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1. Introduction

This report is motivated by the combinatorics of ℵω in L where there
are canonical examples of scales, square sequences and other structures
of PCF theory. There, too, concepts such as mutual stationarity and
tightness have concrete reformulations in terms of fine structure. Sev-
eral kinds of new questions come out of this analysis. First, surprisingly,
there remain basic open problems regarding what is true in L. Second,
it leads to reasonable conjectures about the combinatorics of ℵω in ZFC
alone without V = L. Third, it gives us expectations about arbitrary
singular cardinals in extender models L[E].

We use more or less standard terminology from PCF theory but only
as it applies to ℵω. Thus, for any set X with |X| < ℵω, we have the
characteristic function

charX : n 7→ sup(X ∩ ℵn)

and we speak as if charX is always a function in the product
∏
ℵn even

though this is slightly incorrect. We say that X has eventual cofinality
ℵk iff

cf(charX(n)) = ℵk
for all but finitely many n < ω.

Recall that a sequence 〈Sn | 1 < n < ω〉 is mutually stationary iff Sn
is stationary in ℵn for 1 < n < ω and for every countable structure A
whose universe includes ℵω, there exists X ≺ A such that

charX(n) ∈ Sn
for all but finitely many n < ω. The official definition of mutual sta-
tionarity says that there exists X whose characteristic function meets
Sn for all 1 < n < ω but this is equivalent. The following is one of sev-
eral examples analyzed by Foreman and Magidor [FM2001]. Assume
V = L. Define Skn+1 to be the set of α between ℵn and ℵn+1 such that

Jα |= every set has cardinality ≤ ℵn
and, if β ≥ α is least such that

Jβ+1 |= |α| = ℵn,
1
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then
ℵn = ρk+1(Jβ) < α ≤ ρk(Jβ).

Then Skn+1 is stationary for every pair k, n < ω and, for every function

e : ω → ω, the sequence 〈Se(k)
n | 1 < n < ω〉 is mutually stationary iff e

is eventually constant.
A scale is a sequence 〈fα | α < ℵω+1〉 that is increasing and un-

bounded in
∏
ℵn relative to the order g <∗ h iff g(n) < h(n) for all

but finitely many n < ω. The scale is continuous iff for every limit
β < ℵω+1 of uncountable cofinality, if there is an eub for 〈fα | α < β〉,
then fβ is such an eub. That is, for every g <∗ fβ, there exists α < β
such that g <∗ fα.

Recall that a set X is tight iff X ∩
∏
ℵn is cofinal in

∏
(X ∩ ℵn).

Consider an arbitrary continuous scale 〈fα | α < ℵω+1〉 in
∏
ℵn. By

[FM2001], if X ≺ H(ℵω+1) and X has eventual cofinality ℵm for some
m ≥ 1, then X is tight iff

charX =∗ fsup(X∩ℵω+1)

and sup(X ∩ ℵω+1) is a good ordinal. This can be stated without
reference to goodness if �∗ℵω holds since then the set of good ordinals
contains a club in ℵω+1.

We introduce the following variant.

Definition 1. Let 〈fα | α < ℵω+1〉 be a continuous scale in
∏
ℵn and

X be a set. Then X is organic to 〈fα | α < ℵω+1〉 iff there exists
δ < ℵω+1 such that charX =∗ fδ.

In some contexts, the definition above is not sensitive to the choice
of scale. (If 〈fα | α < ℵω+1〉 and 〈gα | α < ℵω+1〉 are continuous scales,
then there is a club C in ℵω+1 such that fα =∗ gα for every α ∈ C.)
There are times, too, when the scale is clear from context. For example,
when we work in L, we always mean the canonical scale that we will
define. In such settings, we suppress mention of 〈fα | α < ℵω+1〉.

The first two authors showed that the set of inorganic sets with even-
tual uncountable cofinality is stationary; see Section 2. One purpose
of this report is to give practical characterizations of tightness and
organicity in L in terms of fine structure. This is done in Section 3.

