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1 Introduction

The fact that small cardinals (for example X; and Ny) can consistently have
properties similar to those of large cardinals (for example measurable or
supercompact cardinals) is a recurring theme in set theory. In these notes I
discuss three examples of this phenomenon; stationary reflection, saturated
ideals and the tree property.

These notes represent approximately the contents of a series of expository
lectures given during the Set Theory meeting at CRM Barcelona in June
1996. None of the results discussed here is due to me unless I say so explicitly.

I would like to express my thanks to Joan Bagaria and Adrian Mathias

for organising a very enjoyable meeting.



2 Large cardinals and elementary embeddings

We begin by reviewing the formulation of large cardinal properties in terms
of elementary embeddings. See [40], [22] or [21] for more on this topic.

We will write “j : V. — M” as a shorthand for the rather cumbrous
assertion “M is transitive, j and M are classes of V and j is a non-trivial
elementary embedding from V to M”.

If j : V — M then it is easy to see that j has a critical point k. That
is to say j | k = id, and j(k) > k. It turns out that many large cardinal
properties can profitably be formulated in terms of elementary embeddings
and their critical points.

The concept of a measurable cardinal was first considered by Ulam [42] in
connection with problems in measure theory. Scott [35] initiated the study

of elementary embedding formulations for large cardinals by proving
Theorem 2.1 (Scott [35]) The following are equivalent.
1. K is measurable (that is, there ecists a normal measure on k).
2. There exists j : V. — M such that crit(j) = k.
3. There exists j : V. — M such that crit(j) = k and "M C M.

Purists may worry about the quantification over proper classes in the
statement “There exists j : V — M ...”. These worries can be addressed
either by regarding Theorem 2.1 as a theorem schema or by working in a

theory which allows quantification over classes.
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Other large cardinal properties can be defined by demanding that the
“target model” M of the embedding should have some resemblance to V.
Here are three popular large cardinal properties defined in terms of elemen-

tary embeddings:

Definition 2.2 Let xk be a cardinal.

1. K is A-strong iff there exists j : V. — M such that crit(j) = k, A < j(k)
and V, C M.

2. Kk is A-supercompact iff there exists j : V. — M such that crit(j) = &,
A< j(k) and *M C M.

3. Kk is huge iff there exists j : V. —> M such that crit(j) = k and
BN C M.

It is worth noting that all of these large cardinal properties have equivalent
definitions which do not involve elementary embeddings and just assert the
existence of an appropriate set; see [30] for the case of “A-strong cardinal”
and [40] for the cases of “\-supercompact cardinal” and “huge cardinal”.

By Theorem 2.1 only cardinals at least as strong as a measurable car-
dinal can have this kind of definition as the critical point of j : V. — M.
However weakly compact cardinals can also be defined using a weaker form

of embedding, and this will be useful later.

Fact 2.3 (Keisler) « is weakly compact iff k is strongly inaccessible and for

every transitive M such that k € M, <°M C M, |M| = k and M models
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enough set theory there exists k : M — N an elementary embedding into

some transitive set N with crit(k) = k.

Hauser [19] has given similar formulations of many properties intermedi-
ate between weak compactness and measurability.

One advantage of formulating the large cardinal properties of a cardinal
k in terms of elementary embeddings with critical point « is that it tends
to make the “reflection properties” of k very clear. We illustrate with an

example which will be a paradigm for several later arguments.

Fact 2.4 Let k be measurable, let S C k be a stationary set. Then there
exists a reqular cardinal o < k such that S N« is stationary in o (we say S

reflects at ).

Proof: Fix j : V — M with crit(j) = k. Now j(S)Nk = S,s0S € M. The
statements “k is regular” and “S is stationary” are downwards absolute (as

they are expressed by II; sentences). k < j(k) because r = crit(j). Hence
M E “k is regular and j(S) N« is stationary and k < j(k)”.
By the elementarity of j,

V' E “there is regular < k such that S N« is stationary”.



In fact the assumption that x is weakly compact would suffice to prove
Fact 2.4. The proof is very similar to the one we just gave, the key point
being that for every S we may build an appropriate M with S € M and then
apply Fact 2.3.

In what follows we will be concerned with a more general kind of elemen-
tary embedding. We'll write “k : M — N” to abbreviate “M, N are inner
models of ZFC and k is a non-trivial elementary embedding from M to N”.
In this general setting we are not assuming that £ and N are classes of M
or even that N C M.

It’s worthwhile to bear in mind the following differences between the

special case j : V. — M and the general case k : M — N.
e If j: V — M with crit(j) = k then

— Kk is measurable.
— Vey1 € M.

-V #M.

