
Introduction to Parallel Computing and Scientific Computation

Project: Particle Dynamics

by

Isabel Figueroa



1

1.0 How the Particle Dynamics program works

Particle Dynamics (PD) is a tool used to analyze the flow of granular material. This

discrete method of simulation uses the Newton’s laws of motion to describe the trajectories

of individual particles. The time evolution of these trajectories determines the global flow of

the granular material. Cohesive and adhesive systems can be studied by implementing the

corresponding contact mechanics to calculate the contact force between particles. PD can

also simulate heat transfer, as well as the liquid transfer in the granular media.

1.1 Physical Description

The equations that describe the particle motion are:

Linear Motion:

mp

dvp

dt
= −mpg + Fn + Ft (1-1)

Angular Motion:

Ip

dωp

dt
= Ft × r (1-2)

where Fn and Ft are the inter particle forces – normal and tangential, respectively – acting

on the particle and are functions of contact, drag, pressure and capillary interactions.

1.2 Numerical Methods

The Newton’s equation of motion is solved by using a modification of the Gear predictor-

corrector method. It involves two stages with a force evaluation in between. First, the new

positions are calulated using

r(t + ∆t) = r(t) + ∆tv(t) +
1

2
∆t2a(t) (1-3)



2

The velocities at mid-step are computed using

v(t +
1

2
∆t) = v(t) +

1

2
∆ta(t) (1-4)

The force and accelerations at the time t + δt are them computed, and the velocity move

completed

v(t + ∆t) = v(t +
1

2
∆t) +

1

2
∆ta(t + ∆t) (1-5)

The size of the time step depends on the type of contact mechanics used,

1.3 Modular structure of the program

The PD has been written in several modules in c language. The program works in

dimensionless variables. The input to this program are:

• An input file, containing the x, y, z coordinates of the particles, their initial velocity in

the x, y, z direction, their initial angular velocity in the x, y, z direction, the particle

radius, the particle initial temperature and the particle color.

• The program have to be given the total number of particles, the number of wall par-

ticles, the input file. It also allows to specify other option like the type of material,

the type of simulations (static, tumbler, couette), heat transfer, etc. If these are nor

specified the program just work with the default options.

The following section attempt to present how each of these interacts with the main

program as well to describe what does each modules do. The data structures used in the

program are also described in this section.



3

1.3.1 Structures used by the program

The program works with structure called Particle. In each of the fields of the structure

different particle properties are stored. A number equal to the coordination number of

’Contact Data’ structure are nested to the ’Particle’ structure. In each of the ’Contact Data’

fields the data related to the contact is stored. The following picture present how the

information is managed in the program.

Structures used in PD.



4

Another array that PD uses is cell[icell] for icell=0...(number of cells-1). It saves the x,

y and z index for the cell in .x .y and .z, the head of the cell in cell[icell].begin of cell, and

the neighbor cell ids in cell[icell].neighbor[j] for j=0..cell coordination number.

1.3.2 Diagram

The main flow of the program start initializing all the variables by using initialize.c at

the beginning of main.c. The advance in time is given by the execution of a while loop in

main.c which will repeated until a terminating condition is satisfied. For each iteration in the

while loop, and for each non-wall particle the program updates the particle position at the

beginning of the time step. The particle velocity is updated for first time during the current

time step, and the forces and torques are now reset to zero. The routine handle walls now

update the velocities and positions of the wall particles. Next, the contacts between particles

are detected and the contact data is assigned to the new coordination numbers, this is done

by contact detect. The contact data between particles i and j are kept in the data contained

by the particle of highest index. That explains why the next for loop go backwards. For

each non-wall particle, and for each of the contact detected for this particle, the contact force

between particles is calculated. A value (keep) is also assigned in calculate contact force.c.

The data is erased or copied accordingly. The particle velocity is now updated for a second

time in this current time step. Finally, the data will be written to a file every a determined

quantity of time steps. The last part of the while loop checks for this writing condition and

generates the output file. The main flow of the program is diagrammed is in the next figure.