Recall that a mutually stationary sequence 〈Sn | 1 < n < ω〉 is
tightly stationary iff for every countable structure A whose universe
includes ℵω, there exists a tight X ≺ A such that

charX(n) ∈ Sn
for all but finitely many n < ω. We introduce the following related
concept.
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Definition 2. A mutually stationary sequence 〈Sn | 1 < n < ω〉 is or-
ganically stationary iff for every countable structure A whose universe
includes ℵω, there exists an organic X ≺ A such that

charX(n) ∈ Sn
for all but finitely many n < ω.

Cummings, Foreman and Magidor [CFM2006] showed a certain forc-
ing notion adds a mutually stationary sequence that is not tightly
stationary. Since this is related to other purposes of this report, we
give an overview. Donder, Jensen and Stanley [DJS] introduced a
combinatorial principle called Coherent Squares and proved it holds
in L. Coherent Squares involves �n-sequences 〈Cn

α | α < ℵn+1〉 for
n ≤ ω and a continuous scale in

∏
ℵn that are tied together in a par-

ticular way. Given Coherent Squares and a sequence of limit ordinals
〈γn | 1 < n < ω〉 such that sup γn = ℵω and γn < ℵn, let

Tn+1 = {α ∈ ℵn+1 ∩ Cof(ℵ1) | type(Cn
α) ≥ γn}.

In [CFM2006], it is shown that 〈Tn+1 | 1 < n < ω〉 is not tightly
stationary. An easy modification of their proof shows that it is not
organically stationary. They also showed that if the Coherent Squares
was added by forcing, then 〈Tn+1 | 1 < n < ω〉 is mutually stationary.
Therefore, it is consistent that is mutual and organic stationarity are
different. In spite of what seems like progress, we have not answered
the basic question of how mutual, organic and tight stationarity are
related in L.

2. About V

A set X is said to be ℵ1-uniform iff ℵ1 = |X| ⊆ X and

cf(sup(X ∩ ℵn)) = ℵ1

whenever 1 < n < ω. The following result is due to the first and
second authors. The same technique was used for another purpose in
[CFM2006].

Theorem 3. Assume GCH. Then the set

{X ≺ H(ℵω+1) | X is ℵ1-uniform and inorganic}

is nonstationary.

Proof. The first claim is that if X ≺ H(ℵω+1) is ℵ1-uniform, then
X ∩ ℵn is ω-closed. To see this, let a ⊆ X ∩ ℵn with type(a) = ω.
Let α = sup(a). Then α < sup(X ∩ ℵn). Let β = min(X − α). Then
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α ≤ β. For contradiction, suppose that α < β. Then cf(β) > ℵ1 as
ℵ1 ⊂ X and X is bounded in β. But now

ℵ1 = cf(X ∩ cf(β)) = cf(X ∩ β) = cf(X ∩ α) = ℵ0.

A corollary to the first claim is that, for every ℵ1-uniform X ≺
H(ℵω+1), there is a sequence 〈Cn | 1 < n < ω〉 such that type(Cn) = ω1

and Cn is a club subset of X ∩ ℵn whenever 1 < n < ω.
Let A be an expansion of H(ℵω+1). The second claim is that the set

{charX | X ≺ A and X is ℵ1-uniform}
is closed in

∏
(ℵn∩Cof(ℵ1)) with the product of the discrete topologies

on the coordinate spaces. Say

lim
i→∞

charXi = 〈αn | 1 < n < ω〉.

This means that
lim
i→∞

sup(Xi ∩ ℵn) = αn

whenever 1 < n < ω. In turn, this means that whenever 1 < n < ω,
there exists k(n) < ω such that for all i > k(n),

sup(Xi ∩ ℵn) = αn.

By the corollary to the first claim, we have Ci
n such that type(Ci

n) = ω1

and Ci
n is a club subset of Xi ∩ ℵn for i < ω and 1 < n < ω. Let

Dn =
⋂

k(n)<i<ω

Ci
n.

