CANONICAL STRUCTURE IN THE UNIVERSE OF SET
THEORY: PART ONE
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ABSTRACT. We start by studying the relationship between two invariants iso-
lated by Shelah, the sets of good and approachable points. As part of our
study of these invariants, we prove a form of “singular cardinal compactness”
for Jensen’s square principle. We then study the relationship between inter-
nally approachable and tight structures, which parallels to a certain extent the
relationship between good and approachable points. In particular we charac-
terize the tight structures in terms of PCF theory and use our characterisation
to prove some covering results for tight structures, along with some results on
tightness and stationary reflection. Finally we prove some absoluteness theo-
rems in PCF theory, deduce a covering theorem, and apply that theorem to
the study of precipitous ideals.

1. INTRODUCTION

It is a distinguishing feature of modern set theory that many of the most inter-
esting questions are not decided by ZFC, the theory in which we profess to work;
to put it another way, ZFC admits a large variety of models. A natural response
to this is to identify invariants which may take different values in different models,
and which codify a large amount of information about a model.

Of particular interest are invariants which are canonical, in the sense that the
Axiom of Choice is needed to show that they exist, but once shown to exist they are
independent of the choices made. For example the uncountable regular cardinals
are canonical in this sense.

Shelah discovered a large class of canonical invariants, the study of which he
labeled PCF theory. These invariants include two which are central in this paper;
Shelah [24, 26] (under some mild cardinal arithmetic assumptions on the singular
cardinal ;) defined two stationary subsets of u, the sets of good and approachable
points. The definitions of these sets appear to depend on certain arbitrary choices,
but (modulo the club filter) are in fact independent of these choices. Other canonical
structures we study in this paper include the stationary sets of tight and internally
approachable structures, and the collection of good points on a scale.

It is known that every approachable point is good and that weak forms of square,
for example Jensen’s weak square principle U}, imply that every point is approach-
able. Foreman and Magidor [16] showed that their principle “Very weak square”,
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which captures some of the approachability implied by LI}, implies many of the
interesting consequences of L. Cummings [6] showed that the assertion that every
point is good severely constrains all u™-preserving extensions of V.

Our first motivation for the work in this paper is the problem of the relationship
between the sets of good and approachable points. This problem is trivial when
weak squares exist, but non-trivial in general. For example it is consistent relative
to large cardinals that not every point of cofinality ®; in R, ;; is good. We have
speculated that perhaps the sets of good and approachable points coincide, and in
Section 3 we prove that under some strong structural hypotheses this is the case.

The concept of an approachable ordinal is closely linked to that of an internally
approachable (IA) structure. To be more precise, the set of approachable ordinals
of cofinality 7 can be characterized [16] as the set of ordinals which have the form
sup(IN N ™) for some internally approachable N of length and cardinality 7.

Foreman and Magidor [17] isolated the concept of tight structure in their work on
mutual stationarity and the non-saturation of the non-stationary ideal on P\, and
tightness turns out to be closely related to the issues of goodness and approacha-
bility. In particular internally approachable structures are tight, and if IV is tight
then sup(IN N ™) is good. Our second motivation for the work in this paper is the
analogy

Tight structures Good ordinals

IA structures  Approachable ordinals
Here is an outline of the paper. Section 2 contains some background material.

e In section 3 we prove a technical result about square-like sequences using
the machinery of PCF theory. We use this to show that under some struc-
tural hypotheses all good points in W, ;1 of cofinality greater than Y; are
approachable, and also to show a kind of “singular cardinal compactness”
for square sequences. For example we show that if CH holds and [y, holds
for all n < w, then there is a sequence (C : v € R, 11 Ncof(R2)) where C,
is a club subset of v with order type N, and the C, cohere at common limit
points of uncountable cofinality.

e In section 4 we study the important property of uniformity for a structure,
and show that sufficiently uniform structures can be reconstructed from
their characteristic functions.

e In section 5 we characterize tight structures in terms of PCF theory. We
also show that the properties of uniformity and tightness can sometimes be
propagated from a set of regular cardinals K to the set pcf(K).

e In section 6 we explore the relationship between tightness, covering prop-
erties and internal approachability. We prove theorems showing that under
some circumstances tightness and internal approachability are equivalent.
We also record a remarks on the connection between tightness and station-
ary reflection.

e In section 7 we prove some absoluteness results in PCF theory. We deduce
a covering theorem, and use it to show that if I is an ideal on N; such that
forcing with PRy /T is sufficiently mild then I is precipitous.

This paper contains only ZFC results. In the sequel [7] we prove a series of comple-
mentary consistency results. We would like to thank John Krueger for comments
and corrections on an earlier draft of this paper.
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2. PRELIMINARIES

After a brief review of notation, we discuss the “canonical” concepts which are
central in this paper: internally approachable and tight structures, and approachable
and good ordinals.

We write ON for the class of ordinals, LI M for the limit ordinals and SUCC for
the successor ordinals. We write CARD for the class of infinite cardinals, REG for
the regular cardinals and SING for the singular cardinals. We denote by cof (k) the
class of ordinals of cofinality k, and if A is a set of ordinals we write cf(A) for the
cofinality of A considered as an ordered set. An interval of reqular cardinals is a set
of the form REGN |k, \) for cardinals x and A. We denote by 7 the interpretation
of a term 7 in a model M, and by ¢™ the relativisation of a formula ¢ to M. An
algebra on a set X is a structure for some countable first-order language which has
X as its underlying set.

2.1. Internally approachable and tight structures. When 6 is an uncountable
regular cardinal, we will denote by Hy the transitive set of those X such that the
transitive closure of X has size less than §. We denote by <y some fixed well-
ordering of Hy. By convention when 6 < x we will assume that <y is the restriction
of <, to Hy.

We will frequently be interested in structures of the form A = (Hy, €, <y); the
advantage of building in a well-ordering is that if X C Hy and SkA(X ) is the set
of elements of Hy definable in A with parameters from X, then Sk*(X) < A and
Sk (X)) is the smallest substructure of A containing X.

The definition of internally approachable structure appears in Foreman, Magidor
and Shelah’s paper [18] on Martin’s Maximum. These structures are ubiquitous
in modern set theory; see Lemma 2.3 and the remarks which follow it for some
motivation.

Definition 2.1. Let 0 be regular and let .4 be some algebra expanding (Hy, €, <g).
Let N < A. N is internally approachable (IA) if and only if there exist a limit
ordinal § and a sequence (N, : a < §) such that

(1) N =Ugcs Na-
(2) Forall 8 < 4§, (Ny:a<fB)€N.

In this case we will say that N is IA of length 6 and that (N, : « < §) is an approach-
ing sequence for N. We note that if we can always take an approaching sequence

to be continuous in the sense that if 3 is a limit ordinal, then Ng = Ua<ﬁ Ng.

The length ¢ of the approaching sequence is not uniquely determined, but it is
easy to see that cf(d) is uniquely determined; by a mild abuse of language we refer
to this cofinality as the cofinality of N. In their paper on definable counterexamples
to the continuum hypothesis Foreman and Magidor [15] give a detailed discussion of
the lengths and cofinalities of approaching sequences and the sizes of the structures
that appear in them.

All countable N are IA, and if N is approached by a sequence of length § then
0 C N. We are often concerned with IA structures N which have length and
cardinality x for some regular uncountable cardinal . In this case we can cast the
definition in a slightly different form, using the following easy lemma.
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Lemma 2.2. Let k be reqular and uncountable, and let N be an IA substructure
of A with length and cardinality k. Then there is a continuous approaching se-
quence (My : a < K) for M, such that Mg is an elementary substructure of A with
cardinality less than k and (Mg : oo < ) € Mgyq for all § < k.

We will refer to increasing and continuous sequences (M, : « < ) of elementary
submodels of A such that (M, :a <~) € M,y for v +1 < 8 as “continuous
internally approaching chains of submodels”.

The following lemma encapsulates some of the key properties of TA structures.
For simplicity we only consider TA substructures with approaching sequences con-
sisting of continuous internally approaching chains of submodels.

Lemma 2.3. Let k be a regular cardinal. Let (M, : a < k) be a continuous in-
creasing chain of elementary submodels of A such that (My :a <) € Myyq for
vy<k. Let M =,_,. M, and let \ = |M|. Then

(1) K € M, so in particular k < .

(2) For all ordinals v € M with cf(y) > A

(a) cf(MN~y) =k.
(b) There is a closed unbounded set C' in sup(M N+~y) with C C M.

(3) For every set X C M with |X| < k, there is Y € M with |[Y| < X and
XCY.

(4) Let K € M be a set of regular cardinals such that A < min(K) and |K| < k.
Then every function in H’yEK M N+ is dominated pointwise by a function
in MN]]K.

(5) Let P € M be a k-closed and (X, 00)-distributive forcing poset. Then there
is a decreasing sequence (p; : i < k) of conditions in M NP which meets
every dense open subset of P lying in M.

Proof. We sketch the proof.

(1) If 8 < K then (M, : @ < ) in M, and so by elementarity the length 8 of
this sequence is in M. We note that as a consequence Mg € M also.

(2) Since cf(y) > A = |M|, M N+ is bounded in v. Since v € M and each M, is
in M, the sequence (sup(M, N7) : a < k) is easily seen to be a continuous
increasing sequence which is cofinal in sup(M N +) and consists of ordinals
in M.

(3) Since |X| < &, there exists a < & such that X C M,,.

(4) Let f be a function in [ ], cx M N k. We note that since |K| < x C M and
K € M, we have K C M. Since |K| < k, we may find a < & such that f
isin [],.cx Mo N k. We define g with domain K by g(k) = sup(My N k).
Since |M,| < A < min(K) we see that g € [[ K, and since K and M, both
lie in M we also have g € M. Clearly f(r) < g(x) for all k € K.

(5) By induction we choose p; to be the <p-least condition in P which is a lower
bound for (p; : j < i) and lies in all the dense open subsets of P which are
in M;. Since (M : j < i) lies in M it is easy to see that (p; : j < i) lies in
M, and hence p; lies in M.

a<k

O

Property 5 is not especially relevant in this paper, but it is highly significant in
the context of [18] and [15]. Properties 2, 3 and 4 will all be of interest to us in
what follows. In Section 4 we will make a detailed study of structures which have
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uniform cofinality as in Property 2. Property 3 is a kind of internal covering which
we discuss at length in Section 6. Property 4 we call tightness and we axiomatise it
in the following definition: actually we axiomatise something a little more general.

Definition 2.4. Let K be a set of regular cardinals, let § = cf(#) > sup(K), and
let A= (Hy,€,<p). Let M < A.
Then M is tight for K if and only if
(1) K € M.
(2) Forallg € [],.crsni (MNk) there exists h € MN]] K such that g(x) < h(k)
forallke M NK.

We note that if |K| C M then K C M, and in this case tightness has the simpler
form appearing in Property 4 above: when K C M, M is tight for K exactly when
M N]]K is cofinal in [, M N k. It is natural to phrase this definition in terms
of a standard idea, the characteristic function of a structure.

Definition 2.5. Let K be a set of regular cardinals and let M be a set. The
characteristic function of M (on K) is the function X% with domain K given by
XE : k — sup(M N k).

