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Abstract. We consider a viscous fluid of finite depth below the air, occupying a three-
dimensional domain bounded below by a fixed solid boundary and above by a free moving
boundary. The domain is allowed to have a horizontal cross-section that is either periodic
or infinite in extent. The fluid dynamics are governed by the gravity-driven incompressible
Navier-Stokes equations, and the effect of surface tension is neglected on the free surface. This
paper is the first in a series of three [19, 20] on the global well-posedness and decay of the
viscous surface wave problem without surface tension. Here we develop a local well-posedness
theory for the equations in the framework of the nonlinear energy method, which is based on
the natural energy structure of the problem. Our proof involves several novel techniques, in-
cluding: (1) optimal energy estimates in a “geometric” reformulation of the equations; (2) a
well-posedness theory of the linearized Navier-Stokes equations in moving domains; (3) a time-
dependent functional framework, which couples to a Galerkin method with a time-dependent
basis.

1. Introduction

1.1. Formulation of the equations in Eulerian coordinates. We consider a viscous, in-
compressible fluid evolving in a moving domain

(1.1) Ω(t) = {y ∈ Σ× R | − b(y1, y2) < y3 < η(y1, y2, t)}.
Here we assume that either Σ = R2, or else Σ = (L1T)× (L2T) for T = R/Z the usual 1−torus
and L1, L2 > 0 the periodicity lengths. The lower boundary b is assumed to be fixed and
given, but the upper boundary is a free surface that is the graph of the unknown function
η : Σ× R+ → R. We assume that

(1.2)

{
0 < b ∈ C∞(Σ) if Σ = (L1T)× (L2T)
b ∈ (0,∞) is constant if Σ = R2.

For each t, the fluid is described by its velocity and pressure functions (u, p) : Ω(t) → R3 × R.
We require that (u, p, η) satisfy the gravity-driven incompressible Navier-Stokes equations in
Ω(t) for t > 0:

(1.3)



∂tu+ u · ∇u+∇p = µ∆u in Ω(t)
div u = 0 in Ω(t)
∂tη = u3 − u1∂y1η − u2∂y2η on {y3 = η(y1, y2, t)}
(pI − µD(u))ν = gην on {y3 = η(y1, y2, t)}
u = 0 on {y3 = −b(y1, y2)}

for ν the outward-pointing unit normal on {y3 = η}, I the 3 × 3 identity matrix, (Du)ij =
∂iuj + ∂jui the symmetric gradient of u, g > 0 the strength of gravity, and µ > 0 the viscosity.
The tensor (pI − µD(u)) is known as the viscous stress tensor. The third equation in (1.3)
implies that the free surface is advected with the fluid. Note that in (1.3) we have shifted the
gravitational forcing to the boundary and eliminated the constant atmospheric pressure, patm,
in the usual way by adjusting the actual pressure p̄ according to p = p̄+ gy3 − patm.
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The problem is augmented with initial data (u0, η0) satisfying certain compatibility condi-
tions, which for brevity we will not write now. We will assume that η0 > −b on Σ. When
Σ = (L1T) × (L2T) we shall refer to the problem as either the “periodic problem” or the “pe-
riodic case,” and when Σ = R2 we shall refer to it as either the “non-periodic problem” or the
“infinite case.”

Without loss of generality, we may assume that µ = g = 1. Indeed, a standard scaling
argument allows us to scale so that µ = g = 1, at the price of multiplying b and the periodicity
lengths L1, L2 by positive constants and rescaling b. This means that, up to renaming b, L1,
and L2, we arrive at the above problem with µ = g = 1.

The problem (1.3) possesses a natural physical energy. For sufficiently regular solutions
to both the periodic and non-periodic problems, we have an energy evolution equation that
expresses how the change in physical energy is related to the dissipation:

(1.4)
1
2

∫
Ω(t)
|u(t)|2 +

1
2

∫
Σ
|η(t)|2 +

1
2

∫ t

0

∫
Ω(s)
|Du(s)|2 ds =

1
2

∫
Ω(0)
|u0|2 +

1
2

∫
Σ
|η0|2 .