— 7 Ve =idy,.

e In the general case there can be k : M — N where (at one extreme)

M = N, or (at the other extreme) where crit(k) = RM and VY, C

—

N
Vo

We’ll be particularly interested in the case of embeddings j : V —

M C V]G] where j, M are defined in V[G], a generic extension of V. These



are usually known as generic elementary embeddings;, Foreman initiated the
detailed study of generic embeddings and their applications in [9].

It will be convenient for us to assume that V-generic filters exist; it is
possible to eliminate this assumption, using any of the standard methods.
Our forcing terminology follows that of [25] for the most part. We write
Add(k, ) for the Cohen conditions to add A subsets of x, Coll(k, A) for the
Lévy conditions to collapse A to have cardinality &, and Coll(x, < \) for the
Lévy conditions to collapse each ordinal less than A to have cardinality x.

To build generic embeddings we will use the following basic result of

Silver.

Fact 2.5 (Silver) Let k: M — N, let P € M be a forcing poset. Suppose
that G is P-generic over M, H is k(P)-generic over N and k“G C H. Then
there exists a unique k* : M|G| — N[H] such that k* | M =k and k*(G) =
H.

Proof: If such a k* exists then it must map 7¢ to k(7)¥ for each P-term 7 €
M. We need to check that this gives a well-defined elementary embedding.
Suppose that 7% = ¢“. Then there is p € G such that p IFY o = 7,
so by elementarity k(p) I-p) k(o) = k(7). Now k(p) € k“G C H, so that
k(o) = k(7)" and we have proved that k* is well-defined. The proof of

elementarity is very similar.

¢

We list some ways to arrange that £“G C H will hold. Fix k: M — N
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and P e M.
1. If P C k(P), k | P=1idp, and G = H NP then clearly k“G C H.

2. Suppose M F “Pis < A-distributive” and N = { k(F)(ap) | F € F }
where F C M is a family of functions such that V' € F M E

|dom(F)| < A.

Then we claim that k“G generates a filter H which is k(IP)-generic over
N. To see this let D € N be dense in k(P), then D = k(F)(ar) where
without loss of generality F'(z) is dense in P for each z € dom(F). By
distributivity £ = Nyeqom(r) F'(7) is dense in P, and of course E € M,
so let p € G N E; then by elementarity k(p) € k(F)(ar) = D and so
k“G N D # (.

3. If ¢ € k(P) and Vp € G ¢ < k(p) then any k(P)-generic filter H such
that H > ¢ will also have the property that H D k“G. Silver dubbed

such a condition a master condition.

3 Stationary reflection

Recall that in the last section we proved that every stationary subset of a
measurable (or even weakly compact) cardinal reflects. We now consider the
possibilities for this kind of phenomenon in small cardinals like Ny and N, ;.

We introduce some convenient terminology for describing stationary sets.

Definition 3.1 S} = {a <A|cf(e) =p}. T" ={a <R, |cf(a) =R, }.



It is easy to see that full stationary reflection cannot hold at the successor
of a regular cardinal \. In fact S3" is a stationary subset of A*, but if < AT
then cf(a) < X so we can choose C' club in o such that C'NS3" = (.

On the other hand it is consistent that stationary subsets of T should

all reflect. More precisely Baumgartner [2] proved the following

Theorem 3.2 (Baumgartner [2]) If k is weakly compact and G is generic

over V' for the Lévy collapse Coll(Ny, < k) then
VG| E “If S C T} is stationary, there is o € TE with S N« stationary”.

Proof: For simplicity we assume that x is measurable (and will indicate at
the end of the proof how to weaken the assumption to weak compactness).

Fix j : V' — M such that crit(j) = k and *M C M. Let P = Coll(Ry, <
k). Then by the closure of M we have j(P) = Coll(X, < j(k)), so in the
natural way j(P) ~ P x Q where Q = Coll(XNy, [, j(k))). If G is P-generic
over V and H is Q-generic over V[G] then G x H is j(IP)-generic over V' and
so a fortiori is j(P)-generic over M.

What is more, for every p € G we have j(p) = p € G x H, because
GCPCV,andj |V, =id. It follows from Fact 2.5 that we may lift 5 to a
new embedding

j:VIG] — M[G][H] € V[G][H].

Here we have denoted the new embedding by j also. There is no possibility

of confusion because the new j extends the old one.



Notice that this embedding and its target are defined in V[G][H], a generic
extension of V[G]. This is our first example of the notion of generic embedding

defined in the last section. Notice also that N, = NY[G}

and k = crit(j) =
Ry while j(x) = RN,

Let V[G] E “S is a stationary subset of T2”. It is easy to see that the
canonical name for S is a member of V, 1, and since V,,; C M it follows
that S € M[G]. Since M[G] C V[G] and stationarity is downwards absolute,
M[G] E S is stationary”.