We will usually drop the superscript K and write X3, when the set K is clear
from the context. Typically we will be in a situation where |[M| < min(K) and so
Xy € [] K. If a structure M is such that K C M, then tightness of M amounts to
saying that every function in ] K which is pointwise dominated by X/ is pointwise
dominated by some function in M N[[ K.

There are several reasons why it seems worthwhile to isolate the property of
tightness. One reason is that there are many arguments in PCF theory which em-
ploy IA structures, and on closer inspection these arguments are typically just using
the tightness guaranteed by Lemma 2.3. Another reason is that tight structures
arise naturally in Foreman and Magidor’s theory of mutual stationarity. We only
give a cursory description of the theory of mutual stationarity, for more information
see [17] and the sequel to this paper [7].

Definition 2.6. Let K be a set of regular uncountable cardinals. Let (S, : k € K)
be such that S,, C & for all k € K.

(1) If N is a set, then N meets (S, : & € K) if and only if sup(N N k) € S, for
all k € NN K (equivalently Xy | NNK € [],.cnnx Sk)-

(2) (S : Kk € K) is mutually stationary if and only if for every algebra A on
sup(K) there exists N < A such that N meets (S, : k € K).

It is easy to see that if (S,; : kK € K) is mutually stationary then S, is stationary
for each k. Foreman and Magidor showed [17] that the converse is false in general,
but is true if S, C kN cof(w) for all k.

Mutual stationarity can be seen as intermediate between the classical concept
of stationarity for subsets of a regular uncountable cardinal, and the very general
concept of stationarity introduced in [18]. We recall that if S C P(X) then S is a
stationary subset of P(X) if and only if for every algebra A on X there is B € S
such that B < A. This is easily seen to be equivalent to demanding that for every
F: <¥X — X there is a non-empty B € S which is closed under F. When we
need to distinguish between different flavors of stationarity we will refer to this last
concept as general stationarity.
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The sequence (S, : k € K) is mutually stationary if and only if the set of subsets
of sup(K) which meet (S, : k € K) is a stationary subset of P(sup(K)). By stan-
dard facts [18, Lemma 0] about general stationarity, if X is any set with sup(K) C X
then (S, : k € K) is mutually stationary if and only if the set of subsets of X which
meet (S, : k € K) is a stationary subset of P(X). Subsequently we will often let
X = Hy for 6 some regular cardinal greater than sup(K).

Two of the most useful facts about stationary subsets of a regular uncountable
cardinal k are Fodor’s lemma [13] and Solovay’s splitting theorem [27]. It is open
to what extent these results may be generalised to arbitrary mutually stationary
sequences; Foreman and Magidor [17] identified a class of mutually stationary se-
quences, the tightly stationary sequences, for which versions of Fodor’s lemma and
Solovay’s splitting theorem are available. As one might expect, a tightly stationary
sequence is a sequence whose mutual stationarity is witnessed by tight structures.

Definition 2.7. Let K be a set of regular cardinals and let (S, : & € K) be such
that S, C & for all Kk € K. Let § = sup(K)™". The sequence (S, : k € K) is tightly
stationary if and only if for every algebra A on Hy there is N < A such that N is
tight for K and N meets (S, : k € K).

See Foreman and Magidor’s paper [17] for the statements and proofs of Fodor’s
lemma and Solovay’s theorem in the context of tight stationarity.

2.2. Approachable and good points. There is a close connection between in-
ternally approachable structures and the normal ideal I[)\] defined by Shelah [24,
25, 26].

Definition 2.8. Let A\ be a regular uncountable cardinal. S € I[\] if and only if
there exists a club subset E of A and a sequence (a, : @ < A) of bounded subsets
of A, such that for all § € EN S there is A C § unbounded in ¢ such that ot(A4) =
cf(d) < ¢ and for every 8 < ¢ there is v < ¢ such that AN S = a,.

We discuss some alternative characterisations of I[A] in Section 7. The following
result appears in [16] as part of the proof of Claim 4.4 in that paper, and gives one
direction of the connection between I[\] and approachable structures.

Lemma 2.9. Let A be reqular and uncountable. Let > X and let A be an algebra
expanding (Hy, €,<g). Let S € I[\]. Then there is a club subset F' of X\ such that
for every § € F NS there is M < A such that M is IA of length and cardinality
cf(8) and sup(M NA) =4.

To get a reasonable converse we fix a regular cardinal x less than A and assume
that A< = X\. We let I\, s] be the restriction of I[\] to cofinality s, that is
the ideal of those X C X such that X N cof(k) € I[\]. We enumerate [A\]<" as
(aq : @ < A), and let S be the set of § € AN cof(x) such that there is A C ¢
unbounded in § with ot(A) = & and every proper initial segment of A enumerated
as a, for some v < §. If we choose a different enumeration (b : @ < A) of [A]<F
then {aq : a < B} = {by : @ < B} for a club set of 8 < A, so modulo the club filter
S is independent of the choice of the enumeration (as : @ < A).

It is not difficult to see that S generates I[\, k] modulo the club filter on A, or
to put it another way S is (modulo club sets) the largest subset of AN cof(x) which
is in I[\]. We will refer to S as “the set of approachable points of cofinality & in \”
with the understanding that this set is well-defined modulo the club filter. In this
situation there is an easy converse to Lemma 2.9.
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Lemma 2.10. Let x, A and 0 be reqular with k < X < 6 and A\<® = X. Let
(ag : . < A) be an enumeration of [\]<" in order type \, and let S be defined as
above. Let N < (Hy, €,<p,{(aq : @« < A)}) be IA of length and cardinality . Then
sup(NNA) € S.

Proof. Let N be approached by (N; : i < k), and let ; = sup(N; N \). Then every
proper initial segment of (v; : ¢ < k) lies in N, so is enumerated as a, for some
a € NN It follows that sup(NNA) € S. O

Summarising, if A<®* = X then (modulo club sets) S is the set of ordinals of the
form sup(N NA) where N is IA of length and cardinality . If C' is any club subset
of A we can add C to the structure in the proof of Lemma 2.10, and find N such
that sup(NNA) € CNS; it follows that S is stationary. It is interesting to note that
there is an attractive characterisation of S in terms of forcing: results of Shelah [24]
imply that every x-closed forcing poset preserves the stationarity of subsets of S,
but there is a kT-closed poset which destroys the stationarity of A N cof(x)\ S.

The set S is an example of the sort of “canonical invariant” discussed in the
introduction. We will compare the set of approachable points with the set of good
points, but before we can define the set of good points we need some PCF-theoretic
preliminaries. For more information about PCF theory we refer the reader to
Shelah’s book [26], or the survey papers [3] and [1].

Given a set X and an ideal I on X, we refer to the sets in I as I-small sets. We
say that aset Y C X is I-large if X \Y € I and is I-positive if Y ¢ I. Given ordinal
valued functions f and g with domain X, we say that g dominates f modulo I (and
write f <y g) if f(z) < g(z) for an I-large set of values of z; the relation <y is a
strict partial ordering. Similarly we say g dominates f pointwise (and write f < g)
if f(z) < g(z) for all z. Given an ordinal valued function f a scale of length B in
(I1, f(z),<r) is an increasing and cofinal sequence of length 5 in ([], f(z), <r).

For Y a subset of X, a sequence of functions in XON is pointwise increasing
on Y if it is strictly increasing on every coordinate in Y. We note that a sequence
which is pointwise increasing on an I-large set is <;-increasing, but that in general
the converse is not true. Two sequences (f, : @ < ) and (g, : @ < 7y) which are
increasing with respect to <; are cofinally interleaved (modulo I) if for all o < ~
there is 3 < 7 such that f, <; gg and go <1 f3.

The function g is a an ezact upper bound (eub) for the <j-increasing sequence
(fo:a< B) if and only if f, <y g for all & < B, and for every h with h <; g
there exists a < 8 with h < go. This is equivalent to (f, : @ < ) being a scale in
(I1, 9(x), <r) (with the caveat that the functions f, need only be dominated by g
modulo I, rather than literally being members of [], g(z)). It is easy to see that
an exact upper bound, if one exists, is well-defined modulo I.

A point B is good for a <j-increasing sequence f (of length at least 3) if and
only if c¢f(8) > |X| and there exists an exact upper bound h for (f, : o < 8) with
the property that cf(h(z)) = cf(8) for all . The following lemma gives some useful
equivalent characterisations of goodness: the implication from 3) to 1) gives an
important construction principle for exact upper bounds.

Lemma 2.11. The following are equivalent for (f, : a < ) a <j-increasing se-
quence with cf(8) > |X]|.

(1) B is good.
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(2) There is a sequence of functions of length cf() which is pointwise increasing
and is cofinally interleaved with (fo : oo < 8) modulo I.

(3) There is a sequence of functions of length cf(8) which is pointwise increasing
on an I-large subset of X and is cofinally interleaved with (f, :a < ()
modulo I.

Proof. For 1) implies 2), let h be an eub such that cf(h(z)) = cf(3) for all z and
fix for each z a sequence (af : i < cf(8)) increasing and cofinal in h(x); now define
gi(xr) = of and check that (g; : i < cf(B)) is pointwise increasing and cofinally
interleaved with (f, : @ < ). The implication from 2) to 3) is immediate. For
3) implies 1) fix (g; : © < cf(8)) pointwise increasing on an I-large set and cofinally
interleaved with (f, : @ < ); check that the pointwise supremum of (g; : i < cf(5))
is an exact upper bound for (f, : @ < 8) which has cofinality cf(8) on an I-large
set, and then alter it to get an exact upper bound which has cofinality cf(8) on all
T. (]

As an immediate corollary of Lemma 2.11, if £ is a good point then there is C'
club in B such that every point of C' with cofinality greater than |X| is good. So
the set of ungood points of cofinality greater than |X| is quite thin, in the sense
that if it is stationary then its stationarity can only reflect at points of itself.

Example 2.12. If (f, : a < A) and (f], : « < \) are two <r-increasing sequences
with the same exact upper bound g then it is easy to see that they are cofinally
interleaved. It follows that if X is a regular uncountable cardinal there is a club set
of B < X such that (f, : @ < B) and (f, : a < B) are cofinally interleaved. Therefore
the sets of good points for (fo : @ < A} and (f! : a < \) are equivalent modulo the
clud filter and so give an example of “canonical” structure.

The following result by Shelah is central in PCF theory.

Fact 2.13. If u is a singular cardinal then there is a set K C p of regular cardinals
such that ot(K) = cf(u) and there is a scale of length u* in [[ K under the eventual
domination ordering.

As we just pointed out, the set of good points in such a scale is essentially
independent of the choice of the scale so has some claim to be considered a canonical
invariant. Of course there is still a dependence on K but for small values of p we
can also make a canonical choice for K. The case of most interest to us is p = N,
and in this case work of Shelah shows that modulo finite sets there is a largest
K C {8, : n < w} such that [[ K has a scale of length X,4; in the eventual
domination ordering. In this situation we refer to the set of good points in such a
scale as the good points in Ny,41.

The next lemma makes the connection between scales, good points and A struc-
tures. It should be compared with Lemma 2.10.