Then type(Dn) = ω1 and Dn is a club subset of Xi ∩ ℵn whenever
1 < n < ω and k(n) < i < ω. In particular, sup(Dn) = αn for
1 < n < ω. Let

E =
⋃

1<n<ω

Dn

and
X∞ = HullA(E).

It is straightforward to verify that charX∞ = 〈αn | 1 < n < ω〉.
By the second claim, there is a tree T such that

[T ] = {charX | X ≺ A and X is ℵ1-uniform}.
The third claim is that T has a stationary branching subtree. To see
this, play the following game.

I A0 ⊆ ℵ2 ∩ Cof(ℵ1) A1 ⊆ ℵ3 ∩ Cof(ℵ1) · · ·
II α0 6∈ A0 α1 6∈ A1 · · ·

where every An must be nonstationary and
∏
An ⊆ T or else player I

loses. Also, 〈αn | n < ω〉 ∈ [T ] or else II loses. If both players survive,
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then II wins and I loses. If player II has a winning strategy, τ , then
the set of sequences 〈αi | i < n〉 coming from plays according to τ is a
stationary branching subtree of T . Since the game is determined, the
other possibility is that player I has a winning strategy, σ. Let X ≺ A
be ℵ1-uniform with σ ∈ X. Put

αn = sup(X ∩ ℵn+2).

Clearly,

〈αn | n < ω〉 ∈ [T ].

We will derive a contradiction by showing that player II can play these
ordinals against σ and survive. The verification is by induction. Let
A0 = σ(〈〉). Then A0 ∈ X. Since A0 is nonstationary and X ≺ H(θ),
there exists C ∈ X such that C is club in ℵ2 and A0 ∩ C = ∅. Then
α0 ∈ C, so α0 6∈ A0. Let A1 = σ(〈α0〉). Then

A1 ⊆
⋃

β∈ℵ2∩Cof(ℵ1)

σ(〈β〉).

The set on the right is an element of X and is a nonstationary subset
of ℵ3, so it does not have α1 as an element. Hence α1 6∈ A1. Continuing
in this way, we complete the proof of the third claim.

The final claim is that there is an X ≺ A such that X is ℵ1-uniform
and organic. To see this, note that if X and Y are organic sets, then
charX ≤∗ charY or vice-versa. On the other hand, if S is a stationary
branching subtree of T , then S has branches charX and charY that are
≤∗-incomparable. �

Theorem 4. Assume GCH. Then the set

{X ≺ H(ℵω+1) | X is ℵ1-uniform, organic but not tight}

is stationary.

Proof. We modify the proof of Zapletal’s result (found in [FM2001])
that set of non-tightX ≺ H(ℵω+1) with eventual uncountable cofinality
is stationary. Let A be a structure whose underlying set is H(ℵω+1).
Let M ≺ A be transitive with |M | = ℵω. Let γ = sup(OR ∩M). Let
〈Xα | α < ω1〉 be a continuous chain of countable elementary submodels
of M and 〈δα | α < ω1〉 be an increasing sequence of ordinals such that

δ0 ≥ γ,

charXα <
∗ fδα .

and

ran(fδα) ⊆ Xα+1.
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Let δ = supα<ω1
δα and X =

⋃
α<ω1

Xα. Then charX is an eub for
〈fη | η < δ〉 and hence so is fδ. Therefore charX =∗ fδ. �

3. About L

Here is some of the fine structure notation that we will use in our
discussion of L. If M is a structure and n ≤ ω, then ρn(M) and
pn(M) are the n-th projectum and the n-th standard parameter of M
respectively. If κ is an ordinal but not a cardinal of L, then β(κ) is the
least β ≥ κ such that ρω(Jβ) < κ, n(κ) is the least n < ω such that
ρn+1(Jβ(κ)) < κ, and Mκ is the n-th mastercode structure for Jβ(κ).
The following fact is useful.

Theorem 5. Assume that V = L. Let X ≺ Lℵω with |X| < ℵω. Then
X has an eventual cofinality.

