Ultrafilter Space Methods in Infinite Ramsey Theory

Sławomir Solecki

University of Illinois at Urbana–Champaign

November 2014
Outline of Topics

1. Λ-semigroups and colorings—a review
2. New ones from old ones—tensor products
3. An application—Furstenberg–Katznelson Theorem for located words
4. A sketch of an application—Hales–Jewett for left-variable words
5. Some questions
Λ-semigroups and colorings—a review
A **partial semigroup** is a set S with a binary operation from a *subset* of $S \times S$ to S such that, for $x, y, z \in S$, if one of the products $(xy)z, x(yz)$ is defined, then both are and are equal.

Λ a set, S a partial semigroup, and X a set.

A **Λ-partial semigroup over S based on X** is an assignment to each $\lambda \in \Lambda$ of a function from a subset of X to S such that for $s_0, \ldots, s_k \in S$ and $\lambda_0, \ldots, \lambda_k \in \Lambda$ there exists $x \in X$ with $s_0 \lambda_0(x), \ldots, s_k \lambda_k(x)$ defined.
Assume we have a Λ-partial semigroup over S and based on X.

A sequence (x_n) of elements of X is **basic** if for all $n_0 < \cdots < n_l$ and $\lambda_0, \ldots, \lambda_l \in \Lambda$

$$\lambda_0(x_{n_0})\lambda_1(x_{n_1}) \cdots \lambda_l(x_{n_l})$$

is defined in S.

Assume we additionally have a point based Λ-semigroup A over (A, \land).

A coloring of S is **A-tame on** (x_n) if the color of elements of the form (1) with the additional condition $\lambda_k(\bullet) \land \cdots \land \lambda_l(\bullet) \in \Lambda(\bullet)$, for all $k \leq l$, depends only on

$$\lambda_0(\bullet) \land \lambda_1(\bullet) \land \cdots \land \lambda_l(\bullet) \in A.$$
\(\mathcal{A} \) and \(\mathcal{B} \) are \(\Lambda \)-semigroups with \(\mathcal{A} \) being over \(A \) and based on \(X \) and \(\mathcal{B} \) being over \(B \) and based on \(Y \).

A **homomorphism from** \(\mathcal{A} \) **to** \(\mathcal{B} \) **is** a pair of functions \(f, g \) such that \(f : X \to Y, \ g : A \to B \), \(g \) is a homomorphism of semigroups, and, for each \(x \in X \) and \(\lambda \in \Lambda \), we have

\[
\lambda(f(x)) = g(\lambda(x)).
\]
Theorem

Fix a finite set Λ. Let S be a Λ-partial semigroup over S, and let A be a point based Λ-semigroup. Let $(f, g): A \to \gamma S$ be a homomorphism. Then for each $D \in f(\bullet)$ and each finite coloring of S, there exists a basic sequence (x_n) of elements of D on which the coloring is A-tame.
The goal:
produce homomorphisms
from point based Λ-semigroups \mathcal{A} to γS of interest.
New ones from old ones—tensor products
Fix a partial semigroup S.

Λ_0, Λ_1 finite sets

S_i, for $i = 0, 1$, Λ_i-partial semigroups over S with S_i is based on X_i
Put

\[\Lambda_0 \star \Lambda_1 = \Lambda_0 \cup \Lambda_1 \cup (\Lambda_0 \times \Lambda_1). \]

Define

\[S_0 \otimes S_1 \]

to be a \(\Lambda_0 \star \Lambda_1 \)-partial semigroup over \(S \) based on \(X_0 \times X_1 \) as follows: with

\[\lambda_0, \lambda_1, (\lambda_0, \lambda_1) \in \Lambda_0 \star \Lambda_1 \]

associate partial functions \(X_0 \times X_1 \to S \) by letting

\[\lambda_0(x_0, x_1) = \lambda_0(x_0), \]
\[\lambda_1(x_0, x_1) = \lambda_1(x_1), \]
\[(\lambda_0, \lambda_1)(x_0, x_1) = \lambda_0(x_0)\lambda_1(x_1). \]
$S_0 \otimes S_1$ is a $\Lambda_0 \ast \Lambda_1$-partial semigroup.
Proposition (S.)

Fix semigroups A and B. For $i = 0, 1$, let A_i and B_i be \land_i-semigroups over A and B, respectively. Let

$$(f_0, g): A_0 \to B_0 \quad \text{and} \quad (f_1, g): A_1 \to B_1$$

be homomorphisms. Then

$$(f_0 \times f_1, g): A_0 \otimes A_1 \to B_0 \otimes B_1$$

is a homomorphism.
Let S_i, $i = 0, 1$, be Λ_i-partial semigroups over S based on X_i. Consider
\[
\gamma S_0 \otimes \gamma S_1 \text{ and } \gamma (S_0 \otimes S_1).
\]
Both are $\Lambda_0 \star \Lambda_1$-semigroups over γS.
The first one is based on $\gamma X_0 \times \gamma X_1$, the second one on $\gamma (X_0 \times X_1)$.
There is a natural map $\gamma X_0 \times \gamma X_1 \to \gamma (X_0 \times X_1)$ given by
\[
(U, \mathcal{V}) \to U \times \mathcal{V},
\]
where, for $C \subseteq X_0 \times X_1$,
\[
C \in U \times \mathcal{V} \iff \{x_0 \in X_0 : \{x_1 \in X_1 : (x_0, x_1) \in C\} \in \mathcal{V}\} \in U.
\]
Proposition (S.)