We also have that j(S) € M[G][H], and since crit(j) = & it follows as
in Fact 2.4 that j(S) Nk = S. What is more, it follows from the countable
closure of Q in M|[G] that M[G][H] F cf(k) = 8.

However we are still missing one thing; we need to know that S is sta-
tionary in M[G][H] before we can complete the reflection argument using
the elementarity of j : V[G] — M|G][H]. This problem is a very common
one in arguments involving generic elementary embeddings, for example we
will find ourselves in an exactly similar situation in the discussion of the tree
property in section 5 of this survey.

To finish the argument we use the following fact (really a special case of

the fact that countably closed forcings are proper).

Fact 3.3 Let S be a stationary subset of SE, where k = cf(k) > w. Let P be

countably closed. Then IFp “S is stationary”.

Proof: Let p € P be any condition and suppose that p I+ “C'is club”. Let 0



be some very large regular cardinal and let <4 be a well ordering of Hy. Find
N < (Hy, €, <y) such that p, S, x,P,C € N and 6 = NN« € S. Now choose
an increasing sequence (0; : i < w) of elements of N N which is cofinal in 0,
and define (p; : i < w) a decreasing sequence from PN N as follows; py = p,
and p;yq is the <y-least condition such that p,y; < p; and p;y, forces some
ordinal larger than 4; into C'.

Because p; 1 is defined from the parameters d;, p;, C,P, we can see (induc-
tively) that each p; € N. If §; is the least ordinal greater than §; which p;
forces into C' then by a similar argument 3; € N, so in fact f; € NNk =90
and so piyq IF C N (6;,0) # 0.

Now use the countable closure of P to find p, such that p, < p; for all
i <w. Clearly p,, IF 6 € lim(C), so we have produced a refinement of p which

forces a member of S into C. It follows that IFp “S is stationary”.

¢

Using this fact we can conclude that M[G][H]| E “S is stationary”, and

then we can argue exactly as in Fact 2.4 that by elementarity
VI[G] E “there is o € T? such that S N« is stationary”.

We promised at the start to show how the argument works from the
weaker assumption that x is weakly compact. To do this, suppose that
Fp “S is a non-reflecting stationary subset of T2 for some canonical name
S. Since S € H,+ we may find M a model of enough set theory such that

|M| =k, <"M C M, S € M. We may also assume that for every a € St
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the model M contains a P-name for a club in « disjoint from S.

Now by the weak compactness of k there is k : M — N with crit(k) = k.
If G is P-generic over V' and H is k(P)-generic over V' then in V[G][H]
we get an embedding k£ : M[G] — N|[G]|[H] by the same arguments as
above. Let S = S, then V[G] E “S is stationary”. By Fact 3.3 we then get
VIG][H] E “S is stationary” and so a fortiori N[G][H] F “S is stationary”.

Now we can argue as before that M[G] F Ja € T? SN« is stationary.
This is a contradiction, because we built names for clubs disjoint from S N o

into M for every a < k with cf(a) > w.

¢

Notice that there is a problem with generalising the proof of Fact 3.3 to
larger cofinalities, for example it is not obvious that N,-closed forcing will
always preserve the stationarity of stationary subsets of St . The problem is
that when we build the chain of conditions p we may wander out of the struc-
ture IV at limit stages. A crude solution to this problem is to make a cardinal

arithmetic assumption and then work with suitably closed substructures.

Fact 3.4 If k = At and \~* = X\ then every pu*-closed forcing preserves the

stationarity of stationary subsets of Sy.

Proof:[Sketch] Build N containing everything relevant such that |[N| = A,
<tX =X and N Nk € k. Then build a decreasing p-sequence from PN N as

in the proof of Fact 3.3; the closure of N makes the construction go through.
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¢

It follows that Baumgartner’s theorem generalises to any successor of a

regular cardinal.

Theorem 3.5 (Baumgartner) Let A = cf(\) < k where k is weakly com-

pact. If G is Coll(\, < k)-generic then
VIG]E “If S C S, is stationary, there is o € S} with S N« stationary”.

Proof:[Sketch] In V[G] we have k = AT and A<* = \. Thus we can mimic
the proof of Theorem 3.2, using Fact 3.4 in place of Fact 3.3.
¢

Notice that we are immediately in difficulties if we try to generalise these
results to successors of singular cardinals; one problem is that there is no
obvious analogue of the Lévy collapse to make a large cardinal become the
successor of a singular cardinal, another is that since R > R, the trick of
working with closed substructures will no longer work. As we see shortly, the
problem is not merely a technical one.