Proof. |X| = ℵ`. Let π : Lκω ' X. Say π(κn) = ℵn for every n < ω.
Then

cf(κn) = cf(sup(π′′κn)) = cf(sup(X ∩ ℵn)) = cf(charX(n))

for every n < ω. We mainly care about n > ` since crit(π) = κ`+1.
Recall that OR ∩Mκ = ρn(Jβ(κ)) and ρ1(Mκ) = ρn+1(Jβ(κ)). In our
case, we have ` ≤ m < ω such that ρ1(Mκω) = κm. Then Mκω = Mκn

whenever m < n < ω. By a standard fine structural calculation,

cf(κn) = cf(OR ∩Mκω)

whenever m < n < ω, so we are done. �

When working in L, it is often useful to consider the set Λn+1 of local
successors of ℵn. What we mean is that α ∈ Λn+1 iff ℵn < α < ℵn+1

and ℵn is the largest cardinal of Lα. Since Λn+1 is club in ℵn+1, we often
slur over the difference between Λn+1 and ℵn+1. Consider an arbitrary
α ∈ Λω+1. Then ρ1(Mα) = ℵω and

Mα = HullMα
1 (ℵω ∪ p1(Mα)).

Define

fα(n+ 1) = sup(ℵn+1 ∩ HullMα
1 (ℵn ∪ p1(Mα))).

We will refer to 〈fα | α ∈ Λω+1〉 as the canonical scale in L, which is
justified by the following.

Theorem 6. Assume V = L. Then 〈fα | α ∈ Λω+1〉 is a continuous
scale in

∏
Λn+1.
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Proof. First we show that the sequence is <∗-increasing. Consider or-
dinals α < β in Λω+1. Pick m < ω so that

α ∈ Hull
Mβ

1 (ℵm ∪ p1(Mβ)).

If m ≤ n < ω, then

fα(n+ 1) ∈ Hull
Mβ

1 (ℵn ∪ p1(Mβ))

so fα(n+ 1) < fβ(n+ 1).
Next we show that the sequence is<∗-unbounded. Given g ∈

∏
Λn+1,

pick α ∈ Λω+1 with g ∈ Jα. Let m < ω be large enough that

g ∈ Hull
Mβ

1 (ℵm ∪ p1(Mβ)).

Easily we see that g(n+ 1) < fα(n+ 1) whenever m ≤ n < ω.
Finally, we show that the scale is continuous. Let β be a limit point

of Λω+1 of uncountable cofinality. We must show that fβ is an eub for
〈fα | α ∈ β ∩ Λω+1〉. Assume that g <∗ fβ. Let

σ = sup(OR ∩ Hull
Mβ

1 (ran(g) ∪ p1(Mβ)).

Then σ < OR ∩Mβ because the ordinal height of Mβ has the same
uncountable cofinality as β. Let M be the Mostowski collapse of

Hull
Mβ�σ
1 (ℵω ∪ p1(Mβ)).

Then M = Mα for some α ∈ β ∩ Λω+1 and g <∗ fα. �

The following is our characterization of organic and tight.

Theorem 7. Assume V = L. Let X ≺ Lℵω+1 such that |X| < ℵω and
X has eventual uncountable cofinality. Say

π : Lκω+1 ' X

and, for every n ≤ ω,

π(κn) = ℵn.
Let

Q = ult(Mκω , π,ℵω).

Then

X is organic ⇐⇒ Q is wellfounded

and

X is tight ⇐⇒ Mκω+1 = Mκω .
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Recall that if X has eventual uncountable cofinality and X is tight,
then X is organic. Above, Q is the ultrapower of Mκω by the extender
of length ℵω derived from π. It is the ultrapower formed by using
coordinates

a ∈ [ℵω]<ω

and functions

f : [κn]|a| →Mκω

with n < ω and f ∈ Mκω . This makes sense precisely because Mκω

has the same bounded subsets of κω as dom(π) = Lκω+1 . Recall that
there is a bounded subset of κω that is not an element of Mκω but
is Σ1 definable over Mκω . Thus, in terms of the natural ordering on
mastercode structures for levels of L, if Mκω /M , then the extender of
length ℵω derived from π cannot be applied to M . In particular, note
that Mκω+1 EMκω .