Lemma 2.14. Let | X| < k < A < 0 with k, X and 0 reqular. Let f = (fo : a0 < )
be a <1-increasing sequence in XON/I, and suppose there is an exact upper bound

g for f such that cf(g(z)) > K for allz € X. Let N < (Hy, €, <y, {f,g}) be an IA
structure of length and cardinality . Then sup(N N A) is a good point for f

Proof. We fix an internally approaching chain (V; : i < k) such that X € Ny, X C
Ny, |N;| < & for all i and the union of the chain isis N. We let g;(z) = sup(N;Ng(z))
for i < k, and claim that (g; : ¢ < k) will serve as a witness that sup(NNA) is good.
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Since X C Ny and cf(g(x)) > & for all x € X, we see that g; < g; moreover if ¢ < j
then NNV; € Nj, so g; € N; and hence g; < g;.

Since g; € N and g; is dominated by the exact upper bound g, it follows by
elementarity that g; <; f, for some @ € NNA. On the other hand if a < sup(NNA)
then there exist i < k and § € N; N A with a < §8, so that range(fz) C N; and

fs < 9i- O

If C is club in A we may add a predicate for C' to A and produce a good point
of cofinality k lying in C'. It follows that the set of good points of cofinality x is
stationary.

We can now prove that, as we mentioned in the introduction, approachable points
are good.

Corollary 2.15. Let A\ be the successor of a singular cardinal p, let K C pu be an
unbounded set of reqular cardinals with ot(K) = cf(p) < min(K). Let f be a scale
of length X in [[ K under eventual domination. If S € I[)\] then almost all points
of S with cofinality greater than cf(u) are good for f

Proof. Immediate from Lemmas 2.9 and 2.14 (]

Recalling that the set of approachable points (when it can be defined) is the
maximal set in I[A], we see that modulo the club filter every approachable point of
cofinality greater than cf(u) is good.

3. GOODNESS, APPROACHABILITY AND COMPACTNESS FOR SQUARES

One theme of this paper is the relationship between the concepts of goodness
and approachability. As we showed in Corollary 2.15, approachable points are
good. In this section we show that under certain circumstances the implication
from approachability to goodness can be reversed. It is notable that the result
presented here shows that scales can be used to derive squarelike principles at
from squares below k.

Since approachable points are good, the problem “which good points are ap-
proachable” becomes trivial if almost every point is approachable. We digress
briefly to review what is known about the extent of T[)].

It it is known that if Jensen’s weak square principle [}, holds then wt e Ipt],
so that large cardinals will be required to make models in which I[p ] is non-trivial.
If p<# = p then O}, holds, so GCH trivialises I[A] for A the successor of a regular
cardinal. Shelah has shown that if )\ is regular then A™ N cof(< \) is in I[AT],
and that if A is singular then for all regular K < A there is a stationary subset of
AT Ncof(k) lying in I[AT].

If & is supercompact and cf(\) < k < A, then AT Ncof(< k) ¢ I[AT]. By doing
some suitable Levy collapses (see [24] or [20] for details) this can be used to produce
a model in which N, 1 Ncof(Ry) ¢ I[R,1]. As for successors of regular cardinals,
Mitchell’s model [23] in which there is no Ng-Aronszajn tree also has the property
that Ny N cof(Ry) ¢ I[N2]. In recent work [22] Mitchell has produced a model in
which I[RX;] is generated modulo the club filter by the set Ng N cof (w).

We now narrow our focus to the cardinal X, i, where the points of cofinality
N; seem to play a special role. It is known (see [16] or [7]) to be consistent that
stationarily many points of cofinality N; are not good, and it is open whether
R,4+1 Ncof(# Nq) is always in I[R,+1]. As we see shortly all points of cofinality
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greater than 2% are good. In particular under CH all points of cofinality greater
than Ny are good.

Before we prove the main result of this section we need some technical preliminar-
ies. We start with the concept of a continuous sequence. Let f be a <j-increasing
sequence. The sequence f is continuous at (8 if and only either there is no exact
upper bound for (f, : & < ) or fz is such a bound. fis continuous if and only
if it is continuous at every limit 5. Given an arbitrary <;-increasing sequence f
of limit length )\, we may replace fg for 8 < A limit by an exact upper bound for
(fa : @ < B) whenever such a bound exists, and get a continuous sequence which is
cofinally interleaved with the original one.

If B is a good point for f and (g; + © < cf(B)) is increasing on an I-large set and
cofinally interleaved with (f, : @ < ) then let g be the pointwise supremum of the
sequence (g; : 1 < cf(8)). As we saw in Lemma 2.11 g is an exact upper bound
for (fa : @ < ) and so by continuity fs is also an exact upper bound: since exact
upper bounds are unique modulo I, the functions f3 and g must agree on an I-large
set.

Next we need an alternative characterisation of good points in scales of a special
kind. When X is an ordered set with no last element, and I is the ideal of bounded
subsets of X, we usually write <* for <; and =* for <;. We refer to <* as the
eventual domination ordering. This is the context of the “good scales” and “very
good scales” studied in our paper [8] on scales, squares and reflection.

In a scale under eventual domination the definition of good point can be simpli-
fied. To be more precise the following statements are equivalent:

e The ordinal 3 is good for f

e The cofinality of 3 is greater than |X|, and for every unbounded A C 3
there exists an unbounded B C A and z € X such that (f,:a € B) is
pointwise increasing on {y : < y}.

The proof of the forward implication uses an “interleaving” argument of a type
which is ubiquitous in PCF theory, so we give it in detail.

Since f is good, we may fix 2o € X and (g4 : @ < cf(8)) which is pointwise
increasing on {y : zp < y} and is cofinally interleaved with (f, : @ < ). Thinning
out the sequence of g, we may also assume that for every « there is vy, € A with
9a <* fyo <* ga+1. Since cf(B) > |X| we may find > z¢ and an unbounded set
By C cf(B) such that go(y) < fy.(¥) < gat1(y) for all @ € By and y > z. Let
B = {7, : @ € By}, and observe that if & and o/ are in By with a < o and y > x

then fy. (y) < gat1(y) < gar(y) < fr; (¥)-
We will also need Shelah’s important Trichotomy theorem [26].

Fact 3.1. Let I be an ideal on a set X of cardinality k, and let \ be regular with
kT < A\ Let (fo:a <)) be a <y-increasing sequence. Then one of the following
must occur:

(1) There is an eub g for (fo : @ < X) such that cf(g(z)) > k for all z.

(2) There exist an ultrafilter U on X disjoint from I and sets (S; : v € X)
with |S;| < k, such that for all o < X there is g € [[,cx Sz and B < X
such that fo <u g <u f3.

(3) There exists a function h such that if Do = {z : fo(z) < h(z)} then the
sequence (Dqy, : oo < \) is not eventually constant modulo I.
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If 2% < A then it is not hard to see that the second and third cases are impossible,
so that there must exist an eub g for (f, : & < A) such that cf(g(x)) > & for all .

For the rest of this section we fix some infinite A C w such that there is a scale of
length X, 11 in [],c 4 X, under eventual domination. We also fix (fo : a0 < Ryy1)
which is such a scale. Altering the scale at limits if necessary, we may assume that
it has the following strengthened form of the continuity property: if 0 < & < w and
a is a good point of cofinality Ny, then f, is an exact upper bound for (f¢ : ( < @)
(this is just continuity) and in addition cf(f,(n)) = Xy for all n > k.

We already know that there are stationarily many good points for this scale in
any uncountable cofinality but with some cardinal arithmetic assumptions we can
say more.

If 2% < W, and B € R, is a point of cofinality ¥y then it follows from Tri-
chotomy that there is an eub g for (f, : a < 8) with cf(g(n)) > R foralln € A. A
little analysis (see [21] or [4] for the details) shows that cf(g(n)) = R for cofinitely
many n, so that 3 is a good point: it follows from our assumptions on the scale
that fg is an eub for (fo : @ < 3) and cf(fg(n)) =Ry for all n € A with n > k.

The structural hypothesis which we need for our main result is a weakening of
square which only refers to ordinals below N, with a fixed cofinality.

Definition 3.2. Let k be a natural number with £ > 1. A (R, cof (wg))-sequence
is a sequence (Cy : a € N, N cof(wy)) such that

(1) For all e, Cy is club in « and ot(Cy) = wg.

(2) For all a, 8 and #, if v € lim(Cy) N im(Cp) then Co Ny = CsN~y.

The next lemma is similar in spirit to the results on “improving squares” in our
paper on scales, squares and reflection [8].

Lemma 3.3. IfOyx, holds for all n with k < n < w then there is a O(X,,, cof (wg))-
sequence.

Proof. Fix (D2 : o < N,,41) witnessing Oy, where we assume without loss of gen-
erality that D7 C o\ (X, +1) for a € R,,131 \ (X, + 1). We define C,, inductively.

Base case: If a € Ny, 1 N cof(wy), let C, = DE.

Successor case: Let o € (R, 41\ (R, +1))Ncof(wy) for n > k and let a* = ot(DZ).
Since cf(a) = w, and k # n, we see that o* < N,. Since DZ is club in «,
cf(a*) = cf (o) = wg. By induction C\~ has already been defined, and we define C,
by copying Cy+ into D. To be more precise we set C, = {y € DI : ot(DI N~) €
Ca-}.

We now check that this definition succeeds. Let n € lim(Cy) Nlim(C;s). By our
assumption on the sets D7, either v and § are both less than N, or they both lie
in 8,41\ (N, + 1) for some n > k.

Case 1: 7,6 < Npi1. In this case O, = D’; and C5 = fo, and it follows that
CyNn= D’; = (s Nn by the defining property of a Uy, -sequence.

Case 2: X, < 7,0 < N,y for n > k. In this case n € lim(D}) Nlim(D}) and so
D7 Nn = Dg Nn. Moreover if ¢ = ot(D] Nn) then by the definition of C', we have
that ¢ € lim(C,+), and similarly ¢ € lim(Cjs-). By induction Cy« N¢ = Cs- N¢, and
so by definition C, Nn = Cs N 7. O
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The main theorem of this section shows that starting with a (R, cof (wg))-
sequence, we may lift it via PCF theory to a square-like sequence defined on the set
of good points of cofinality wy in some scale of length R, 1. To be more precise we
define the following square-like principle, which is obtained by allowing the club sets
to be defined only at points of some set S and weakening the coherence requirement
so that it only applies at common limit points of uncountable cofinality.

Definition 3.4. Let S C R, N cof(wy) for some k > 1. A O*(S)-sequence is a
sequence (E, : o € S) such that
(1) For every a € S, E,, is club in « and ot(E,) = wy.
(2) For all 7,6 € S and every 7 of uncountable cofinality which is a common
limit point of E, and Es, E, Nn = EsNn.

Theorem 3.5. Let k be an integer with k > 2, and assume that there is a
O(Ry, cof (wg))-sequence. If G is the set of good points of cofinality wy for the
scale (fo 1 a < Nyy1), then there exists a Oy (G)-sequence.