5

PD flow diagram.

1.3.3 Module description

In this section, the main modules of the PD program are described respect to their main

objective and where are used.

a) initialize.c This routine is run at the beginning of the program, and initialize all

the particle[i] array, giving values to properties such as radius, mass, momentum,



6

mechanical properties, as well as their initial positions and velocities. It also resets all

the forces and torques to zero

b) get cell neighbors.c This routine is run only once during one execution of the

program. It is called by main.c and it gives the information cell[i].neighbor[j], for all

the particles i and for j=0..cell coordination number.

c) contact detect.c is called by main.c and detects the all the particles that may be

in contact with the particle i. This routine calls add to list for each contact that has

been detected.

d) sort particles.c is called by main.c and this is executed once for every time step.

This routine identifies in which cell the particle is in. In this process two arrays are

generated

• The head of the list, cell[i].begin of list, this array assigns one element for each

cell and corresponds to the particle number of one of the particles corresponding

to that cell.

• The following particle in the list, particle[i].list, contains the number of the next

molecule in the cell. If one follows the links of the particles in one cell, one

eventually will find the element of the list which is -1. This indicates that there

is no more particles in that cell.

e) add to list.c is called by contact detect. This routine determines if the two par-

ticles i and j are in contact, the contact data will be stored the particle i structure

(i¿j). The routine will look if this is and old or new contact. In case of old con-

tacts, the routine will assign a new contact index and move the contact data to

particle[i].contact data[new index]. For new contacts, old information is erased by

using erase contact data.m

f) copy contact data.c : This routine copies the contact data whenever this should be

kept.



7

g) erase contact data.c : This routine erases the contact data when the particle con-

tact is finished.

h) move particle.c update the particle position using the current particle velocity and

acceleration. It is called in handle walls.c and main.c

i) update velocity.c : the velocity update is done twice during one time step, using the

acceleration of the previous time step and the current one, respectively. This routine

is called in handle walls.c and main.c.

j) calculate contact force.c : this routine calculate the contact force according the

contact mechanics that is used (cohesive, adhesive, etc). It returns a value (keep) that

indicates if the contact data should be kept or not. It is called by main.c.

k) handle walls.c : manages the wall particle movements.



8

2.0 Parallel Implementation of PD

The parallel version of this PD sofware is implemented by using MPI.

2.1 Structures

The main problem in the implementation of the parallel version of the code is how be

build the structures in MPI, in order to be able to pass them between processors. Some

of them are dynamically allocates; therefore, it is important to set each component address

correctly, and account for the relative displacement in each case. The code to accomplish

that is presented in this secction.

Node structure.

Cell structure.



9

Particle structure.

2.1.1 How the job is divided

In order to make this code parallel is necessary to assign different jobs to each of the

processors. The sequential code divides the spaces into fixed cells. Each node has assign

certain number of cells. In the case of two nodes, the space is divided with a vertical line

through the middle of the tumbler. In the node structure, the head of the list of the linked

list is saved.

The most computationally expensive part of the program is the routine to calculate the

force between the particles, so this work is the part that needs to be divided into the two



10

processor. The particle structure containing the contact data is combined and, then, the

particle positions are updated in one processor. These procedure can be summarized in the

following

1. Particle initialization.

2. Structure construction in MPI

3. Send structure to all processors: Cell, Node,Number,Size, and Particle.

4. Initialize

5. Loop

• Send the updated Particle structure from the main processor to all the rest

• Calculate the forces in each processor

• Send the updated Particle structure from all processors to main processor

How the particles are assigned for each node.



11

3.0 How to run PD

3.0.2 How the job is divided

In order to run PD a file containing the initial conditions is needed. In this file, the initial

positions, velocities, angular velocities for all the particles.

The input arguments that are required are:

• number of particles

• number of wall particles

• contact mechanics (plastic, elastic, cohesive, adhesive)

• initial file name

The program generates files indicating the position of the particle as the time passes. This

files can be used to generate pictures, and therefore movies of the progress of the granular

material.

Example of PD results.