Proof. Let

ψ : Mκω → Q

be the ultrapower map. Also set

Qn = ult(Mκω , π,ℵn)

and define maps ψn and ψn,n′ according to the diagram

Mκω

ψ //

ψn ""DD
DD

DD
DD

Q

Qn
ψn,n′

// Qn′

ψn′

>>}}}}}}}}

Take m < ω such that

ρ1(Mκω) = κm.

Recall that Mκω is sound, that is,

Mκω = Hull
Mκω
1 (κm ∪ p1(Mκω)).

First we assume that Q is wellfounded and show that X is organic.
This part of the proof does not use the hypothesis that X has eventual
uncountable cofinality. Identify Q with its Mostowski collapse. Then
ψ is a cofinal Σ1-elementary embedding from Mκω to Q and

ψ � κω+1 = π � κω+1.

The soundness of Mκω translates into that of Q, namely,

Q = HullQ1 (ℵω ∪ p1(Q)).
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Let δ be the cardinal successor of ℵω in Q. Then Q = Mδ. Observe
that if λ is the cardinal successor of κω in Mκω , then δ = sup(ψ′′λ).
Note too that κω ≤ λ and γ ≤ δ where

γ = sup(π′′κω+1) = sup(X ∩ ℵω+1).

For n < ω, we have that

ψn � κn+1 = π � κn+1

and

ℵQnn+1 = ψn(κn+1) = sup(ψ′′nκn+1) = sup(π′′κn+1) = sup(X∩ℵn+1) = charX(n+1).

If m ≤ n < ω, then Qn is the Mostowski collapse of

HullQ1 (ℵn ∪ p1(Q)).

Thus

fδ(n+ 1) = sup(ℵn+1 ∩ HullMδ
1 (ℵn ∪ p1(Mδ))) = ℵQnn+1.

We have seen that for m ≤ n < ω,

charX(n+ 1) = ℵQnn+1 = fδ(n+ 1).

In particular, X is organic. Using the hypothesis that X has eventual
uncountable cofinality, we have also seen that if Q is wellfounded, then

X is tight ⇐⇒ δ = γ ⇐⇒ λ = κ ⇐⇒ Mκω = Mκω+1 .

We remark that clause (2) of the theorem does not allow us to assume
that Q is wellfounded for this characterization of tight; we will return
to this point.

Now drop the assumption that Q is wellfounded. We claim that Qn

is wellfounded for every n < ω. Suppose otherwise. Then we have a
sequence of coordinates 〈ai | i < ω〉 from [ℵn]<ω and a sequence of
functions 〈fi | i < ω〉 from Mκω such that

dom(fi) = [κn]|ai|

and
ψ(fi+1)(ai+1) ∈ ψ(fi)(ai)

for i < ω. By a standard calculation that we have used before,

cf(X ∩ ℵn+1) = cf(κn+1) = cf(OR ∩Mκω)

whenever m ≤ n < ω. Since X has eventual uncountable cofinality,

cf(OR ∩Mκω) > ω.

Therefore, there exists σ < OR ∩Mκω large enough so that

{fi | i < ω} ⊆ Hull
Mκω �σ
1 (κm ∪ p1(Mκω)).
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Let

G : Hull
Mκω �σ
1 (κn ∪ p1(Mκω)) 'M

be the Mostowski collapse. Then M ∈ Lκn+1 = dom(π). We have a
commutative diagram

M //

ψ̄ %%KKKKKKKKKKK π(M)

ult(M,π,ℵn)

OO

that implies ult(M,π,ℵn) is wellfounded. On the other hand,

dom(G(fi)) = [κn]|ai|

and

ψ̄(G(fi+1))(ai+1) ∈ ψ̄(G(fi))(ai)

for i < ω, which implies that ult(M,π,ℵn) is illfounded. This completes
the proof of the claim.

If Mκω = Mκω+1 , then

Q = ult(Mκω+1 , π,ℵω)

and the argument of the previous paragraph can be applied with n = ω
to see that Q is wellfounded. Therefore, if Mκω = Mκω+1 , then X is
tight.