Proof. Dropping finitely many points from the set A if necessary, we may as-
sume that all points in A are greater than k. Fix a O(X,,cof(wg))-sequence
(Cy s € R, Ncof(wy)). By our assumptions on the scale and the set A, for all
v € G the function f, is an exact upper bound for (f, : & <) and cf(f,(n)) = R
for all n € A.

Given v € G, we define functions g; for i < wy by setting g (n) equal to the
i*™™ member of Cy_ (,). By construction the sequence of functions (g] : i < wy) is
pointwise increasing and is cofinally interleaved with (f, : @ < 7).

For almost every n < ~ of uncountable cofinality, there is j < wj such that
(g7 i < j) is cofinally interleaved with (f, : @ < 71); the sequence (g] : i < j) wit-
nesses that 7 is good. Fix such n and j. By the argument of Theorem 2.11 and the
uniqueness of exact upper bounds f, =" sup,; g, and since Ct.(n) is closed we
also see that sup;_; g/ (n) = g (n). We conclude that f, =" g;.

For every v € G, we now define D, = { n <+ : 3j f;, =" g] }. The set D, need
not be club in v, and so we let E, be the closure of D, in v. We will show that
(Ey 1y € G) is a O “(G)-sequence.

If n is an accumulation point of D, with uncountable cofinality, then there is
a unique k such that the functions {g;Y : j < k} are cofinally interleaved with
{fa : @ < n}. It follows that 7 is good, and so by continuity we have f, =* g, and
thus n € D,.

It is easy to see that ot(D,) = wj and we just showed that D, is closed under
suprema of uncountable cofinality. Now let 7, be members of G. We claim that if
7 is a common accumulation point of D, and Ds with uncountable cofinality, then
D,Nn=DsNn.

Since 7 is in D,, there is j with cf(n) = cf(j) such that f,(n) = g](n) for all
large n, so that f,(n) € im(Cy () for all large n. Similarly there is k such that
fa(n) = gi(n) and f,(n) € lim(Cj,(,) for all large n.

It follows that Cy () N fy(n) = Cyny N fy(n) for all large n, and hence that
j =k and that g] = g? for i < j. If { € D,,Nn then f; = g] for some i < j, and
so f¢ =" gf and ¢ € Ds Nn; similarly Ds Nn € Dy Nn, so DyNn = DsNn.

It is now routine to verify that (E, : v € S) is a [ *(G)-sequence. O

Theorem 3.5 has the following striking corollary.
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Corollary 3.6. Let CH hold and let Oy, hold for alln < w. Then for every integer
m > 2 there ezists a Uy " (cof wy, )-sequence.

Remark 3.7. With a little work we can put Corollary 3.6 in a more pleasing
way. Extending our notation, let Uy (cof (X)) be the statement that there exists
(Cq : @ € Ry 1 Ncof (Ng)) with C, club in «, and the C,, cohering at common limit
points of uncountable cofinality. Let CH hold, let k > 2; then if [1;*(cof(R)) holds
for all sufficiently large finite n, it holds for n = w. The proof is an easy variation
on the one given above.

Theorem 3.5 also supplies a partial answer to the problem which motivates this
paper, the relationship between goodness and approachability. It is easy to see
that if there is a [y (S)-sequence then S € I[N, 1], and so Theorem 3.5 has the
following corollary.

Corollary 3.8. If[x, holds for all finite n then in R,41 all good points of cofinality
greater than Ny are approachable.

We can also deduce some results about stationary reflection.

Corollary 3.9. Let CH hold and let Oy, hold for all n < w. For all integers m
and n such that 0 < m < n there is a stationary subset of N1 N cof(R,,) which
does not reflect at any point of Ry, 11 Ncof(R,).

Proof. Let (Cq : o € Ryy1 Ncof(Ry,)) be a Oy “(cof wy,)-sequence. Let S be the set
of points of cofinality N,,, which occur as limit points of some C,, and given 8 € S
let Dg be the unique set such that Dg = C, N 3 when 3 € lim(C,,).

For any club subset D of N, 11, we can find & € lim(D) with cf(a) = R,,. Then
DN, is club in o and so we can find 3 € lim(C, N D) with cf(8) = R,,. Clearly
B € DN S so that S is stationary.

Applying Fodor’s lemma we may find T' C S stationary and v such that ot(Dg) =
v for all B € T. For each «a of cofinality 8,, the club set lim(C\,) meets T exactly
once, so that the stationarity of 7' does not reflect at any point of cofinality X,,. [

In our paper [9] it is shown that it is consistent that Cly, holds for 0 < n <
w but [y, fails. This is achieved by arranging that every stationary subset of
R, 41 N cof(w) reflects at some point of R, 11 Ncof(Ry). In the sequel [7] to this
paper we show that it is consistent that the least A for which [, fails should be
the first inaccessible cardinal.

We can also combine the [1;*(cof wy, )-sequences of Corollary 3.6 for different
values of m and get a weakening of the principle Oy, . [8].

Corollary 3.10. Let CH hold and let Oy, hold for all n < w. Then there exists
(Cy =y < Vyq1) such that for every limit ordinal v

(1) Cy is a countable family of subsets of 7y, each with order type less than R,,.
(2) For every C' € C, and every B € lim(C') with uncountable cofinality, CNG €
Cs.

Similar arguments can be used with some other square like principles. The fol-
lowing “Strong Non-Reflection” principle was introduced by Dzamonja and Shelah
[11], and has been used by Cummings, Dzamonja and Shelah [6, 10] in the investi-
gation of stationary reflection.
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Definition 3.11. Let A and x be regular and uncountable with A < k. Then
SNR(k,\) holds if and only if there is f : K — X such that for all o € kN cof(A)
there is C club in « such that f | C is strictly increasing.

This principle is true in L for all x which are not weakly compact and all A < k.
It implies that every stationary subset of x has a stationary subset which reflects
at no point of cofinality .

Dzamonja and Shelah [12] have studied the cardinal u(\) which is defined to be
the least k > A such that SNR(k, A) fails. In particular they have shown by an
elaborate forcing argument that w(\) can be the successor of a singular cardinal.
The following theorem, which is proved in the same way as Theorem 3.5, seems to
have some bearing on problems of this type.

Theorem 3.12 (Cummings [4]). Suppose that k < w and that SNR(X,,,Ng) holds
for all large n < w. Then there is f : Ry,11 — Ng such that for all good o €
R,41 N cof(Rg) there is C club in o such that f | CN{y :w < cf(y) < Ny} is
strictly increasing.

One rather unsatisfying feature of some results in this section is the appearance
of the Continuum Hypothesis among the hypotheses. CH is only being used to
derive “all points of 8,1 N cof(> N;) are good”, and it is quite possible that this
statement is actually true in ZFC. For some discussion of the difficulties associated
with attempting to show that this statement is consistently false see [5].

4. UNIFORMITY

In this section we develop the idea of uniformity for a structure. The main point
is that sufficiently uniform structures can be reconstructed from a small amount of
data.

We recall from Lemma 2.3 that if M is an IA structure of size A with a continuous
approaching sequence of length x then cf(M N~v) = & for all ordinals v € M such
that cf(y) > A. This is the prototype for the uniformity properties we will consider.

Definition 4.1. Let M < (Hy, €,<y), let K be a set of regular cardinals and let
k be a cardinal. Then M is k-uniform on K if and only if cf(M Nn) = & for all
n € KN M, and is weakly k-uniform on K if and only if cf(M Nn) > & for all
ne KNM.

This property arises naturally in the study of mutual stationarity. A structure
which meets a sequence of stationary sets all consisting of ordinals of cofinality &
will automatically be k-uniform on the relevant set of regular cardinals.

A particularly interesting case for our purposes will occur when K is an interval
of cardinals and M contains a large enough initial segment of the ordinals.

Definition 4.2. Let M < (Hp, €,<p) and let s, A and p be cardinals with £ <
A < p < 6. The structure M is k-uniform (resp. weakly k-uniform) between \ and
u if and only if
(1) XS M.
(2) The structure M is s-uniform (resp. weakly x-uniform) on the interval of
regular cardinals {n € REG : A < n < u}.

If M is k-uniform between )\ and 6 we say that M is k-uniform past A\, and similarly
for weak uniformity.
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This kind of uniformity arises naturally in the study of TA structures. If M is
an IA structure with an approaching chain of length x and A = |M| C M, then M
is k-uniform past .

Let M < (Hg, €, <p). If 7 is any limit ordinal in M, then cf(y) is in M and there
exists in M an increasing cofinal map f from cf(y) to 7. Restricting f to cf(y) N M
we get a cofinal map from cf(y) N M to v N M, so that c¢f(y) N M and vy N M have
the same cofinality. In particular if M is k-uniform on K then cf(yN M) = & for
all ordinals v € M such that cf(y) € K, and similarly for weak uniformity. If M is
k-weakly uniform between X and p and p € M is an ordinal of cofinality less than
or equal to X it follows that M N p is unbounded in p. If cf(p) is strictly between
A and g, then ef (M Np) > k.

Before discussing the implications of weak uniformity, we recall a well-known
variation on the closed unbounded filter. Given a regular cardinal x and a limit
ordinal p with £ < cf(p), we say that a set A C p is a < rk-club subset of p if Ais
unbounded in p, and sup(z) € A for every z C A with |z| < k. If k is uncountable
then the collection of < k-club sets generates a cf(p)-complete filter, which is in
fact the restriction of the club filter to the set of points of cofinality less than k.

Lemma 4.3. Let M be k-weakly uniform between A and pr. Then
(1) For every bounded subset x of M N p with |z| < k, sup(z) € M.
(2) For every regular n with A\ < n < sup(M N p)
(a) cf(MnNn) > k.
(b) There exists E C M Nn which is < k-club in sup(M Nn).
(Note that in item 2, we do not require that n € M.)

Proof. For claim 1, we may as well assume that « has limit order type. Let f =
sup(z) and v = min(M \ 3), where clearly both 8 and ~ are limit ordinals less than
wand M N~y = M NpB. Suppose for a contradiction that v > 3. Then cf(y) > A,
because otherwise M N~y would be unbounded in 7. Since v € M and A < cf(y) < p
we have cf(M N+~) > &, but this is impossible because cf(M N G) = cf(B) < |z| < K
and M NGB =MnN-~.

For claim 2, we fix a regular n with A < n < sup(M N ). Suppose for a
contradiction that cf(M Nn) < x and fix  C M N7 cofinal in M Nn with |z| < &.
Since K < XA < n, M Nn is bounded in 7. Since n < sup(M N u), = is a bounded
subset of M Ny and so by the first claim sup(z) = sup(M Nn) € M. This is a
contradiction since M N7 is bounded in 7. If we now fix any cofinal set D C M Nn
and let E be the closure of D under suprema of size less than x, then £ C M Nn
and F is a < k-club set as required. O

It is notable that claim 2) of Lemma 4.3 applies to regular cardinals which do
not lie in M. Before we can exploit Lemma 4.3 we need some more or less standard
facts about rebuilding structures.

The idea of Lemmas 4.4 and 4.5 first appears in the proof by Solovay that the
Singular Cardinals Hypothesis holds above a strongly compact cardinal. Lemma
4.5 will find an immediate application in Theorem 4.6 where we show that suf-
ficiently uniform structures are determined by their characteristic functions: the
more general Lemma 4.4 will be useful later in the covering results of Section 7.