Let S be a partial semigroup. Let S_i, $i = 0, 1$, be Λ_i-partial semigroups over S. Then

$$(f, \text{id}_{\gamma S}): \gamma S_0 \otimes \gamma S_1 \to \gamma(S_0 \otimes S_1),$$

where $f(\mathcal{U}, \mathcal{V}) = \mathcal{U} \times \mathcal{V}$, is a homomorphism.
An application—Furstenberg–Katznelson Theorem for located words
A bit more of general theory
\(\mathcal{A} \) a point based \(\Lambda \)-semigroup over a semigroup \(A \)

Fix a natural number \(r \).

Associate with each \(\vec{\lambda} \in \Lambda_{<r} \) an element \(\vec{\lambda}(\bullet) \) of \(A \) by letting

\[
\vec{\lambda}(\bullet) = \lambda_0(\bullet) \land \cdots \land \lambda_m(\bullet),
\]

where \(m < r \) is the length of \(\vec{\lambda} \).

This way we get a finite set \(\Lambda_{<r}(\bullet) \subseteq A \).
S a Λ-partial semigroup over a partial semigroup S

(x_n) a basic sequence in S

A coloring of S is r-A-tame on (x_n) if the color of elements of the form

$$\lambda_0(x_{n_0}) \lambda_1(x_{n_1}) \cdots \lambda_l(x_{n_l})$$

for $n_0 < \cdots < n_l$ and $\lambda_0, \ldots, \lambda_l \in \Lambda$, with the additional condition

$$\lambda_k(\bullet) \wedge \cdots \wedge \lambda_l(\bullet) \in \Lambda_{<r}(\bullet) \text{ for all } k \leq l$$

depends only on

$$\lambda_0(\bullet) \wedge \lambda_1(\bullet) \wedge \cdots \wedge \lambda_l(\bullet) \in A.$$
The following corollary is an apparent generalization of the theorem.

Corollary

Fix a finite set Λ and a natural number r. Let S be a Λ-partial semigroup, A a point based Λ-semigroup, and $(f, g): A \to \gamma S$ a homomorphism. Then for each $D \in f(\bullet)$ and each finite coloring of S, there exists a basic sequences (x_n) of elements of D on which the coloring is r-A-tame.
The corollary follows from the theorem and the two propositions.

Proof.

We have a homomorphism \((f, g)\) from \(A\) to \(S\).

There is a homomorphism \(A \otimes r \rightarrow (\gamma S) \otimes r\) equal to \((f^r, g)\) by the first proposition.

Note that \(D \times X^{r-1} \in f^r(\bullet)\).

Since, by the second proposition, there is a homomorphism \((\gamma S) \otimes r \rightarrow \gamma (S \otimes r)\), we have a homomorphism

\[A \otimes r \rightarrow \gamma (S \otimes r), \]

and we are done by the theorem.
Katznelson–Furstenberg for located words
Recall the statement:

Fix a set F of finitely many types. Color, with finitely many colors, all words from \mathbb{N} to $M + N$. There exists a sequence of variable words (x_n) from \mathbb{N} to M with $x_n < x_{n+1}$ and such that the color of words of the form

$$x_{n_0}[i_0] + x_{n_1}[i_1] + \cdots + x_{n_l}[i_l],$$

with $n_0 < n_1 < \cdots < n_l$, depends only on the type of the sequence obtained from (i_0, \ldots, i_l) by deleting all entries less than M, provided this type belongs to F.

The type of (j_0, \ldots, j_k) is the sequence obtained from (j_0, \ldots, j_k) by shortening each run of identical numbers to a single number.
Monoid Λ:

L, Γ finite disjoint sets, e an element not in $L \cup \Gamma$.

$$\Lambda = L \cup \Gamma \cup \{e\},$$

with

$$\lambda_0 \cdot \lambda_1 = \begin{cases}
\lambda_0, & \text{if } \lambda_1 = e; \\
\lambda_1, & \text{if } \lambda_1 \in L \cup \Gamma,
\end{cases}$$

is a monoid with the identity element e.
Semigroup \(A \):
\[
\Gamma \text{ disjoint from } \{0, 1\}
\]
Let
\[
A
\]
be freely generated by \(\Gamma \cup \{0, 1\} \) subject to the relations
\[
a \land a = a \quad \text{and} \quad a \land 1 = 1 \land a = a.
\]
Point based Λ-semigroup A over A:

Assignment to elements of Λ of functions $\{ullet\} \rightarrow A$:
For $\lambda \in \Lambda$, let $\lambda(\bullet) \in A$ be

$$
\lambda(\bullet) = \begin{cases}
0, & \text{if } \lambda = e; \\
1, & \text{if } \lambda \in L; \\
\lambda, & \text{if } \lambda \in \Gamma.
\end{cases}
$$

This defines a point based Λ-semigroup over A called A.