One subtle point is worth mentioning here. Inspection of the proof of
Theorem 3.2 shows that actually the Lévy collapse of a weak compact to Ny
gives a model in which any R;-sequence (S; : i < N;) of stationary subsets of
T reflect simultaneously (that is there is 8 € T7 such that ;N is stationary

for every ).
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Jensen [20] proved that “every stationary subset of T reflects to a point
of T?” requires a Mahlo cardinal, Magidor [28] showed that “every pair of sta-
tionary subsets of T reflect simultaneously to a point of T?” needs a weakly
compact cardinal, and Harrington and Shelah [18] showed that consistency
of “every stationary subset of T¢ reflects to a point of T2 follows from that
of a Mahlo cardinal.

It is also possible to show that instances of stationary reflection for dif-
ferent cofinalities are highly independent. In [5] models are constructed in
which every stationary subset of T3 reflects and every stationary subset of
T} has a non-reflecting stationary subset, and vice versa.

The problem of stationary reflection has a much different flavour at suc-
cessors of singular cardinals. Here it is possible for every stationary set to
reflect, but this has a much higher consistency strength than that of a weak

compact cardinal.

Fact 3.6 Ifk < = cf(p) and k is p-supercompact then for every stationary

S C S, there is a € SE,. such that S N« is stationary.

Proof: Fix j : V. — M such that crit(j) = &, j(k) > p and *M C
M. Let v = sup(j“p), then j“u € M and thus M F cf(y) = p. Since
p < j(k) < j(u) and j(u) is regular in M, v < j(p). We claim that M E
“j(S) N~ is stationary”.

Let C Cybeclubiny. Let D={a < u|j(a) € C}, then it is routine

to check that D is < k-club in p. Since S C S%,., this implies that DN .S # (),
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and if « € DN S then j(a) € CNj“S CCN((S)N7).
Since M E “cf(y) < j(k) and j(S) N~ is stationary” it follows by ele-
mentarity that there is o € S£,. such that S N« is stationary.

¢

Actually, k being p-strongly compact would suffice here. As long as we
are only concerned with stationary sets of cofinality w ordinals the following

result of Shelah [2] says that we can have reflection everywhere.

Fact 3.7 Let k be supercompact. Let P = Coll(Ny, < k). In VE, for every
p = cf(p) > k and every stationary subset of S¥ there is v < p such that

cf(a) =Ny and S N p is stationary.
The proof combines the ideas of Theorem 3.2 and Fact 3.6.

Fact 3.8 Let A be a singular limit of A" -supercompact cardinals, then every

stationary subset of \* reflects.

Proof: )\ is singular, so Vo < A" cf(a) < \. If S C AT is stationary then
there must be a A™-supercompact x < X such that SN Sé,t is stationary, and

then there is a € Séz such that S N « is stationary.

¢

It is natural to ask whether we need such strong hypotheses to get sta-
tionary reflection at the successor of a singular cardinal. The exact strength

needed is still not known, but we will see that it must be considerable.
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Jensen [20] introduced the combinatorial principle Oy: it states that
there exists (Cy : o < AT) such that C, is club in A, 0.t.(Cy) < X and
g € lim(C,) = C3 = C, N 3. The connection between Oy and station-

ary reflection is the following useful fact.

Fact 3.9 If Oy holds and S C A" is a stationary set, then there ewists a

stationary T C XT such that T N « is nonstationary for every o < A7

Proof: Find T C S and 8 such that T is stationary and Vo € T 0.t.(C,,) =
B. Now if a < A* and cf(a) > w, then lim(C,) is club in « and v €
lim(C,) = C, = C, N~. It follows that v — 0.t.(C,) is 1-1 on lim(C,,),

hence |lim(C,) NT| < 1 and so T is nonstationary in a.

Jensen [6] proved that

e Forall \, L F [,.

e If 0 does not exist then for every singular A\ we have \{> = \}, from

which it follows that V' F [, for every singular \.

Combining these results, it follows that to have a singular cardinal such
that every stationary subset of the successor reflects will require at least the
strength of 0F.

This argument has been greatly generalised by various workers in inner
model theory. Combining fairly recent results of Mitchell, Schimmerling,

Steel and Woodin we get
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Fact 3.10 If )\ is singular and every stationary subset of \* reflects then
Projective Determinacy holds. In particular for every n there is an inner

model of “ZFC + there exist n Woodin cardinals”.

Another natural question is whether small successors of singulars such
as N, can exhibit the phenomenon of stationary reflection. This question
is answered by the following result from [28] Magidor originally had a more
complex construction which involved more forcing, Shelah pointed out that

the last step of Magidor’s original construction was not necessary.

Theorem 3.11 (Magidor [28]) Assume that (k,:n < w) be an increas-
ing w-sequence of supercompact cardinals. Define a forcing iteration: Py =
Coll(w, < ko), Poy1 = Pp x Coll(kp_1,< Kn)yen for 1 < n < w, P, is the

wnverse limit of the P,. Then
VP = “If S C R4y is stationary, there is a < Ry with S N« stationary”.