Lemma 4.4. Let \ be a cardinal, let K be an interval of regular cardinals with
min(K) = AT and let 0 be a regular cardinal with sup(K) < 6. Let My and My be
two elementary substructures of (Hy, €, <g) such that
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e \C MynN M.
e For everyn € K, MyN My Nn is cofinal in My N7.

Then Mo Nsup(K) C M; Nsup(K).

Proof. Clearly My N A = M; N A = A. We show by induction on € K that
Mo Nn C My Nn. There is nothing to do when 7 is a limit cardinal, so let n = (T
where My N ¢ C M; N¢ by induction. If & € My Nn there is 8 € My N My Ny with
a < B, and we fix f the <p-least bijection from S to |g|. Since 8 € My N My and
[ is defined from 8 we have f € My N Mj, and since 3 < ¢t we have |3] < (. So
f(a) € MyNn¢, and since Mo N ¢ C My N ¢ we conclude that f(a) € My N ¢ and so
a € M;y. Thus My Nn C My Nn and the induction goes through. (|

We note that we are not assuming that K C M here.

Lemma 4.5. If we strengthen the hypotheses of Lemma 4.4 by adding the demand
that My N My N is also cofinal in My Nn for all n € K, then we may strengthen
the conclusion to Moy Nsup(K) = My Nsup(K).

Proof. Immediate from Lemma 4.4. O

Theorem 4.6. Let k be an uncountable cardinal. Let K be an interval of regular
cardinals with min(K) = A" and let 6 be a regular cardinal with sup(K) < 6. Let
M < (Hy,€,<p) be k-weakly uniform between \ and sup{n™ : n € K}. Then
M nsup(K) is determined by X% and sup(M N K).

Proof. Suppose that M and N are both substructures of (Hy, €,<p) which are s-
weakly uniform between A and sup{n* : n € K}, with X5, = X% and sup(NNK) =
sup(MNK). Then NNK = MNK. By Lemma 4.3, for every n € KN M each of the
sets M Nn and N Nn contains a set which is < k-club in sup(M Nn) = sup(N Nn).
The intersection of two < k-club sets is < k-club, so M N N N7 is unbounded in
M Nnand NNn. By Lemma 4.5 M Nsup(K) = N Nsup(K). O

We will only be using Theorem 4.6 in the special case when K C M. It will
be useful later to know that the process of reconstructing M Nsup(K) from X5 is
simply definable.

Lemma 4.7. Let K, k, A\, 0 be as in the last lemma and suppose that M, N <
(H(0),€,<g) with XX, € N. Then M Nsup(K) € N.

Proof. Since K = dom(X4;) we see that K € N, and thus sup(K) € N and A\ € N.
We may also find k* € N such that M is k*-weakly uniform.

Let (gg: B < sup(K)) be such that gg is the <gy-least bijection from S to ||,
and define partial functions g and h from sup(K) x sup(K) to sup(K) by

9(8,a) = gg(a), h(B,7) = g5" ().

Since g and h are defined from parameters in N, they are members of N. The
argument in the proof of Lemma 4.5 shows that M Nsup(K) can be computed as
follows: for each C = (Cy :m € K) such that C,, is < k*-club in Xj/(n) for each
n, compute the closure X (C) of A U (U, Cy) under g and h, and then take the

—

intersection of all the sets X (C). It follows that M Nsup(K) € N. O
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5. TIGHT STRUCTURES AND PCF

Recall from definition 2.4 that if K is a set of regular cardinals and M is a
structure with K € M and K C M, then M is tight for K if and only if M N[ K

is cofinal in [],.cx M N k. For the rest of this section we will make the following

Blanket assumption: We are given a set K of regular cardinals and a structure
M < (Hp,€,<p) such that K € M, K C M and |M| < min(K).

We note that since |[M| < min(K), we have XX € [[ K. Also since K C M we
have |K| < min(K) so that K is a “progressive” set of regular cardinals, and the
methods of PCF theory can be applied to K.

The main idea will be to analyse tightness for M in terms of the PCF-theoretic
properties of K. The key new points in the analysis (which are closely related) will
be that under some reasonable circumstances we can discern whether a structure
M is tight by inspecting M N ON, and can reconstruct a tight structure M from a
finite set of ordinal parameters.

We summarize the main interest in tight structures by the following points:

(1) Tight structures are canonically determined by a finite number of canon-
ical ordinal parameters, i.e. good ordinals. (Theorem 5.3) In particular,
the stationary set of tight structures is canonically well-ordered. This is
clearly not possible for arbitrary structures as they outnumber the possible
collections of ordinal parameters.

(2) A tight elementary substructure of an H(6) is determined by the its “car-
dinal structure”. This is implicit in the statement and explicit in the proof
of Theorem 7.3.

(3) Internally approachable structures share the two previous points (which is
why they were used in the original PCF theory.) However, given a structure
N < (H(),€,<g), to determine whether N is tight (in an absolute way
from knowledge of the regular cardinals) one must only know Xy [ Ryy1
(i.e. N’s trace on the ordinals), but to determine whether N N H (R, 1)
is internally approachable seems to require considerably more information
and conceivably might not be an absolute question.

We summarize the last point by the slogan that being tight is an “exterior” question,
but being internally approachable is an “internal” question.

The results of this section generalise a result by Foreman and Magidor [17,
Section 7.3] which analyses uniform structures which are tight for K = {R,, : n < w}
under the assumption that max pcf(K) = N, 11. They are also related to work by
Shelah analysing the characteristic functions of certain IA structures in terms of
PCF.

For our purposes the most important results are Theorems 5.2 and 5.3, which
give a detailed analysis of tightness for M under the assumptions that pcf(K) C M
and M is uniform on K. Theorem 5.5 shows that we can drop the assumption
that pcf(K) C M and demand only weak uniformity for M on K; the price we
pay is that we need extra technical assumptions and we get a somewhat weaker
conclusion. Theorem 5.6 shows that we can sometimes propagate tightness from K
to pcf(K).
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As a warmup for the style of argument which we will be using in this section, we
show that if M is tight for K then some uniformity properties can be propagated
from K to pcf(K).

Theorem 5.1. Let M be tight for K and let n be a cardinal with n > |K|. If M is
n-weakly uniform on K, then M is n-weakly uniform on pcf(K). If M is n-uniform
on K, then M is n-uniform on pcf(K).

Proof. Suppose that M is n-weakly uniform on K. Given A € M Npcf(K), let us fix
U € M an ultrafilter on K and (f, : @ < A\) € M increasing and cofinal in [ K/U.
Suppose for a contradiction that cf(M NA) < n. We fix A C M N A cofinal with
order type cf(M N A), and note that if & € A then f,(k) € M Nk for all k € K.
If we define g(k) = sup,c4 fa(k) for all K € K, then g(k) < sup(M N k) because
cf(M Nk) >n > |A|. Since M is tight there is h € M N[[ K with g < h, and by
elementarity there is « € M N A with h <y fu. So g <u fa, but this is impossible
because by construction f, < g.

Now suppose that M is np-uniform on K, and use this to find a pointwise in-
creasing sequence (g; : i < n) of functions whose ranges are contained in M and
whose pointwise supremum is y 7. As above let A € M Npcf(K) and fix U € M an
ultrafilter on K and (f, : @ < A\) € M increasing and cofinal in [[ K/U. It is easy
to see by tightness and elementarity that (f, : « € M N ) is cofinally interleaved
with (g; : ¢ <n), so cf(MNX) =n. O

We recall that we have a set K of regular cardinals such that |K| < min(K).
This is a situation in which Shelah’s PCF theory gives an analysis of pcf(K) in
terms of the PCF generators, and we give a brief review of this analysis.

As usual we let J.) be the ideal of sets A C K such that every ultrafilter U
containing A gives an ultrapower [[ K/U of cofinality less than A. The sequence of
ideals J.) is increasing with A and is continuous at limit cardinals.

By standard results from PCF theory we fix a sequence of sets (B : A € pcf(K))
with By C K for each A, such that B, generates J- + over J.: that is to say that
for AC K we have A € J_y+ <= A\ B) € Jc. An easy induction argument
shows that J. is the ideal of sets which are covered by a finite union of sets in
{B,:p <A}

It is known that pcf(K) has a maximum element, and accordingly we will choose
Braxpet(x) = K. By standard facts from PCF theory we may fix a matrix of
functions (f2 :a < A\, A € pcf(K)) such that (f2 :a <)) is a continuous scale in
[1Bx/J<A for every X € pcf(K).

We fix 0 some sufficiently large regular cardinal and let A be the structure
(Hg, €,<0,{K}, (B)), (f2)). We will analyse tightness of M for K in terms of PCF
theory, assuming that M < A, pcf(K) C M and M is uniform on K.

Theorem 5.2. Let n be regular and uncountable, and suppose that |K| < n <
min(K). Suppose that M < A where M is n-uniform on K and pcf(K) C M.
Then the following are equivalent:

(1) M is tight for K.
(2) For every A\ € pcf(K), sup(M N A) is a good point of cofinality n for
(f2:a <)) and fs)w\up(Mﬂ)\) =7, X2
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Proof. For the forward direction, assume M is tight. Since cf(M N k) = n for all
k € K, we may find a pointwise increasing sequence (g; : ¢ < n) in [[ K whose
pointwise supremum is Xf\{/[

Fix A € pcf(K). We claim that (g; [ By :i <n) is cofinally interleaved with
(f2:a€ MNA) modulo J.y. For alla € M N\, f2 € M and so f. is pointwise
dominated by XJ*. Since |K| < 7, there exists i < 7 such that f) is dominated
pointwise by g; [ Byx. Conversely if ¢ < 7 then it follows from the tightness of
M that g; is dominated pointwise by some function in M, and so by elementarity
gi <Jj_, f2 for some o € M N A.

It follows that cf(M N A) = n and sup(M N A) is a good point of cofinality 7.
By Lemma 2.11 fS):lp(Mﬂ)\) agrees modulo J.) with the pointwise supremum of the

g; | By, that is to say fs)l\lp(Mﬁ)\) =J_\ Xf/}.
For the converse direction, assume that for every A € pcf(K), sup(M N ) is a
good point of cofinality n for (f2 : a < A) and fs)l\lp(Mﬁ)\) =J_\ Xf/}. Let h be a

function in [] K which is pointwise dominated by X%;. For every X in pcf(K) we
have h <j_, fs)l\lp(Mﬁ)\)' Since sup(M N A) is a good point it follows that fs)Ilp(Mm)
is an exact upper bound for (f, : @« € M N ). Hence for every A\ € pcf(K) there is
a€ MNAwith h <;_, f2.

We will inductively build a decreasing sequence A\g > Ay > Ay > A; of members
of pcf(K) together with ordinals «; € M N A;. We will also build a decreasing
sequence of sets Dy O Dy D Ds ... such that D; € J.y,, halting when we reach a
stage with D; = ().

