf(K)V .Let D = BV�0 [ : : : BV�n [ BV� . Working in V �nd hg� : � < �i suh that g� 2(QD)V and hg� � BV� : � < �i is inreasing and o�nal in (QBV� )V modulo JV<� �BV� . Working in W �nd hh� : � < �i suh that h� 2 (QD)V and hh� � C : � < �iis inreasing and o�nal in (QC)W modulo JW<� � C.Sine � > � we may �nd h� whih dominates g� on C modulo JW<� for unbound-edly many � < �, and may then �nd g� suh that(1) h� dominates g� modulo JW<� � C.(2) g� dominates h� modulo JV<� � BV� .We �nd Æ1; : : : Æn suh that Æ1 < : : : Æn < � and f� 2 C : h�(�) � g�(�)g �BWÆ1 [: : :[BWÆn . Note that BWÆi = BVÆi . We also �nd �1; : : : �p suh that �1 < : : : �p < �and f� 2 BV� : h�(�) � g�(�)g � BV�1 [ : : : [BV�p .We laim that C is overed by the union of the BV�i , BVÆi and BV�i . To see thisobserve that if � 2 C then at least one of the following must hold:� � 2 BV�i for some i.� � 2 C \BV� and h�(�) � g�(�), in whih ase � 2 BVÆi for some i.� � 2 C \BV� and h�(�) � g�(�), in whih ase � 2 BV�i for some i.This ontradits the minimal hoie of �. It follows that as we laimed the setsBV� and BW� agree modulo JW� for all �. In partiular the BV� will serve as asequene of generators in W .It remains to be seen that pf(K)V = pf(K)W . This is immediate by thefollowing omputation: given any sequene B� suh that B� generates J<�+ overJ<� , pf(K) is the set of � suh that B� is not overed by a �nite union of B� for� < �. �A small tehnial diÆulty is aused by the fat that the property of being theharateristi funtion of some struture is not obviously downwards absolute. Wewill resolve this diÆulty using Lemma 4.4 and the following result.Lemma 7.2. Let V and W be inner models of set theory with V �W . In V let Kbe an interval of regular ardinals with jKj < � and min(K) = �+ for some regularunountable �. Assume that in W the ardinal � is still regular and K is still aninterval of regular ardinals. Let f 2 V be suh that for all � with � < � < sup(K),f(�;�) is a bijetion between � and j�j.Let � be some suÆiently large regular ardinal of W , and in W let N � (H�;2; <�; fKg; f) be an IA struture of length and ardinality �. If �KN 2 V then thereis B 2 V suh that N \ sup(K) � B � sup(K) and jBj = �.Proof. Sine N is IA of length �, we may �x hC� : � 2 Ki lying in W with C� �N \ � and C� lub in sup(N \ �) of order type �. Sine �KN 2 V and o�nalitiesagree, we may �nd in V a sequene hD� : � 2 Ki with D� lub in sup(N \ �) oforder type �.Now let M0 = N \ sup(K) and note that M0 � (sup(K); f). Let M1 be the hullin (sup(K); f) of �[S�D�, and note that M1 2 V and jM1j = �. The hypothesesof Lemma 4.4 are satis�ed beause for eah � 2 K the set C� \ D� is ontainedin M0 \M1 \ � and is o�nal in M0 \ �. It follows that M0 � M1 so we may setB =M1. �



28 JAMES CUMMINGS, MATTHEW FOREMAN, AND MENACHEM MAGIDORTheorem 7.3. Let V and W be inner models of set theory with V � W . In Vlet � be regular and let � > � be a ardinal. Let K = REGV \ [�; �℄ and supposethat V and W agree on regular ardinals in the interval [�;max(pf(K)V )℄, K isprogressive and (QK)V is o�nal in (QK)W .Let A � �. Then there is B 2 V suh that A � B and jBjW � maxf�; jAjW g.Proof. We will prove this by indution on sup(A). We way assume that sup(A) > �,sine otherwise we may set B = �+ 1. For the rest of this proof ardinalities ando�nalities should be understood as omputed in W , though we will taitly use theagreement between ardinalities of V and W at several points.Case 0: sup(A) is not a ardinal. Let f 2 V be a bijetion between sup(A)and j sup(A)j, and let A� be the image of A under f . By indution we may �ndB� � j sup(A)j suh that A� � B� and jB�j � maxf�; jAjg, and we may then let Bbe the inverse image of B� under f .Case 1: sup(A) is regular. In this ase jAj = sup(A) and we let B = sup(A).Case 2: sup(A) is singular. If jAj = sup(A) then we may set B = sup(A), so wenow assume that jAj < sup(A). By our hypotheses on K we may �nd � regularwith maxf�; jAj; jKj+4g < � < sup(A). We set K0 = (�+; sup(A)) \REG.Let L = pf(K0) where by Fat 6.2 jLj < � and L = pf(L). We �x in V asequene ~B = hB� : � 2 Li of PCF generators for K0, and a matrix of funtions~f = hf�i : � 2 L; i < �i suh that hf�i : i < �i is a ontinuous sale in QB�=J<� .By Theorem 7.1, ~B is still a sequene of PCF generators in W . It is lear thathf�i : i < �i is still a sale in W , and we laim that additionally this sale is stillontinuous at good points of o�nality �.We use Fat 3.1, the Trihotomy Theorem of Shelah. Let � 2 L, and in W let� < � be a point of o�nality � whih is good for the sale hf�i : i < �i. We beginby arguing that in V there must exist an eub for hf�i : i < �i whose values haveo�nality at least �.If this is not the ase then in V we must be either in Case 2 or Case 3 from Fat3.1. It is easy to see that the properties of being in Case 2 or Case 3 are upwardsabsolute from V to W , in fat the witnesses from V will work in W as long as weextend the ultra�lter in V for Case 2 to an ultra�lter in W . Sine we have an eubfor hf�i : i < �i of uniform o�nality � in W , it follows from Fat 3.1 that in W weare not in Case 2 or Case 3, so that in V there is an eub for hf�i : i < �i whosevalues have o�nality at least �.By ontinuity in V , f�� is an eub whose values have o�nality at least � almosteverywhere in V . By the hypothesis on the resemblane between V and W , f��retains these properties in W . It follows that the sale hf�i : i < �i is ontinuous at�. We also �x in V a funtion f from sup(K0)2 to sup(K0) oding some informationabout ardinalities, as in Lemma 7.2.We now build N � (H�;2; <�; fK0g; f) where A � N and N is IA of lengthand ardinality �. By theorem 5.3 �K0N is the pointwise supremum of �nitely manyfuntions of the form f�i � (B� n E�) where E� is the union of a �nite subset offB� : � < �g.It follows that �K0N 2 V . The hypotheses of Lemma 7.2 are satis�ed so we may�nd C in V suh that jCj = � < sup(A) and A � C. Now let g 2 V be a bijetion