Finally, assume that X is organic. Say

charX =∗ fδ.

We will conclude that Q is wellfounded by showing Q = Mδ. Note
that Q is the direct limit of the structures Qn under the maps ψn,n′ for
n < n′ < ω. Let

ψ̃ : Q̃n →Mδ

be the inverse of the Mostowski collapse of

HullMδ
1 (ℵn ∪ p1(Mδ))

and

ψ̃n,n′ : Q̃n → Q̃n′

be the inverse of the Mostowski collapse of

Hull
eQn′
1 (ℵn ∪ p1(Q̃n′)).

Then Mδ is the direct limit of the structures Q̃n under the maps ψ̃n,n′
for n < n′ < ω. It is enough to show that

Q̃n = Qn
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and

ψ̃n,n′ = ψn,n′

for all sufficiently large n < n′ < ω. Now Qn is wellfounded,

ψn � κn+1 = π � κn+1

and ψn is continuous at κn+1, so

charX(n+1) = sup(X∩ℵn+1) = sup(π′′κn+1) = sup(ψ′′nκn+1) = ψn(κn+1) = ℵQnn+1

for n < ω. Because Mκω is sound, Qn is too whenever m ≤ n < ω, i.e.,

Qn = HullQn1 (ℵn ∪ p1(Qn)).

Thus,

Qn = McharX(n+1)

whenever m ≤ n < ω. It also follows that ψn,n′ is the inverse of the
Mostowski collapse of

Hull
Qn′
1 (ℵn ∪ p1(Qn′))

whenever m ≤ n < n′ < ω. In other words, ψn,n′ is determined by

Qn′ the same way that ψ̃n,n′ is determined by Q̃n′ for large enough
n < n′ < ω. From the definition of fδ it is clear that

fδ(n+ 1) = ℵMfδ(n+1)

n+1

and

Q̃n = Mfδ(n+1)

for n < ω. Since

charX(n+ 1) = fδ(n+ 1)

for all sufficiently large n < ω, the result follows. �

There is are ZFC questions that comes out of the previous theorem.
Given X ≺ H(ℵω), let

π : M ' X

be the Mostowski collapse and

π(κn) = ℵn
for n < ω. Call X firm iff for every transitive model N of enough set
theory, if

H(κω)N = H(κω)M ,

then ult(N, π,ℵω) is wellfounded. In L, firm implies organic and with
the right interpretation of “enough set theory” they are equivalent for
X with eventual uncountable cofinality. What happens if V 6= L?
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Theorem 8. Assume V = L. Let 〈Cα | α < ℵn+1〉 be the canonical
�ℵn-sequence for n < ω. Suppose that X ≺ Lℵω and |X| < ℵω. Assume
that X has eventual uncountable cofinality. Then

type(CcharX(n+1))

is eventually constant for n < ω.

By canonical we mean the one defined by Jensen. The following
answers a question from [CFM2006].

Corollary 9. Assume V = L. Let 〈Cα | α < ℵn+1〉 be the canonical
�ℵn-sequence for n < ω. Let 〈γn | 1 < n < ω〉 be a sequence such that
sup γn = ℵω and γn ≤ ℵn. Put

Tn+1 = {α < ℵn+1 | cf(α) > ω and type(Cα) ≥ γn}.
Then 〈Tn+1 | 1 < n < ω〉 is not mutually stationary.

For Γ ⊆ ℵn+1, we say that 〈Cα | α ∈ lim(Γ)〉 is a �ℵn(Γ)-sequence
iff every β ∈ lim(Γ),

(1) Cβ is club in β ∩ Γ,
(2) type(Cβ) ≤ ℵn and
(3) if α ∈ lim(Cβ), then Cα = Cβ ∩ α.

Then �ℵn(Γ) is equivalent to �ℵn for every club Γ in ℵn via the
Mostowski collapse Γ ' ℵn+1. In L, we usually work with the canonical
�ℵn(Λn+1)-sequence instead. In order to sketch the proof of the theo-
rem, we must describe certain features of how this sequence is defined.