We let A\g = max pcf(K), and recall that By, = K. We choose ap € M N A such
that h <,_,, 29. Let Dy = {r : h(k) > f2°(k)}, so that Dy € Jy,-

Suppose that we have defined X;, a; and D; for ¢ < j. We stop if D; = 0.
Otherwise we choose Aj11 to be the unique member of pcf(K) with D; € J<)‘;+1

and Dj ¢ Joy,,,, and choose ajy1 € M N Ajyp such that h <Jra f,i‘]]jr’ll Now

we let
or h(k) > faltl(k)}.

J+1

Dj+1:{h‘,€Dj:h‘,¢B)\

i+t

Since By,,, generates J<>\++1 and h <j_, éj’ill, we see that Djy1 € Jou,,,.

Since the descending sequence of \; can only have finite length, the construction
must terminate. Let j be the last stage, so D; = 0. For each x € K, let i be
minimal with & ¢ D;. By definition we must have x € By, and k() < f2i(x). We
conclude that h is pointwise dominated by the pointwise supremum of { f,f‘” 11 < j},

and since this function lies in M we have proved that M is tight. ([

The following result will play an important role when we analyse the relationship
between tightness and internal approachability in Section 6. It is a generalization
of Shelah’s analysis of internally approachable structures used to bound powers of
singular cardinals. It is important for the purposes of that section to note that each
of the sets By, \ E; is in M, and each of the indices sup(M N ;) is computed in a
uniform way from M.

Theorem 5.3. Let n be regular and uncountable, and suppose that |K| < n <
min(K). Suppose that M is n-uniform on K and pcf(K) C M.
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If M is tight for K then there exist Xo,...\; € pcf(K) and Ey,...E; with
E; € M N Jcy, such that K = J,(Ba, \ E;) and X is the pointwise supremum of

the functions fsAuip(Nﬁ)\i) ' (Ba, \ E;) fori<j.

Proof. By Theorem 5.2, fsf‘lp(Mm) =7\ Xf/} for all A € pcf(K).

We argue in a way which parallels the last part of the proof of Theorem 5.2. As
there we build a decreasing sequence A9 > A1 > ... of elements of pcf(K), and also
sets D; with D; € J.), which this time are not necessarily decreasing. We also
build sets E; € M N J<y, such that D; C E;, and choose D;; as a subset of E;
rather than D;.

Let Ao = maxpcf(K) and Dy = {k : Xp(k) # fs):;)p(Mm,\o)(“)}v so that Dy €
J<x,- Suppose now that we have constructed the ordinals Ao, Ai...A;, together
with the sets Dy,...D; and Ey,... E;_;.

If D; =0 we set E; = () and stop the construction. If D; # () we choose \; 1 as
the unique member of pcf(K) such that D; € J<A;r+1 and Dj ¢ J<y,,,. We choose

E; to be some finite union of sets in {By : A < A; 41} such that D; C E;.
We note that F; € J<)\J_r+1 N M, and that since D; ¢ J.y,,, we must have
J

jt+1
By,,, C Ej. Let

it
i
Dj1={k€Ej:r ¢ By, or Xy(r) # fsi;:r(leAHl)(”)}'

Since E; \ By,,, is covered by a finite union of sets from {By : A < Aj;1}, and the
Aj+1

sup(MNAj11) -large subset of B,

functions X s and (k) agree on a J.
that D;j 4, € Jrjir

Since the sequence of \; is decreasing we eventually reach a stage j with D; = 0,
and so we halt the construction after setting E; = (). To finish we need to check

that X, is the pointwise supremum of the functions fs)‘uip( Mo | (By, \ E;) for

it i1y We see

i <.
Let & € By, \ E; for some i < j. Since D; C FE;, & € By, \ D; . By the
construction of D; we know that {x € By, : f:‘ljp(Mmi)(fi) # X (k)} is a subset of

D;, so fs)\uip(MnAi)(H) = X (k).

Given k € K, let i be minimal such that x ¢ E;. If i = 0 then x € B), because
we chose By, = K. If i > 0 then x € E;_1, and since k ¢ D; we see that k € Bj,.
It follows that every element of K appears in B), \ E; for some 1. O

Remark 5.4. For an application which we will make of Theorems 5.2 and 5.3 in
Section 7, we note that we only needed the scales {f2 : a < A} to be continuous at
good points of cofinality 7.

Now we give an alternative characterisation of tightness for M in the style of
Theorem 5.2, dropping the assumption that pcf(K) C M and weakening the uni-
formity assumption to weak uniformity. As we remarked earlier, this analysis owes
a debt to Shelah’s analysis of the characteristic functions of TA structures. For
technical reasons we will not be using continuous scales, but rather scales with a
technical property called w-club minimality.

Let us be given an index set X, an ideal I on X and a <j-increasing sequence f
If cf(8) > |X|, we define a function f3 by letting fj(x) be the least ordinal of the
form sup,cp fo(k) for E an w-club subset of 5. We note that if E is some w-club
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subset of 3 with f3(k) = sup,cp fa(k), then f3(k) =sup,cp fo(k) for any F' C E
with F' an w-club subset of j3.

Since the intersection of | X|-many w-club subsets of 3 is w-club, we may fix a
single w-club subset F of 8 such that f3(k) = sup,cp fo(k) for all k € F; it follows
that fj is an upper bound modulo I for (fo : @ < B). We say that the sequence f
is w-club minimal at B it f3 = fg. Returning to the context of this section, it is
routine to check that if I is an ideal on K with tcf(][ K/I) = A then we may find
a scale (f, : @ < A) in [[ K/I which is w-club minimal at every 8 < A such that
|K| < cf(8) < min(K); by a slight abuse of language we will say that such a scale
is w-club minimal in [[ K/I.

We will fix a matrix of functions (f2 : @ < A\, A € pcf(K)) such that (f2 : a < \)
is a an w-club minimal scale in [[ By/J<x for every A € pcf(K). Let A be the
structure (Hy, €, <g, {K}, (By), (f2)). We will assume that M < A.

We are now ready to use our technical assumption of w-club minimality. Suppose
that M is | K| -weakly uniform between p and o, where all cardinals in M Npcf(K)
are greater than p and less than o. Let A € M N pcf(K) and let v = sup(M N A).
By Lemma 4.3 there is E C M N A which is w-club in 7. Since |[M| < min(K) we
see that cf(y) < min(K), and since X lies in an interval where M is weakly uniform
we also see that cf(y) > |K|. So by the assumption of w-club minimality, we may
find F C E such that F is w-club in v and f3(k) = sup,cp f2 () for all k € K.
Since FC EC M, K C M and A € M it follows easily that f§\ < Xf}.

We can now give a characterisation of tightness.

Theorem 5.5. Let M be |K|+-weakly uniform between p and o, where all cardinals
in M N pcf(K) are greater than p and less than o. Then the following conditions
on M are equivalent.
(1) M is tight for K.
(2) For every A € M Npcf(K), if v = sup(M N A) then
(a) f3 <X
(b) There is A C By such that A € M NJcy and {k € B, : fﬁi‘(n) <
Xu(k)} C A
(c) f,i‘ is an ezact upper bound for (f) :a <) modulo J. in the fol-
lowing strengthened sense: for all f < fi‘ there exist B € M N X and
B e M N Jcy such that {k € By : fg‘(,kc) < f(k)} C B.

Proof. 1) implies 2). We have already seen that the uniformity hypothesis on M
implies that f,;\ < Xf/}. Since M is tight we may find a function g € M N[[ K
such that for all & € K, f2(x) < xm(r) implies that f3(x) < g(k). By w-club
minimality we know that f? is the pointwise supremum of {f} : o € F'} for some
F C M which is w-club in v, and we may find a € F so large that f) dominates g
modulo J_y. Now since f < f?‘ we see that for k € K

£ (k) <xm(k) = (k) < g(k) = fi(k) < g(x),

so that if we set A = {k € By : f2(k) < g(x)} then A is as required. Now let
f< f,i‘. Since f,i‘ < xum and M is tight, we may find h € M such that f < h and
then find 8 € F such that fﬁ)‘ dominates h modulo J.). Now

f3(k) < f(k) = f3(x) < h(k),
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and if we set B = {k € By : fg‘(n) < h(k)} then B is as required.

2) implies 1). Let f € [[ K with f < XJ. The construction is very similar to
that for Theorem 5.2. We construct a decreasing sequence of ordinals \g > Ay > ...
with \; € M Npcf(K), together with ordinals a; € M N A; and sets B; € M N Jy,,
in such a way that if k € B;_1 \ B; then f(k) < f2i(x).

Let A\g = max pcf(K) and vy = sup(MNNy), and observe that by b) the functions
f,i‘oo and s agree outside a set in M NJ<y,. By ¢) we can find aset By € MNJcy,
such that f(k) < f30 (k) for & ¢ By.

If at stage ¢ we have B; # 0, then choose A;;1 minimal with B; ¢ J<»,,,, noting
that A\;y1 € M because B; € M. Now we apply b) and ¢) to find B;11 € Jcx

and Q41 eMnN }‘i+1 such that f(f'i) < fo):,fill (H) for k € Bz \Bi+1-

As usual, the construction must terminate with B; = (. Then f is pointwise

it+1

dominated by the supremum of the functions f(;\j for j < i, and this function lies
in M. O

Under certain circumstances we can do an analysis of tightness as in Theorem
5.5 under a weaker uniformity hypothesis. It is known that if K is an interval of
regular cardinals then pcf(K) is also an interval of cardinals. If K is an interval, M
is tight for K and M is |K \Jr—weakly uniform in some interval containing K then
it follows from Theorem 5.1 that M is weakly uniform in an interval containing
pcf(K), and so the analysis of Theorem 5.5 applies.

It follows from Theorem 5.1 that if M is tight some information about cofinalities
can be propagated from K to pcf(K). The next result shows that under slightly
stronger assumptions the same is true for the property of tightness itself. The idea
of taking pointwise suprema of functions from many scales comes from Shelah’s
proof that pcf(pcf(K)) = pcf(K).

Theorem 5.6. Let pcf(K) C M and let M be | pcf(K)|"-weakly uniform on K.
If M is tight for K then M is tight for pcf(K).

Proof. Let L = pcf(K), and let F' € [[,c;, M N A. We define f € [[ K by
f: Kk sup flfl()\)(/i) + 1.
AEL

Since L C M, we see that fl‘}“(k) € M and flf:()\)(/i) € M Nk for all A € L and
k € K. Since cf(M N k) > |L] it follows that f(k) < sup(M N k) for all Kk € K.

Since M is tight for K, there is ¢ € M N[ K which dominates f pointwise. Since
(f2:a <\ X €pcf(K)) € M and the sequence (f2 : a < \) is a scale for each A,
it follows by elementarity that there is G € M N[] L such that g <;_, fg()‘) for all
A € L. We now see that for each A € L we have

foy < F<9<uos Fo
so that G dominates F' pointwise and we have shown that M is tight for L. (|

Theorem 5.6 allows us a practical alternative to Theorem 5.5:

Corollary 5.7. Let M be |K|"-weakly uniform (resp. n-uniform with |K| < n <
min(K)) between p and o, where all cardinals in M N pcf(K) are greater than p
and less than o. Let M' be the Skolem hull of M U pcf(K) in (H(0),¢,<g). Then
the following conditions on M are equivalent.