We will sketch the proof and refer the reader who wants more details to
[28].
Proof:[Sketch] Let A = sup, k,; it is not hard to see that in V[G,] the
cardinal x, becomes N, i, X\ becomes N, and AT becomes R .

Let G, be P,-generic over V. For each n there is a generic extension

VIG,][Hy,] of V[G,] such that

e There is k, : V|G,| — M, C V[G,][H,] a generic embedding with

critical point k,,.
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e H, is generic for 8, -closed forcing.
o ky [ AT € M, ky(ky) > AT,

In Foreman’s terminology from [9], k, is generically supercompact. k, is
actually an extension of an embedding j, : V — M witnessing that &, is
AT-supercompact.

To complete the argument in the style of Theorem 3.2 and Fact 3.8 we
need to argue that in V[G,] the stationarity of a stationary subset of 7%
is preserved by N,-closed forcing. This is false in general by results of Shelah
[38], but fortunately it is true in V[G,]. To see this we introduce Shelah’s

notion of an approachable set.

Definition 3.12 (Shelah [38]) Let S be a subset of 1 where p = cf(p) > w.
Then S is approachable iff there exists (x, : o < p) and a closed unbounded
set C' C u such that for every a € SN C there is ¢ C « club in « such that

o.t.(c)=cf(a) and V3 < a Iy <acnf=ux,.

Fact 3.13 (Shelah) Let~y = cf(y) < p=cf(p). If S C SL, is an approach-

able stationary set and P is y-closed then S is still stationary in V.

Proof: Let # and C witness that S is approachable. Let p be any condition
in P, and suppose p - “D is club in 7. Let N < (Hy, €, <g) be a structure
which contains everything relevant, with the property that o« = Nnu € CNS;,

fixcCasuch that Vi <ady<acnf=ux,.
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The key point is that because ¥ € N and a« C N, we have cnN 3 € N
for all § < a. Now we build a descending chain of conditions (p; : i < cf(a))

such that py = p and p; is the <g-least condition such that
e p; <p;forall s <j.
e p; forces some ordinal greater than the j*™ element of ¢ into D.

If j < cf() then N can compute (p; : i < j) from ¢N 3 for 3 the j element
of ¢, 80 {p; : i < j) € N and thus the sequence p' never wanders out of N.

The proof now concludes exactly as the proof of Fact 3.3 does.

¢

Shelah observed that W, is approachable in the model V|G,]. Given
this, we can finish the proof of the result as follows.

Let V[G,] E “S C N, is stationary”. Then S N T is stationary for
some n < w. Forcing with some X,,-closed forcing we get a generic embedding
ky : V|G, — M, C V[Gy|[H,] such that crit(k,) = kn, k, [ AT € M, and
kn(kn) > AT,

If we now let v = sup k,, “A* then v < k,(A\T) and M E cf(y) = R,. S
is stationary in V[Gy][H| because X, is approachable in V[G,]; it follows
that j(S) N is stationary in M,, and we can finish the argument exactly as
in the proof of 3.3.

¢

It is worth noticing that [y implies that A* is approachable. For more

on the connections between squares and approachability see [13] and [4].
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An important topic not touched on here is that of stationary reflection
in [X]¥, where X is an uncountable set and [X]¥ is the set of its countable

subsets. See [14] and [12] for more on this.

4 Saturated ideals

Suppose that k = cf(k) > w. By an ideal on x we always mean an ideal

which is k-complete, normal and uniform.

Definition 4.1 Let I be an ideal on k. Then I is saturated iff the Boolean

algebra Pr/I has the k*-c.c.

Saturated ideals are closely connected with generic elementary embed-
dings; the basic results are due to Solovay [39] and Kunen [23].

We start by outlining Solovay’s analysis of a saturated ideal.

If I is any ideal then forcing with Px/I adds U an ultrafilter on PcNV,
with the property that U NI = (). The idea is to take an ultrapower of V' by
U, in essentially the same way that Scott [35] took an ultrapower of V' by a
measure on a measurable cardinal.

If f, g are two functions in V' with domain x, then we define f ~; g <=
{a] f(a) = g(a) } € U; this is an equivalence relation. Working in V[U] we
define V* /U to be the set of equivalence classes and also define [f|Ey[g] <=
{a| f(a)€egla)} € U. The structure (V*/U, Ey) is called the generic

ultrapower of V' by U, and the standard proof of Los’ theorem shows that
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for any formula ¢ in the language of set theory

(V*/U, Ev) E o(lfilu, .- [falv) == {alo(fila),.. fule)) } €U

We get an elementary embedding j : (V,€) — (V*/U, Eyy) by defining j(z)
to be the class of the constant function with value x.