The first two integrals constitute the kinetic and potential energies, while the third constitutes
the dissipation. The structure of this energy evolution equation is the basis of the energy method
we will use to analyze (1.3).

1.2. Geometric form of the equations. In order to work in a fixed domain, we want to
flatten the free surface via a coordinate transformation. We will not use a Lagrangian coordinate
transformation, but rather a flattening transformation introduced by Beale in [7]. To this end,
we consider the fixed equilibrium domain

(1.5) Ω := {x ∈ Σ× R | − b(x1, x2) < x3 < 0}

for which we will write the coordinates as x ∈ Ω. We will think of Σ as the upper boundary of
Ω, and we will write Σb := {x3 = −b(x1, x2)} for the lower boundary. We continue to view η as
a function on Σ× R+. We then define

(1.6) η̄ := Pη = harmonic extension of η into the lower half space,

where Pη is defined by (A.10) when Σ = R2 and by (A.18) when Σ = (L1T) × (L2T). The
harmonic extension η̄ allows us to flatten the coordinate domain via the mapping

(1.7) Ω 3 x 7→ (x1, x2, x3 + η̄(x, t)(1 + x3/b(x1, x2))) = Φ(x, t) = (y1, y2, y3) ∈ Ω(t).

Note that Φ(Σ, t) = {y3 = η(y1, y2, t)} and Φ(·, t)|Σb
= IdΣb

, i.e. Φ maps Σ to the free surface
and keeps the lower surface fixed. We have

(1.8) ∇Φ =

1 0 0
0 1 0
A B J

 and A := (∇Φ−1)T =

1 0 −AK
0 1 −BK
0 0 K


for

A = ∂1η̄b̃− (x3η̄∂1b)/b2, B = ∂2η̄b̃− (x3η̄∂2b)/b2,

J = 1 + η̄/b+ ∂3η̄b̃, K = J−1,

b̃ = (1 + x3/b).

(1.9)

Here J = det∇Φ is the Jacobian of the coordinate transformation.
If η is sufficiently small (in an appropriate Sobolev space), then the mapping Φ is a diffeo-

morphism. This allows us to transform the problem to one on the fixed spatial domain Ω for
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t ≥ 0. In the new coordinates, the PDE (1.3) becomes

(1.10)



∂tu− ∂tη̄b̃K∂3u+ u · ∇Au−∆Au+∇Ap = 0 in Ω
divA u = 0 in Ω
SA(p, u)N = ηN on Σ
∂tη = u · N on Σ
u = 0 on Σb

u(x, 0) = u0(x), η(x′, 0) = η0(x′).

Here we have written the differential operators ∇A, divA, and ∆A with their actions given by
(∇Af)i := Aij∂jf , divAX := Aij∂jXi, and ∆Af = divA∇Af for appropriate f and X; for
u·∇Au we mean (u·∇Au)i := ujAjk∂kui. We have also writtenN := −∂1ηe1−∂2η2e2+e3 for the
non-unit normal to Σ, and we write SA(p, u) = (pI−DAu) for the stress tensor, where I the 3×3
identity matrix and (DAu)ij = Aik∂kuj+Ajk∂kui is the symmetric A−gradient. Note that if we
extend divA to act on symmetric tensors in the natural way, then divA SA(p, u) = ∇Ap−∆Au
for vector fields satisfying divA u = 0.

Recall that A is determined by η through the relation (1.8). This means that all of the differ-
ential operators in (1.10) are connected to η, and hence to the geometry of the free surface. This
geometric structure is essential to our analysis, as it allows us to control high-order derivatives
that would otherwise be out of reach.

1.3. Previous results. Local well-posedness for the problem (1.3) in a bounded domain, all
of whose boundary is free, was proved by Solonnikov [27]. Local well-posedness for the problem
in domains like ours was proved by Beale [6]. Both of these results employ parabolic regularity
theory in a functional framework different from the one we use: Solonnikov worked in Hölder
spaces, while Beale worked in L2-based space-time Sobolev spaces. Abels [1] extended this
local theory to the framework of Lp-based Sobolev spaces. Global well-posedness was proved in
the periodic case by Hataya [21] and discussed in the infinite case by Sylvester [29] as well as
Tani-Tanaka [30], all within a Beale-Solonnikov functional framework.