(1) M is tight for K.
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(2) M’ is tight for pcf(K) and |K|"-weakly uniform (resp. n-uniform) on
pcf(K).

(3) For every X € pcf(K), sup(M’' NX) is a good point of cofinality at least k™
(resp. of cofinality n) for (f2:a < \) and fsAup(M'ﬂA) =Joa X0

Proof. By Fact 6.2 we know that | pcf(K)| < |K|*%. Thus M’ C sk"O) (MU|K|*3).
Standard arguments show that for all k € K\|K |3, sup(M Nk) = sup(sk® @ (MU
|K|™®) N k). Suppose now that M is tight for K.

By the results in the last paragraph, M’ is tight for K and by Theorem 5.6, M’
is tight for pcf(K). Moreover, by Theorem 5.1, M’ is |K|*-weakly uniform (resp.
n-uniform) on pcf(K). Hence 1 implies 2. Again by the previous paragraph it is
clear that 2 implies 1

By Theorem 5.2, 2 and 3 are equivalent for M’. (I

6. TIGHTNESS, APPROACHABILITY AND REFLECTION

In this section we prove a general covering theorem for tight structures, and
use it to show that certain tight uniform structures are IA. We also discuss the
connection between tightness and stationary reflection.

We start with some general discussion of covering properties of structures. Sup-
pose that x, A and 0 are regular cardinals with xk < A < #. We consider substruc-
tures N < (Hyp, €, <g, {K, A}) such that |[N| =« and x C N.

Given a set Z with k C Z, we let P,,Z be the set of x C Z such that |z| < k and
Nk € K. In increasing order of strength we may consider the following properties
of N:

Internally cofinal in P, A: NN P,(NNA) is cofinal (in the inclusion ordering) in
PN NN

Internally stationary in P,A: NN P,(N N ) is stationary in P, (N N A).
Internally club in P,A: N N P,(N N ) contains a club in P, (N N A).
Internally approachable in P,H): N N H) is IA of length and cardinality .

The following easy lemma shows that some cardinal arithmetic assumptions sim-
plify the picture.

Lemma 6.1. Let k, A and 6 be reqular cardinals with k < X\ < 0 and let N <
(Hg, €,<p,{K,A}) be such that |[N| =x and Kk C N.

If k<F = Kk and N is internally cofinal in P\, then P.(NNX) C N, from which
it follows that N is IA in P H).

For the rest of this section we will be studying structures /N which are tight for
some interval K of regular cardinals. One reason for this is that we wish to apply
the results of Section 4 on recovering structures from their characteristic functions,
and these results require an interval of regular cardinals. Another reason is that
we can use the following result of Shelah.

Fact 6.2 (Shelah). Let K be an interval of regular cardinals with |K| < min(K).
Then

e pcf(K) is an interval of reqular cardinals, which has a largest element.
o | pef(K)| < K.
e pef(pef(K)) = pef(K).
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Remark 6.3. If K is an infinite interval of regular cardinals with |K| < min(K),
then it follows from Fact 6.2 that by deleting a suitable finite initial segment k& of
K we can obtain an interval L with | pcf(L)| < min(L).

Remark 6.4. It is a viable conjecture that |pcf(A4)| = |A| for all A with |A] <
min(A).

Before stating and proving the very general Theorem 6.5, we digress briefly to
consider what is perhaps the most interesting special case. Let K = {X,, : 0 < n <
w}, and suppose for simplicity that pcf(K) is countable, say pcf(K) = {Rqq1 1 a0 <
B} for some countable 3.

Let m > 0 and let 6 be a large regular cardinal. Let N < Hjy be such that
R,, = |[N| C N, and let N be X,,-uniform and tight on {X,, : m < n < w}. By
Theorems 5.1 and 5.6 N is ®,,-uniform and tight on {R,11 : m < a < 5}.

Under these circumstances, it will follow from Theorem 6.5 that if m > 1 then
N is internally stationary in Py, (Ngy1). In conjunction with some extra cardinal
arithmetic assumptions as in Lemma 6.1, it will follow that N N Hy,, , is IA of
length and cardinality N,,. This is an instance of one of the motivating theses of
this paper, that tightness plus uniformity is very close to internal approachability.

Theorem 6.5. Let n be an uncountable reqular cardinal. Let L be an interval of
reqular cardinals such that min(L) = n**, |L| < n, and L = pcf(L). Let 0 be a
large regular cardinal and let N < (Hg, €, <g,{L}) be such that |N| =n* and N is
n*-uniform between T and max(L)T and N is tight for L. Then N is internally
stationary in P+ (max(L)).

Proof. Fix some algebra A on N N max(L). We build an increasing sequence
(M; : i < n) such that for all ¢

(2) M; Nmax(L) < A.

(3) Ml N ’I7+ < Mi+1 N ’l7+.

(4) Xﬁ,fi is pointwise dominated by some function in M;q N ][] L.

The last demand on M; is the crucial one, and it is possible to satisfy it because
N is tight and n™-uniform. We let M = |J; M; and L* = {*} U L, and note that
pcf(L*) = L*. As usual we will let (By : A € L*) be the <g-minimal sequence of
generators for L*, (f) : A € L*,a < )\) the <g-least matrix of functions such that
(f2:a <)) is a continuous scale in [] Bx/J<x.

By construction Xﬁ,}; is pointwise dominated by Xﬁ,;H ,» 50 that M is n-uniform
between i and max(L)*. Since |L*| < n the construction also guarantees that M
is tight for L*.

By Theorem 5.3 the function Xﬁ,; is the pointwise supremum of finitely many
functions of the form fsf‘lp(Mm) I (Bx\ E)), where E, € M. By Lemma 4.3
N Nmax(L) is n-closed in sup(N N'max(L)), so in particular sup(M NA) € N for
all A

It follows that X%, € N. By Lemma 4.7 we see that M N max(L) € N, and by
construction MNmax(L) < Aand M € P,+(NNA). This shows that NNP,+ (NNA)
is stationary. [l

As we mentioned before proving Theorem 6.5, we can use the theorem to show
that sometimes tight plus uniform equals TA. The following corollary gives the
simplest interesting case.
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Corollary 6.6. Let 2%t = X, and 2% = R, ;. Let 6 be a large regular cardinal
and let N < (Hp, €,<g) be Ny-uniform between Ro and R, and tight for {X, : 2 <
n < w}. Then N N Hy 18 IA of length and cardinality No.

For structures of size N; we have less than satisfactory results which we illustrate
with the following example:

w+1

Example 6.7. Suppose that X, is a strong limit and 2% = R, 1. Let N <
H (X, 12) have cardinality Xy and uniform cofinality wy. Suppose that sup(NNR,41)
s an approachable ordinal v and Xy =* f,. Then N is internally approachable.

To see this, let M be the internally approachable structure that has cardinality wy
with Xpr =" fy. Then for some wy, the Skolem hull of NUw; and the Skolem hull of
M Uw; have the same characteristic function and hence the two Skolem hulls have
equal intersection in Ny,11. In particular, the Skolem hull of N UX; is closed under
w-sequences below W, ;1. One can sees inductively that if Skolem hull of NUX;_; is
closed under w-sequence then so is the Skolem hull of N N ¥;_(;11). In particular,
N s closed under w-sequences below X, 11 and is thus internally approachable below
Nw—',—l .

Foreman and Magidor [15] showed that there is a close connection between in-
ternal approachability, uniformity and stationary reflection for sets of structures.
In particular they showed that

e Let x be supercompact, let © and v be regular uncountable cardinals less
than k with g < v. Let G be generic for Col(v, < k), then in V[G] the
following stationary reflection principle holds:

Every stationary set of TA substructures of (Hy, €,<y) of length and car-
dinality p reflects to some substructure of cardinality v.

e Let 0 > w3 and let S;; be the set of N < (Hy, €, <g) such that |[N| = 8y,

Nl Q N, Cf(Nﬂ Ng) = Nl and Cf(Nﬁ Ng) = Nj.
Then only Sj; can have the property that every stationary subset is
reflecting.
The following result indicates that tightness is also relevant to problems about
stationary reflection.

Theorem 6.8. Let K be a countable set of reqular cardinals and let S be a station-
ary set of elementary substructures of (Hy, €,<p), such that every element of S is
tight for K. Let M be such that S reflects to M. Then M < (Hg, €,<g) and M is
tight for K.

Proof. Let t be a Skolem term and let @ be a finite sequence of parameters from
M. There is N C M such that N € S and all the members of @ come from N.
Since N is closed under ¢t and N C M, t(@) € M as required.

Note that since K is countable, K C N for all N € S. Let f € [[,.cx K N M,
and find N € S such that N C M and f C N. Since N is tight for K there is
g € NN[] K which dominates f, and g € M since N C M. O

Foreman and Todorcevic [19] have defined a notion of tightness for countable
structures, and have used this to investigate stationary reflection in [H,|No.

7. PCF ABSOLUTENESS, COVERING AND PRECIPITOUS IDEALS

In this section we prove a version of the covering lemma and apply it to a problem
about precipitous ideals. Our covering lemma states roughly that if V and W are
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inner models with V' C W, and the PCF structures of V and W are similar enough
then every set of ordinals in W is covered by a set of the same size lying in V. The
key idea of the proof is that the characteristic functions of certain TA structures in
W can (as in Section 5) be described in terms of the PCF structure of W, and so
(by the PCF resemblance hypothesis) these characteristic functions will be elements
of V.

We start with a result which says that sufficiently similar universes have similar
PCF structures.

Theorem 7.1. Let V' be an inner model of W, and in V let K be a set of regular
cardinals with |K| < min(K). Assume that for all p € [min(K), max(pcf(K))"], if
w is regular in V then p is regular in W. Assume also that for every f € (J] K)W
there is g € ([ K)V with f < g. Then

(1) JY, =J2, NV for all cardinals u > min(K).

(2) Any sequence of PCF generators for K in V is still a sequence of PCF

generators for K in W.
(3) pef(K)V = pef(K)W.

Proof. We start by proving that JY,, = J% NV for all u € [min(K), max(pcf(K))"],
by induction on p. This is clear for 4 = min(K). For X singular we have J.) =
Jex+ = Uyen J<v, 50 it remains to show that if y is regular and JL/M = JZ‘L nv
then JL/MJr = Jgﬁ nv.

Suppose first that A € JZHJr. If A e JZH then we are done, otherwise we
fix a scale f of length p in ([] A/J<,)V. By the induction hypothesis and our
assumptions on V and W, f is a scale in (ITA/J<,)" and so A € J?;Jr.

Now suppose that A € Jzﬁ NV. Let D € V be any V-ultrafilter on K with
A € D, and in W extend D to D a W-ultrafilter. By our assumptions on V and
W the map ¢ : [f]p — [f]p is a cofinal order-preserving function from ([ A/D)"
to ([TA/D)"W. Since A € Jzﬁ the W-cofinality of (] A/D)" is at most u, and
the existence of ¥ and our assumptions on V and W imply that the V-cofinality of
(ITA/D)Y is at most pu. Therefore A € JZHJr.