For a general ideal I there is no guarantee that the structure (V*/U, Ey)
is well-founded. However if I is saturated then Solovay proved this will be

the case, using the following key fact.

Fact 4.2 (Solovay) If IFp./; f e V.dom(f) = k then there is g € V such
that |- f ~yg.

Using this it is possible to show

Fact 4.3 (Solovay) Let I be a saturated ideal on k. Let U be an ultrafilter
added by forcing with Pr/I. Then

e (V*/U, Ey) is well-founded, so can be identified with its Mostowski

collapse to give a generic embedding j : V. — M C VI[U|, where
M~ V"E/U.

e crit(j) = k.

o VIUF*M C M.

In particular, if £ = N; then we get an embedding such that j(R;) = Ry =
XM = RV swhere V[U] E“M C M. Notice that here V[U] E <SGV A C M

(one might say that Ry is generically almost huge, see Definition 4.4).
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Kunen showed [23] that it is possible to go in the other direction, and
deduce the existence of a saturated ideal from that of an appropriate generic
embedding. In particular he gave the first consistency proof for the existence
of a saturated ideal on Ny, starting from the consistency of a huge cardinal.
Magidor [27] showed that Kunen’s argument can be made to work from an

“almost huge” cardinal, and we will outline this version.

Definition 4.4 « is almost huge iff there exists 7 : V. — M such that
crit(j) = x and V = <TSM C M.

Let x be almost huge and fix j : V' — M such that crit(j) = &, j(k) = A,
AM C M.

e We start by collapsing x to ¥; and A to Ny, to get a new model V; in
which 2% =8, = k and 2% =R, = \.

e In Vj there is a 2-step forcing iteration IP x Q such that

— If G« H is P x Q-generic then there is an extension of the original
75
j:Vi— My C VI[G][H].
— Pis Ry-c.c. and X\ = R = NYIP.
— Qs Ny-closed in V.
e Using the closure of Q in V{7, it is possible to show that in V" we can

define an ultrafilter on PxNV;. The key points are that 1} £ 2% = Ry,
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VEE |PeNVi| =Ry, and VP E “Q is countably closed”. Using this we
can work in V¥ and build a decreasing chain of conditions to decide

“k € j(X)” for each X € PN V,. Let U name this ultrafilter.

e Working in Vi, let I = { X C k| IFp X ¢ U }. Using the Ry-c.c. of P

in V7, it is possible to show that

Vi E “I is a saturated ideal on X;”.

This style of argument will serve to get saturated ideals on many cardi-
nals. The culmination of this line of development is Foreman’s paper [8] in
which it is proved to be consistent that every regular cardinal should carry a
saturated ideal. Foreman and Laver [11] showed that is also possible to get
stronger forms of chain condition for the quotient algebra.

However some questions were left open: for example
e How strong is the existence of a saturated ideal on N;?
e Can the non-stationary ideal on 8; be saturated?

For a time it was conjectured that an almost-huge cardinal was the right
assumption to get a saturated ideal. Foreman, Magidor and Shelah’s work
[14] on the forcing axiom MM (Martin’s Maximum) showed that this is not

the case; in [14] it is shown (among other things) that

e Con(ZFC + there exists a supercompact cardinal) implies Con(ZFC +
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e MM implies that the nonstationary ideal on N; is saturated.

The existence of an almost huge cardinal is known to be a much stronger
assumption than the existence of a supercompact.
The question of the strength of a saturated ideal on N; is now almost

settled, in the light of the following results.

Fact 4.5 (Steel [41]) If the nonstationary ideal on Ry is saturated and there
exists a measurable cardinal then there is an inner model of “ZFC + there

exists a Woodin cardinal”.

The assumption of the existence of a measurable cardinal is a technical
device here. It is conjectured that the saturation of the nonstationary ideal

should suffice.

Fact 4.6 (Shelah [37]) If § is Woodin then there is a forcing extension in
which Xy is preserved, 0 becomes Wy, and the nonstationary ideal on Wy is

saturated.

We outline the proof of Shelah’s result. We require Shelah’s concepts of
semiproperness and revised countable support iteration, for which we refer

the reader to Goldstern’s paper [17] in this volume.

Definition 4.7 Let A be a mazimal antichain in PRy /NS, where NS is

the nonstationary ideal on Ry. Then we define a poset S(A) as follows:
(f,¢) € S(A) iff
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e dom(f) = max(c) < Ny.
e rge(f) C A.

¢ 1s closed.

VBecIa< fpe fla).

The ordering is extension.

S(A) is defined in [14], and is used there to show that MM implies the
saturation of NS. For any A it will be the case that S(.A) is stationary pre-
serving. S(A) makes |A| = X; and shoots a club through the diagonal union
of A, from which it follows that A will be a maximal antichain of size W; in

any extension of V(4 by stationary preserving forcing.
Definition 4.8 A is a semiproper antichain iff S(.A) is semiproper.