CANONICAL STRUCTURE 29between C and �, and let A� be the image of A under g. Now we may use theindution hypothesis to over A� by a suitable B�, and then pull bak along g toget a suitable B overing A. �Remark 7.4. Theorem 7.3 is atually an equivalene. The overing statement inthe onlusion implies that V and W agree on regular ardinals between � and �,and also implies that (QK)V is o�nal in (QK)W .In order to be able to state the next result in a ompat way, we make thefollowing ad ho de�nition.De�nition 7.5. Let V and W be inner models of set theory with V � W . In V ,let � be regular and let � > � be a ardinal. We say that W weakly resembles Von [�; �) if and only if the hypotheses of Theorem 7.3 are satis�ed.For bakground on the theory of preipitous ideals we refer the reader to Fore-man's survey paper [14℄. The following result belongs to a genre of theorems inwhih we are given an ideal I on a ardinal � and some information about preserva-tion of ardinals when foring with P�=I, and we onlude that I must be preip-itous. This line of inquiry was begun by Baumgartner and Taylor[2℄, who provedfor example that under GCH a ountably losed ideal on �1 whose quotient algebrapreserves �2 is neessarily preipitous.Theorem 7.6. Let I be a ountably omplete ideal on �1. Let � = 2�1 , and supposeit is fored by P�1=I that V [G℄ weakly resembles V on [�2; �). Then I is preipitous.Proof. Let G be a generi ultra�lter on (P�1)V and letM = Ult(V;G). We observethat by our hypotheses �V2 = �V [G℄1 and reall the standard fat that �V2 is an initialsegment of the well-founded part ofM . It must be the ase that �V2 = �M1 , for if notthen in M there is a surjetion from ! onto some larger M -ordinal, ontraditingthe fat that �V2 = �V [G℄1 .Suppose for a ontradition that M is not well-founded, and in V [G℄ hoosea sequene hfi : i 2 !i suh that fi 2 V , fi : �V1 �! ON and fi+1 <G fi forall i. Sine P�1=I has the �+-.. we may �nd C 2 V suh that jCj � � andrange(fi) � C for all i.By Theorem 7.3 we may �nd B � C suh that B 2 V , jBjV = �V2 andrange(fi) � B for all i. Working in V , we write B = Sj<�2 Bj where the Bjare inreasing and jBj j = �1. In V [G℄ this gives a representation of B as an in-reasing union of ountable sets. Sine Si range(fi) is ountable in V [G℄ we an�x a j suh that range(fi) � Bj for all i. Now let  be the order type of Bj ,let h : Bj '  be order preserving and let f�i = h Æ fi. Then hf�i : i 2 !i is aG-dereasing sequene of funtions from �1 to , and so to get a ontradition weneed only show that jG() is well-founded for all  < �V2 .Suppose for a ontradition that jG() is ill-founded, and hoose a bijetionF 2M between �M1 and jG().Sine �M1 = �V [G℄1 , we may �nd Æ < �V [G℄1 suh that in V [G℄ the set F\Æ ontainsan in�nite dereasing sequene of M -ordinals.Working inV [G℄, let T be the tree of all �nite sequenes (�0; : : : �i) from Æ suhthat F (�i) > F (�i+1) for all i. The tree T is in the well-founded part ofM . ClearlyT is well-founded in M , and is not well-founded in V [G℄.



30 JAMES CUMMINGS, MATTHEW FOREMAN, AND MENACHEM MAGIDORThe tree T is ountable inM , and so inM there is a rank funtion � : T �! �M1 .Sine �M1 is well-founded, this ontradits the existene of a branh of T in V [G℄.We onlude that M is well-founded and so that I is a preipitous ideal. �
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