Proposition

\(U \) a compact semigroup, \(V \subseteq U \) a compact subsemigroup, \(H \subseteq V \) a compact two-sided ideal in \(V \). Assume \(\Lambda \) acts on \(U \) by continuous endomorphisms so that \(V \) is \(L \)-invariant.

Then there exists a homomorphism \((f, g): \mathcal{A} \to U_\Lambda \) with \(f(\bullet) \in H \).
Partial semigroup:

\[S = (L \cup \Gamma)\text{-words and variable } (L \cup \Gamma)\text{-words} \]
\[T = L\text{-words and variable } L\text{-words} \]
\[D = \text{variable } L\text{-words} \]

Note: \(D \subseteq T \subseteq S \), \(D \) a two-sided ideal in \(T \), \(T \) a subsemigroup of \(S \)

Action of \(\Lambda \) on \(S \):

\[
\lambda(x) = \begin{cases}
 x, & \text{if } x \text{ is a } (L \cup \Gamma)\text{-word or } \lambda = e; \\
 x[\lambda], & \text{if } x \text{ is a variable } (L \cup \Gamma)\text{-word and } \lambda \in L \cup \Gamma.
\end{cases}
\]
Then $H = \gamma D$ is a compact two-sided ideal in $V = \gamma T$, which is a subsemigroup of $U = \gamma S$.

Note that V is L-invariant.
So by the last theorem and the corollary:
given $r > 0$, there is a basic sequence (x_n) in D such that the color of
\[\lambda_0(x_{n_0}) + \cdots + \lambda_l(x_{n_l}) = x_{n_0}[\lambda_0] + \cdots + x_{n_l}[\lambda_l] \]
depends only on
\[\lambda_0(\bullet) \wedge \cdots \wedge \lambda_l(\bullet) \in A \]
as long as
\[\lambda_0(\bullet) \wedge \cdots \wedge \lambda_l(\bullet) \in \Lambda_{<r}(\bullet). \]

Each finite set of types is included in $\Lambda_{<r}(\bullet)$ for some r.
A sketch of an application—
the Hales–Jewett theorem for left-variable words
Monoid Λ:
\[\Lambda = L \cup \{e\} \text{ with } e \notin L, \text{ with multiplication} \]
\[\lambda_0 \cdot \lambda_1 = \begin{cases}
\lambda_0, & \text{if } \lambda_1 = e; \\
\lambda_1, & \text{if } \lambda_1 \in L,
\end{cases} \]
is a monoid with the identity element e.

Semigroup A:
\[A = \{0, 1\} \text{ with } i \wedge j = \min(i, j). \]

Assignment $\Lambda \to A$:
For $\lambda \in \Lambda$, let $\lambda(\bullet) \in A$ be
\[\lambda(\bullet) = \begin{cases}
0, & \text{if } \lambda = e; \\
1, & \text{if } \lambda \neq e.
\end{cases} \]
Proposition (S.)

U a compact semigroup, H a compact two-sided ideal in U, $G \subseteq H$ a right ideal. Assume Λ acts on U by continuous endomorphisms. Then there exist $u \in H$, a homomorphism $g : A \to U$, and $v \in G$ such that $\lambda(u) = g(\lambda(\bullet))$ and $uv = u$.
Some questions
Λ a monoid
\(\hat{\Lambda} \) the semigroup generated freely by Λ subject to the relations
\[e \leq \lambda = \lambda \leq e = e. \]

\(U \) a compact semigroup on which Λ acts by continuous endomorphisms
\(H \) a compact two sided ideal in \(U \)

Question. For what Λ, does there exist
\[u \in H \text{ and a homomorphism } g: \hat{\Lambda} \to U \]
such that for each \(\lambda \in \Lambda \)
\[\lambda(u) = g(\lambda)? \]
The question amounts to asking for what Λ there exists a homomorphism

$$(f, g): \mathcal{A} \to U_\Lambda \text{ with } f(\bullet) \in H,$$

where \mathcal{A} is the point based Λ-semigroup over $\hat{\Lambda}$ given by $\lambda(\bullet) = \lambda \in \hat{\Lambda}$.
Fix $M > 0$. Let E be the monoid with composition of all non-decreasing functions $s: M \to M$ such that

$$s(0) = 0 \text{ and } s(i + 1) \leq s(i) + 1, \text{ for all } i < M - 1.$$

Question. Does the question above have positive answer for $\Lambda = E$?
Some questions

E as above acting on a compact semigroup U with a compact two-sided ideal H

$A = M$ with $i \wedge j = \min(i, j)$

For $s \in E$, let

$$s(\bullet) = M - (1 + \max s) \in A.$$

Question. Do there exist $u \in H$ and a homomorphism $g: A \rightarrow U$

such that

$$s(u) = g(s(\bullet))?$$

A positive answer to this question implies the generalized Gowers’ theorem.