If the effect of surface tension is included at the free interface, then the free surface function
gains regularity, stabilizing the problem. This led to a proof of small-data global well-posedness
by Beale [7], as well as a proof by Beale-Nishida [8] that the global solutions with surface tension
decay algebraically in time. In the periodic case, Nishida-Teramoto-Yoshihara [24] proved global
well-posedness and exponential decay. Bae [5] proved global well-posedness with surface tension
using energy methods rather than a Beale-Solonnikov framework. For a bounded mass of fluid
with surface tension, local well-posedness was proved by Coutand-Shkoller [11].

Several authors have considered problems with two fluids and surface tension, where among
other things, the free surface boundary conditions in (1.3) are replaced with jump conditions.
Local well-posedness for this problem was proved by Xu-Zhang [35] for two fluid layers of finite
depth and by Prüess-Simonett [25] for two layers of infinite depth. Denisova [15] proved local
well-posedness with surface tension for a bubble of one fluid within another fluid.

Many authors have also considered one-fluid free boundary problems for inviscid fluids, which
are modeled by setting µ = 0 in (1.3) and replacing the no slip condition with the no penetration
condition, u · ν = 0 on Σb. For this problem, it is often assumed that the fluid is initially curl-
free, in which case this condition propagates in time and the fluid is said to be irrotational. The
velocity field is then both curl-free and divergence-free for all time, and is therefore the gradient
of a function that is harmonic in Ω(t). This allows for the reformulation of the problem as one
only on the free surface, involving the Dirichlet-to-Neumann operator. Local well-posedness in
this framework was established by Wu [31, 32] and Lannes [22], an almost-global well-posedness
result was then proved by Wu [33] for the 2D problem, and global well-posedness was proved
by Wu [34] and Germain-Masmoudi-Shatah [17] in 3D. Only the irrotational problem has been
shown to admit global solutions in the inviscid case. Local well-posedness without the irrota-
tionality assumption was proved with a modified surface formulation by Zhang-Zhang [36] and
with the original formulation by Christodoulou-Lindblad [10], Lindblad [23], Coutand-Shkoller
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[12], and Shatah-Zeng [26]. Note that in the viscous case, it is known that vorticity is generated
at the free surface, even if the fluid is initially irrotational. As such, it is not possible to use the
surface formulation of the problem.

1.4. Main result. As mentioned above, the standard method for constructing solutions in
the existing literature is based on the parabolic regularity theory pioneered by Beale [6] for
domains like ours and by Solonnikov [27] for bounded, non-periodic domains. The advantage of
full parabolic regularity is that it enables one to treat viscous surface waves as a perturbation
of the “flat surface” problem, which is obtained by setting η = 0, A = I, N = e3, etc in
(1.10). The actual problem (1.10) is then rewritten as the flat surface problem with nonlinear
forcing terms that correspond to the difference between the two forms of the equations. The
key to the existence theory of, say [6], is regularity in Hr with the choice of r = 3 + δ for
δ ∈ (0, 1/2). According to the natural energy structure of the problem, (1.4), one might expect
r to naturally be an integer. The extra gain of δ > 0 regularity allows for enough control of the
nonlinear forcing terms to produce a local solution to (1.10) from solutions to the flat surface
problem and an iteration argument. As recognized early on by Beale himself, a disadvantage
of Beale-Solonnikov theory is that the functional framework makes it difficult to extract time
decay information.

In a pair of companion papers [19, 20], we prove a priori decay estimates that are developed
through a high regularity energy method. This necessitates using the natural energy structure
of the problem, (1.4), which in turn requires us to use positive integer Sobolev indices for u. The
advantage of the natural energy structure is that it produces two distinct types of estimates:
roughly speaking, L∞([0, T ];L2) “energy estimates” and L2([0, T ];H1) “dissipation estimates.”
The interplay between the energy and the dissipation naturally leads to time decay information.
The disadvantage of the energy structure is that our regularity index r must be an integer, so
we cannot use the δ > 0 gain that would allow us to treat the problem (1.10) as a perturbation
of the flat surface problem.