We can now outline Shelah’s argument; essentially the idea is to force
exactly that fragment of MM which is needed to get the saturation of NS.

We start by assuming that ¢ is a Woodin cardinal.

e The construction is a revised countable support iteration of length ¢,
where at stage o we force with S(A,) * Coll(R;,2*") for some A, such
that VP E “A, is semiproper”. The A, are chosen using some kind of

diamond principle.
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e At the end of the construction we have a semiproper forcing Ps, which
will preserve X, and make § into 8y. V's = 2% = R,. We need to check

that the nonstationary ideal is saturated.

o Let VP E “(A,:a < §)is an antichain in PR;/NS”. Applying the
Woodin-ness of § and the diamond principle used in defining the it-

eration we find x < ¢ such that
VEx i “(A, : o < K) is a semiproper antichain”

and A, = (A, : a < k). At stage k the antichain (A, : a < k) is made
maximal; it follows that every antichain in PY; /NS has size at worst

Ny.

At the heart of the argument lies the idea of a structure “catching an
antichain” which comes from Foreman, Magidor and Shelah’s work in [14].
Let A € N < Hy, where A is a maximal antichain in PX;/NS and N is

countable. We say that M D N “catches A” iff
° MﬂleNle (:(Ssay)
e There is A € AN M such that § € A.

Assume that M catches A, and that A € A is such that § € A. Suppose
that we have some condition (p,c) € N NS(A); then if € = dom(p) we have
e < 0. Working in the standard way we can build a decreasing w-chain of
conditions in S(.A) N M which meets every maximal antichain of S(.A) lying

in M; this sequence will have a lower bound because
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e yc A

e A € M so that A gets enumerated before § by the first entry of some

condition in the chain.

The lower bound will be a weakly (N, S(.A))-generic condition because N N
w1 =M Nw.

It is worth remarking that the combinatorics of this argument resurfaces
in Woodin’s theory [43] of the stationary tower forcing.

We have only scratched the surface of the subject of saturated ideals here.

We conclude by listing some of the other important results in the field.

Fact 4.9 (Woodin [44]) If the non-stationary ideal on Ry is saturated and
there is a measurable cardinal then 8y = N, (this is a strong form of the

negation of the Continuum Hypothesis).

Fact 4.10 (Shelah [36]) IfI is a saturated ideal on A\* then (as a corollary

of a general result on changes of cofinality) { o < A* | cf(ar) # cf(N) } € I.

Fact 4.11 (Gitik and Shelah [16]) If « is weakly inaccessible then the
non-stationary ideal on k is not saturated. If k is singular then the non-
stationary ideal on Kkt restricted to { a < Kkt | cf(a) = cf(k) } is not satu-

rated.

Fact 4.12 (Woodin [44]) The following are equiconsistent

1. AD
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2. There exists an N;-dense ideal.
3. The non-stationary ideal on N, is X;-dense.

Fact 4.13 (Foreman [10]) From large enough cardinals it is consistent that

there exist a Ny-dense countably closed weakly normal ideal on R,.

5 The tree property

We recall a few basic definitions about trees (see [26] for more details).

Let T be a tree, let k be a regular cardinal.

1. T is a k-tree iff |T| = ht(T) = k and Va < k |T,| < k, where T, is the

a™ level of T.

2. T is a k-Aronszagn tree iff T is a k-tree with no cofinal branch.

3. T is a special \"-Aronszajn tree iff there exists h : T — )\ such that

x <ry= h(x) # h(y).
4. k has the tree property iff there is no k-Aronszajn tree.

The following easy argument gives a connection between elementary em-

beddings and the tree property. We write T' [ 3 for Uy« Tp-
Fact 5.1 If k is measurable then k has the tree property.

Proof: Let T be a k-tree, and fix j : V — M with crit(j) = x. Then j(T)
is a j(k)-tree in M, and what is more j(T') | x is isomorphic to T (here we

use the fact that each level T, has size less than &, so that j(T,) = j“T,).
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j(k) > K so j(T) has at least one point on level k. Looking at the points
below this point we see that j(T') |  has a cofinal branch in M; since j(T) | &
is isomorphic to k and M C V, T has a cofinal branch.

¢

In fact k being weakly compact would suffice here: just build 7" into an
appropriate structure of size k. It is known that the weakly compact cardinals
are exactly those inaccessible cardinals which have the tree property. It is
also known that if A<} = X then there is a special A*-Aronszajn tree, in
particular CH gives a special No-Aronszajn tree.

It is natural to ask whether there can be a model with no Ny-Aronszajn
tree. A natural first try might be to take a measurable cardinal x and Lévy
collapse it to Wy; this fails (because CH holds after doing the Lévy collapse)
but it is instructive to see exactly what goes wrong.