Fix α ∈ lim(Λn+1). The definition of Cα determined by Mα. Recall
that α equals either ℵMα

n+1 or OR ∩Mα, and Mα is sound, so

Mα = HullMα
1 (ℵn ∪ p1(Mα)).

If α has uncountable cofinality, then there is a limit ordinal θ ≤ ℵn, a
sequence of ordinals d = 〈di | i < j〉 with

ℵn > d0 > · · · > dj−1 ≥ θ

and a sequence of ordinals s = 〈si | i < j〉 with

s0 < · · · < sj−1 < OR ∩Mα

such that Cα is the image of θ under the non-decreasing function

η 7→ sup(α ∩ HullMα
1 (η ∪ d ∪ p1(Mα) ∪ s)).

If α has countable cofinality, then there are two possibilities: either the
definition of Cα has the same form as above or it is an arbitrary set of
type ω unbounded in α. We will not explain the choice of d, s and θ
and so we cannot explain why this works.
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We are especially interested in α ∈ Λn+1 whose associated Mα has a
slightly rich cardinal structure. For ` ≤ ω, define Λn

` to be the set of α
between ℵn and ℵn+1 such that for every k < `,

Mα |= ℵ` exists.

Then

Λn+1 = Λn
n+1 ⊃ Λn

n+2 ⊃ · · · ⊃ Λn
ω.

Now we look again at the canonical �ℵn(Λn+1)-sequence for a fixed
α ∈ Λn

` where ` ≥ n+ 1. For k < `, set

κk = ℵMα
k .

We also set

κ` = ℵMα
`

or

κ` = OR ∩Mα

depending on whether Mα has an `-th infinite cardinal. Thus

κn+1 = α

and, for n+ 1 ≤ k ≤ `,

Mκk = Mα.

Define functions Fκk with domain θ by

Fκk : η 7→ sup(κk ∩ HullMα
1 (η ∪ d ∪ p1(Mα) ∪ s))

and let

Cκk = ran(Fκk).

Notice that the definition of Cκk is consistent with that of Cα described
earlier in that

Cκn+1 = Cα

and κk 6∈ Λn+1 for every k > n + 1. Fine structure calculations based
on the definitions of s, d and θ we have omitted show that if n + 1 ≤
k ≤ `, then Cκk is a club subset of κk ∩ Λn

` . They also show that if
n+ 1 ≤ k < k′ ≤ ` and η < η′ < θ, then

Fκk(η) < Fκk(η
′) ⇐⇒ Fκk′ (η) < Fκk′ (η

′),

hence

type(Cκk) = type(Cκk′ ).

And they show coherence: if κ̄ ∈ lim(Cκk), then

Cκ̄ = Cκk ∩ κ̄.
The case k = n+1 just repeats the coherence clause (3) for�ℵn+1(Λn+1).
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Now let X ≺ Lℵω such that |X| < ℵω and X has eventual uncount-
able cofinality. Let

π : Lκω ' X

and

π(κn) = ℵn

for n < ω. Fix m < ω such that

κm = ρ1(Mκω).

We will use the fact from the previous paragraph that for m ≤ n < ω,

type(Cκn+1) = type(Cκm+1)

Let

Qn = ult(Mκω , π,ℵn)

and

ψn : Mκω → Qn

be the ultrapower map. By ideas earlier in this section: the hypothesis
of eventual uncountable cofinality implies that Qn is wellfounded; since
Mκω is sound,

Qn = HullQn1 (ℵn ∪ p1(Qn))

and because

ψn � κn+1 = π � κn+1,

Qn = McharX(n+1)

for m ≤ n < ω. Fine structure calculations using the definition of s, d
and θ show that

FcharX(n+1) = ψn ◦ Fκn+1 ,

hence

CcharX(n+1) = ψ′′nCκn+1 .

Therefore,

type(CcharX(n+1)) = type(Cκn+1) = type(Cκm+1)

for m ≤ n < ω and the theorem follows.
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