The difficulty in proving local well-posedness in the natural energy structure is thus clear.
We cannot use solutions to the standard flat surface problem to produce solutions to (1.10)
via an iteration argument since the forcing terms cannot be controlled in the iteration. For
example, we would have trouble controlling the interaction between the highest order temporal
derivatives of p and div u. Our solution, then, is to abandon the flat surface problem and prove
local existence directly, using the geometric structure of (1.10). The geometric structure is
crucial since it decreases the derivative count of the forcing terms, which then allows us to close
an iteration argument using only the natural energy structure. The essential difficulty is that
the geometric structure requires us to solve the Navier-Stokes equations in moving domains. In
the presence of such a time-dependent geometric effect, even the construction of local-in-time
solutions to the linear Navier-Stokes equations is highly delicate and has to be carried out from
the beginning.

Before we state our local existence result, let us mention the issue of compatibility conditions
for the initial data (u0, η0). We will work in a high-regularity context, essentially with regularity
up to 2N temporal derivatives for N ≥ 3 an integer. This requires us to use u0 and η0 to
construct the initial data ∂jt u(0) and ∂jt η(0) for j = 1, . . . , 2N and ∂jt p(0) for j = 0, . . . , 2N − 1.
These other data must then satisfy various conditions (essentially what one gets by applying ∂jt
to (1.10) and then setting t = 0), which in turn require u0 and η0 to satisfy 2N compatibility
conditions. We describe these conditions in detail in Section 5.2 and state them explicitly in
(5.26), so for brevity we will not state them here.

In order to state our result, we must explain our notation for Sobolev spaces and norms. We
take Hk(Ω) and Hk(Σ) for k ≥ 0 to be the usual Sobolev spaces. When we write norms we will
suppress the H and Ω or Σ. When we write

∥∥∥∂jt u∥∥∥
k

and
∥∥∥∂jt p∥∥∥

k
we always mean that the space

is Hk(Ω), and when we write
∥∥∥∂jt η∥∥∥

k
we always mean that the space is Hk(Σ). In the following

result we write ‖·‖−1 for the norm in (0H
1(Ω))∗, where 0H

1(Ω) is defined later in (2.1). Here it
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is not the case that (0H
1(Ω))∗ = H−1 because of boundary conditions; we employ this abuse of

notation in order to have indexed sums of norms include terms like ‖·‖4N−2j+1 for j = 2N + 1.

Theorem 1.1. Let N ≥ 3 be an integer. Assume that u0 and η0 satisfy the bounds ‖u0‖24N +
‖η0‖24N+1/2 <∞ as well as the (2N)th compatibility conditions (5.26). There exist 0 < δ0, T0 < 1
so that if

(1.11) 0 < T ≤ T0 min

{
1,

1
‖η0‖24N+1/2

}
,

and ‖u0‖24N + ‖η0‖24N ≤ δ0, then there exists a unique solution (u, p, η) to (1.10) on the interval
[0, T ] that achieves the initial data. The solution obeys the estimates

(1.12)
2N∑
j=0

sup
0≤t≤T

∥∥∥∂jt u∥∥∥2

4N−2j
+

2N∑
j=0

sup
0≤t≤T

∥∥∥∂jt η∥∥∥2

4N−2j
+

2N−1∑
j=0

sup
0≤t≤T

∥∥∥∂jt p∥∥∥2

4N−2j−1

+
∫ T

0

2N+1∑
j=0

∥∥∥∂jt u∥∥∥2

4N−2j+1
+

2N∑
j=0

∥∥∥∂jt p∥∥∥2

4N−2j


+
∫ T

0

‖η‖24N+1/2 + ‖∂tη‖24N−1/2 +
2N+1∑
j=2

∥∥∥∂jt η∥∥∥2

4N−2j+5/2


≤ C

(
‖u0‖24N + ‖η0‖24N + T ‖η0‖24N+1/2

)
and

(1.13) sup
0≤t≤T

‖η‖24N+1/2 ≤ C
(
‖u0‖24N + (1 + T ) ‖η0‖24N+1/2

)
for a universal constant C > 0. The solution is unique among functions that achieve the initial
data and for which the sum of the first three sums in (1.12) is finite. Moroever, η is such that
the mapping Φ(·, t), defined by (1.7), is a C4N−2 diffeomorphism for each t ∈ [0, T ].