Let x be measurable, let j : V' — M be an elementary embedding with
crit(j) = k. Let G be Coll(wy, < k)-generic over V. Then as in Section 3
we get a generic embedding j : V[G] — M[G]|[H] C V[G][H], where H is
generic over V|G| for the countably closed forcing Coll(Ry, j(k) — k). Now
let us try and imitate the proof of Fact 5.1. If V|G| F “T is an Ny-tree” we
can argue as before that 7" has a cofinal branch in M[G][H]| and hence in
VIG][H]. We would like to argue that 7" must have a cofinal branch in V[G],
but at this point the argument fails because it is quite possible in general
for countably closed forcing to add a branch to an Ns-tree. For example if

V' = L there is a countably closed Ny-Souslin tree S, and then (S, >g) is a

28



countably closed poset which adds a branch through S.

Mitchell resolved the problem by proving

Fact 5.2 (Mitchell [31]) The following are equiconsistent.
1. There exists a weakly compact cardinal.
2. Ny has the tree property.

We will sketch Mitchell’s argument, but we begin by stating a couple of

useful facts about trees and forcing.

Fact 5.3 (Silver) If 2% > N, countably closed forcing cannot add a new

branch to an Ny-tree.

Fact 5.4 (Kunen and Tall [24]) Let P have the property that for every
N;-sequence of conditions from P there is a subsequence of length Ry of pair-
wise compatible conditions (P is Xi-Knaster ). let T be a tree of height Xy with

no cofinal branch (not necessarily an Ny-tree). Then forcing with P cannot

add a cofinal branch through T.

We now give an outline of Mitchell’s argument (this way of presenting
the argument appears in Abraham’s paper [1]). Once again we will assume
that x is a measurable cardinal and indicate at the end how to weaken the

assumption to weak compactness.

e Let j: V — M with crit(j) = k.
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Define P (we will not give the definition) a forcing with the following

properties:

1. |P| =k, Pis k-c.c. and P C V.

2. If B < K isinaccessible then Pg =4¢f PNVjp is a complete subforcing
of P, and in V¥% the quotient P/P; is a projection of Add(w,x —
B) x Qs for some countably closed Qz. Moreover VFs E N =

RY 2% =N, = 3 and VPrUs E g = R,

3. VP':leNY,QNO:Ng:I{.

If G is P-generic then it is possible to lift j : V' — M to get a generic
embedding j : V[G] — M|[G][H]. This is easy because P C V,

j | P =1idp, and P is k-c.c.

Suppose that V[G] E “T is an Ny-Aronszajn tree”. T € M[G] because
T has a name in V,,; and V,,,; € M, and arguing as before T has a

cofinal branch in M|G|[H].

We work in M[G] to do a factor analysis of j(P)/G. By elementarity
we see that M[G] C M[G][H] C MI[G][h1][hs], where h; is Q-generic
over M[G] for some Q which is countably closed in M[G], and hy is
Add(w, j(k))-generic over M[G][h1].

Q adds no branch to T because M[G] £ 2% = X, and Q is countably
closed. Q collapses k to be an ordinal of cardinality and cofinality Ny,

so if we take an N;-sequence cofinal in x and look at the corresponding
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levels of T" we get a “squashed” tree 7™ which has height ¥; and no

cofinal branch.

Forcing with hy cannot add a cofinal branch to T* because Add(w, j(k))
has the X;-Knaster property. This is a contradiction because 7" has a

cofinal branch in M[G][H| and M[G][H] C M[G][h1][ha].

If k is only weak compact the argument is similar. Suppose T is a
canonical P-name and |- “T is a k-Aronszajn tree”. Build T into an
appropriate M, and let £ : M — N with critical point k. As be-
fore we lift £ to a new map k : M|G] — N[G][H]. N[G] C V[G]
so N[G] E “T has no cofinal branch”. By the usual elementary embed-
ding argument 7" has a branch in N[G][H]. This leads to a contradiction

as before.

We conclude with a few remarks about other results on the tree property.

Fact 5.5 (Abraham [1]) If k is supercompact and X > k is weakly com-

pact, there is a forcing extension in which 2% = k = Ry, 2% = X\ = N3, and

both Ny and N3 have the tree property.

Fact 5.6 (Foreman and Magidor) If two successive cardinals have the

tree property, there is an inner model with a strong cardinal.

Fact 5.7 (Magidor and Shelah [29]) From a very strong large cardinal

hypothesis, it s consistent that X, should have the tree property.
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Fact 5.8 (Cummings and Foreman [3]) If it is consistent that there are
w supercompact cardinals, it is consistent that N, has the tree property for

every n with 2 <n < w.
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