Next we show that PCF generators agree between V and W. We note that
we can identify the maximum of pcf(K) as the least A such that K € J_y+,
so that V' and W agree on the value of the maximum element in pcf(K). We
call this common value Anax. In V' we fix a sequence <BIY :min(K) < g < Anax)

such that B,Y generates JZ;# over JL/H, and similarly we fix in W a sequence

(BL’V :min(K) < g < Apax) such that BXV generates Jgﬁ over JEL. We choose
these generators so that Bl‘f = 0 for p ¢ pcf(K)V, and similarly BZV = () for
p ¢ pef(K)W. We also choose BY =B =K.

We will show by induction that BXV and BZ are equal modulo JEL for all pu.
Since Bl‘f is in Jzﬁ and BZV is a generator, we see that Bl‘f is contained in BZV
modulo J?L for all p. Let A be least such that BY and B) are unequal modulo
JEVA. We now adjust the B,YV, replacing BL’V by B,‘f for p < A; this is legitimate by
the choice of A. Let C' = B} \ By so that C' ¢ J% but C e JY,,.

Now let p be least such that C' is covered by some set BL/O u.. .Bl‘fn U BIY with
fo < ... < iy < p; such a p exists because BY = K. Suppose for a contradiction
that u < A; then p < X since C is disjoint from BY. Now BY = BY for v < ),
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and it follows that C € JEV)‘, which is a contradiction: so > A. Note that B,‘f £
so that p € pcf(K)Y.

Let D = BXO U ...BL/n U BL/. Working in V find (g, : @ < p) such that g, €
(I D)V and (go | B} : o < p) is increasing and cofinal in ([T B))" modulo JY, |
B). Working in W find (hg : 8 < A) such that hg € ([] D)V and (hg | C: 8 < A)
is increasing and cofinal in ([JC)" modulo JY, | C.

Since > A we may find hg which dominates g, on C' modulo JEV)\ for unbound-
edly many a < p, and may then find g, such that

(1) hg dominates g, modulo J¥, | C.
(2) go dominates hg modulo JY, | BY.

We find 61,...6,, such that ;3 < ..., < A and {k € C : hg(k) < ga(k)} C
Bi'U.. .UB}’Z. Note that Bg:/ = Bg/i. We also find €1, . ..€, such that e; < ...¢p, < p
and {k € B) : hg(k) > ga(r)} C BY, U...UBE‘:;.

We claim that C' is covered by the union of the B/Yw B(}/i and BZ. To see this
observe that if k € C' then at least one of the following must hold:

e K€ B;Yi for some <.
e k€ CNBY and hp(k) < ga(r), in which case & € By, for some i.
e k€ CNBY and hp(k) > ga(), in which case x € BY, for some i.

This contradicts the minimal choice of p. It follows that as we claimed the sets
B) and B} agree modulo J}V for all . In particular the B) will serve as a
sequence of generators in W.

It remains to be seen that pcf(K)V = pcf(K)W. This is immediate by the
following computation: given any sequence B, such that B, generates J_,+ over
J<v, pcf(K) is the set of v such that B, is not covered by a finite union of B,, for
n<v. (I

A small technical difficulty is caused by the fact that the property of being the
characteristic function of some structure is not obviously downwards absolute. We
will resolve this difficulty using Lemma 4.4 and the following result.

Lemma 7.2. Let V and W be inner models of set theory with V C W. In'V let K
be an interval of reqular cardinals with |K| < p and min(K) = u™ for some regular
uncountable p. Assume that in W the cardinal p is still reqular and K is still an
interval of reqular cardinals. Let f € V' be such that for all « with p < a < sup(K),
f(a, =) is a bijection between o and |«|.

Let 0 be some sufficiently large regular cardinal of W, and in W let N < (Hy, €
,<0,{K}, f) be an IA structure of length and cardinality . If XX € V then there
is B € V such that N Nsup(K) C B C sup(K) and |B| = p.

Proof. Since N is IA of length p, we may fix (Cy : k € K) lying in W with C,, C
NNk and C,; club in sup(IN N &) of order type u. Since Xﬁ € V and cofinalities
agree, we may find in V' a sequence (D, : k € K) with D, club in sup(N N k) of
order type p.

Now let My = N Nsup(K) and note that My < (sup(K), f). Let M; be the hull
in (sup(K), f) of pUJ,, Dx, and note that My € V and |M;| = p. The hypotheses
of Lemma 4.4 are satisfied because for each x € K the set C,, N D, is contained
in My N My Nk and is cofinal in My N k. It follows that My C M; so we may set
B = M;. [l
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Theorem 7.3. Let V and W be inner models of set theory with V. C W. In'V
let k be regular and let A > k be a cardinal. Let K = REGY N [k, \] and suppose
that V. and W agree on regular cardinals in the interval [k, max(pcf(K)V)], K is
progressive and ([ K)V is cofinal in (] K)"W.

Let A C \. Then there is B € V such that A C B and |B|" < max{x, |A|"}.

Proof. We will prove this by induction on sup(A). We way assume that sup(4) > &,
since otherwise we may set B = k + 1. For the rest of this proof cardinalities and
cofinalities should be understood as computed in W, though we will tacitly use the
agreement between cardinalities of V and W at several points.

Case 0: sup(A) is not a cardinal. Let f € V be a bijection between sup(A)
and |sup(A)|, and let A* be the image of A under f. By induction we may find
B* C |sup(A)| such that A* C B* and |B*| < max{k, |A|}, and we may then let B
be the inverse image of B* under f.

Case 1: sup(A) is regular. In this case |A| = sup(A) and we let B = sup(A).

Case 2: sup(A) is singular. If |A| = sup(A) then we may set B = sup(A4), so we
now assume that |A| < sup(A). By our hypotheses on K we may find p regular
with max{r, | A, |K|T*} < p < sup(A). We set Ko = (u*,sup(A)) N REG.

Let L = pcf(Ky) where by Fact 6.2 |[L| < p and L = pcf(L). We fix in V a
sequence B = (B, : v € L) of PCF generators for Ky, and a matrix of functions
f= (fY v € L,i <v) such that (f/ : i <v) is a continuous scale in [[ By /J<,.

By Theorem 7.1, B is still a sequence of PCF generators in W. It is clear that
(fY :i<w) is still a scale in W, and we claim that additionally this scale is still
continuous at good points of cofinality pu.

We use Fact 3.1, the Trichotomy Theorem of Shelah. Let v € L, and in W let
p < v be a point of cofinality x which is good for the scale (f} : i < v). We begin
by arguing that in V' there must exist an eub for (f! :i < p) whose values have
cofinality at least k.

If this is not the case then in V' we must be either in Case 2 or Case 3 from Fact
3.1. It is easy to see that the properties of being in Case 2 or Case 3 are upwards
absolute from V' to W, in fact the witnesses from V will work in W as long as we
extend the ultrafilter in V' for Case 2 to an ultrafilter in W. Since we have an eub
for (f¥ : i < p) of uniform cofinality p in W, it follows from Fact 3.1 that in W we
are not in Case 2 or Case 3, so that in V there is an eub for (fY :4i < p) whose
values have cofinality at least k.

By continuity in V, f;’ is an eub whose values have cofinality at least x almost
everywhere in V. By the hypothesis on the resemblance between V' and W, f7
retains these properties in W. It follows that the scale (f} : i < v) is continuous at
P

We also fix in V a function f from sup(Kjp)? to sup(Kp) coding some information
about cardinalities, as in Lemma 7.2.

We now build N < (Hy, €,<p,{Ko}, f) where A C N and N is IA of length
and cardinality u. By theorem 5.3 Xﬁo is the pointwise supremum of finitely many
functions of the form f} | (B, \ E,) where E, is the union of a finite subset of
{B¢: ¢ <v}.

It follows that X§° € V. The hypotheses of Lemma 7.2 are satisfied so we may
find C in V such that |C'| = p < sup(A4) and A C C. Now let g € V be a bijection
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between C and p, and let A* be the image of A under g. Now we may use the
induction hypothesis to cover A* by a suitable B*, and then pull back along g to
get a suitable B covering A. |

Remark 7.4. Theorem 7.3 is actually an equivalence. The covering statement in
the conclusion implies that V' and W agree on regular cardinals between x and A,
and also implies that (J[TK)Y is cofinal in ([ K)".

In order to be able to state the next result in a compact way, we make the
following ad hoc definition.

Definition 7.5. Let V' and W be inner models of set theory with V C W. In V|,
let k be regular and let A > k be a cardinal. We say that W weakly resembles V
on [k, A\) if and only if the hypotheses of Theorem 7.3 are satisfied.

For background on the theory of precipitous ideals we refer the reader to Fore-
man’s survey paper [14]. The following result belongs to a genre of theorems in
which we are given an ideal I on a cardinal x and some information about preserva-
tion of cardinals when forcing with Px/I, and we conclude that I must be precip-
itous. This line of inquiry was begun by Baumgartner and Taylor[2], who proved
for example that under GCH a countably closed ideal on 8y whose quotient algebra
preserves No is necessarily precipitous.

Theorem 7.6. Let I be a countably complete ideal on Ri. Let A = 28t and suppose
it is forced by PRy /I that V|G| weakly resembles V' on [Ra, X). Then I is precipitous.

Proof. Let G be a generic ultrafilter on (PX;)" and let M = Ult(V, G). We observe
that by our hypotheses XY = NY{G] and recall the standard fact that RY is an initial
segment of the well-founded part of M. It must be the case that XY = XM for if not
then in M there is a surjection from w onto some larger M-ordinal, contradicting
the fact that RY = NY[G].

Suppose for a contradiction that M is not well-founded, and in V[G] choose
a sequence (f; :i € w) such that f; € V, f; : XY — ON and fi11 <¢ f; for
all 7. Since PXN;/I has the AT-c.c. we may find C € V such that |C] < X and
range(f;) C C for all i.

By Theorem 7.3 we may find B C C such that B € V, \B\V = XY and
range(f;) C B for all i. Working in V, we write B = (J;_y, B; where the B;
are increasing and |B;| = R;. In V[G] this gives a representation of B as an in-
creasing union of countable sets. Since |J; range(f;) is countable in V[G] we can
fix a j such that range(f;) C B; for all i. Now let v be the order type of Bj,
let h : B; ~ 7 be order preserving and let f* = ho f;. Then (ff:icw)is a
G-decreasing sequence of functions from N; to -, and so to get a contradiction we
need only show that jg(7) is well-founded for all v < RY .

Suppose for a contradiction that jg(7v) is ill-founded, and choose a bijection
F € M between ¥ and jg(7).

Since R = NY{G], we may find § < NY[G] such that in V[G] the set F'“0 contains
an infinite decreasing sequence of M-ordinals.

Working inV[G], let T be the tree of all finite sequences (ay, . ..q;) from § such
that F'(a;) > F(ajy1) for all i. The tree T is in the well-founded part of M. Clearly
T is well-founded in M, and is not well-founded in V[G].
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The tree T is countable in M, and so in M there is a rank function p : T — RM.

Since XM is well-founded, this contradicts the existence of a branch of T in V[G].
We conclude that M is well-founded and so that I is a precipitous ideal. O
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