Remark 1.2. Since the mapping Φ(·, t) is a C4N−2 diffeomorphism, we may change coordinates
to y ∈ Ω(t) to produce solutions to (1.3).

The tools needed for the proof of Theorem 1.1 are developed throughout the rest of the paper,
and the theorem is proved in Section 6.3. We will sketch here the main ideas of the proof.

Linear A−Navier-Stokes
Our iteration procedure is based on a geometric variant of the linear Navier-Stokes problem.

We consider η (and hence A,N , etc) as given and then solve the linear A−Navier-Stokes
equations for (u, p):

(1.14)


∂tu−∆Au+∇Ap = F 1 in Ω
divA u = 0 in Ω
SA(p, u)N = F 3 on Σ
u = 0 on Σb,

with initial data u0. Transforming this problem back to a moving domain Ω(t) using the
mapping Φ defined in (1.7) shows that this problem is essentially equivalent (we have absorbed
the correction to the time derivative into F 1, so it does not transform exactly) to solving the
linear Navier-Stokes equations in a domain whose upper boundary is given by η(t). In other
words, we are really solving the usual linear problem in a moving domain.

Pressure as a Lagrange multiplier in time-dependent function spaces
It is well-known [28, 6, 11, 12] that for the usual linear Navier-Stokes equations, the pressure

can be viewed as a Lagrange multiplier that arises by restricting the dynamics to the class of
vectors satisfying div u = 0. To adapt this idea to the problem (1.14), we must restrict to the
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class of vectors satisfying divA u = 0, which is a time-dependent condition since η (and hence
A) depends on t. This leads us to build time-dependent variants of the usual Sobolev spaces
H0 = L2 and H1 so that we can make sense of this time-dependent collection of divA−free
vectors. For the purpose of estimates, we want the time-dependent norms on these spaces
to all be comparable to the usual Sobolev norms; this can be achieved through a smallness
assumption on η, which we quantify. With the spaces in hand, we then adapt a technique from
[28] to introduce the pressure as a Lagrange multiplier for divA−free dynamics.

Elliptic estimates for A−problems
In order to get the regularity we need for solutions to the parabolic problem (1.14), we

first need the corresponding elliptic regularity theory. We accomplish this by using (1.7) to
transform these elliptic problems back into Eulerian coordinates so that the PDEs transform
to ones with constant coefficients. We then apply standard estimates for elliptic equations and
systems, proved in [3, 4], and then transform these estimates on the Eulerian domain back to
estimates on Ω. The only problem with this process is that the Eulerian domain has a boundary
whose regularity is dictated by η and is phrased in Hk norms rather than Ck norms, which are
what appear in [3, 4]. We get around this problem by using a smoothing operator, a limiting
argument, and the smallness of η.

Galerkin method with a time-dependent basis
We construct solutions to (1.14) by using a time-dependent Galerkin method. This requires

a countable basis of our space of divA−free vector fields. Since the requirement divA u = 0 is
time-dependent, any basis of this space must also be time-dependent. For each t ∈ [0, T ], the
space we work in (basically H2 with divA u = 0) is separable, so the existence of a countable
basis is not an issue. The technical difficulty is that, in order for the basis to be useful in the
Galerkin method, we must be able to differentiate the basis elements in time, and we must be
able to express these time derivatives in terms of finitely many basis elements. Fortunately,
due to a clever observation of Beale in [7], we are able construct an explicit time-dependent
isomorphism that maps the div−free vector fields to the divA−free fields. This allows us to
construct the desired basis and push through the Galerkin method to produce “pressureless”
weak solutions that are restricted to the collection of divA−free fields. We then use our previous
analysis to introduce the pressure as a Lagrange multiplier, which gives a weak solution to
(1.14). We also use the Galerkin scheme to get higher regularity, showing that the solution is
actually strong. The compatibility conditions serve as necessary conditions for controlling the
temporal derivatives of the approximate solutions in the Galerkin scheme. The result of our
strong existence theorem then allows us to iteratively deduce higher regularity, given that the
forcing terms are more regular and higher-order compatibility conditions are satisfied.

Transport estimates
The problem (1.14) considers η as given and then produces (u, p). The second step in our

iteration procedure is to take u as given and then solve ∂tη + u1∂1η + u2∂2η = u3 on Σ. This
is a standard transport equation, so solving it presents no real obstacle. The difficulty is that
in our analysis of (1.14), we need control of sup0≤t≤T ‖η(t)‖24N+1/2, but owing to the transport
structure, the only available estimate is, roughly speaking,
(1.15)

sup
0≤t≤T

‖η‖24N+1/2 ≤ C exp
(
C

∫ T

0
‖Du(t)‖H2(Σ) dt

)[
‖η0‖24N+1/2 + T

∫ T

0
‖u(t)‖24N+1 dt

]
.

Without knowing a priori that u decays, the right side of this estimate has the potential to
grow at the rate of (1 + T )e

√
T . Even if u decays rapidly, the right side can still grow like

(1 + T ). Of course, such a growth in time is disastrous for global stability analysis, but even
in our local-existence iteration scheme, a delicate technique is required to accommodate such a
growth without breaking the estimates of Theorem 1.1.

Closing the iteration with a two-tier energy scheme
Our iteration scheme then proceeds as described, using ηm to produce (um+1, pm+1), and

then using um+1 to produce ηm+1. Iterating in this manner without losing control of our high-
order energy estimates is rather delicate, and can only be completed by using sufficiently small
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initial data. The boundedness of the infinite sequence (um, pm, ηm) in our high-order norms
gives weak limits in the usual way, but because of the nature of our iteration scheme, we cannot
guarantee a priori that the weak limits constitute a solution to (1.10). Instead of using high-
order weak limits, we instead show that the sequence contracts in low-order norms, yielding
strong convergence in low norms. We then combine the low-order strong convergence with the
high-order weak convergence and an interpolation argument to deduce strong convergence in
higher (but not all the way to the highest order) norms, which then suffices for passing to the
limit m→∞ to produce a solution to (1.10).

1.5. Utility in the global theory. We believe that our local well-posedness result, Theorem
1.1, is interesting in its own right. It provides an alternative to the standard Beale-Solonnikov
framework that is perhaps more natural due to the natural energy structure (1.4). The new
ideas and techniques that we have introduced in order to work in this framework will likely be
useful in many other problem.

However, we also need Theorem 1.1 as a crucial component in our global analysis of (1.3),
which we carry out in [19] in the infinite case and in [20] in the periodic case. In both cases
we develop novel a priori estimates that couple to the local theory to produce global-in-time
solutions that decay to equilibrium at an algebraic rate. We call our a priori estimates a two-tier
energy method because it couples the boundedness of certain high-regularity norms to the decay
of certain low-regularity norms. The local theory we develop here both provides the tools for
iteratively achieving global well-posedness and justifies all of the computations used in our two-
tier a prior estimates. We do not believe that our a priori estimates would be compatible with
a modification of the Beale-Solonnikov method due to differences in the functional framework.

Let us now informally state the theorems we prove in [19, 20].

Theorem 1.3. The problem (1.3) is globally well-posed for sufficiently small initial data. In
the infinite case, the solutions decay at a fixed algebraic rate. In the periodic case, by adjusting
the smallness of the initial data, the solutions can be made to decay at arbitrarily fast algebraic
rates. In other words, solutions in the periodic case decay almost exponentially.

Remark 1.4. The reader interested in a unified presentation of the present paper and the global
decay results of [19, 20] may consult [18].

Remark 1.5. One can see a glimpse of the utility of our two-tier energy method already in
the local theory. Indeed, the contraction argument we use to produce local solutions uses the
boundedness of the high norms to close the contraction estimate for the low norms.

1.6. Definitions and terminology. We now mention some of the definitions, bits of notation,
and conventions that we will use throughout the paper.

Einstein summation and constants
We will employ the Einstein convention of summing over repeated indices for vector and

tensor operations. Throughout the paper C > 0 will denote a generic constant that can depend
on the parameters of the problem, N , and Ω, but does not depend on the data, etc. We refer
to such constants as “universal.” They are allowed to change from one inequality to the next.
When a constant depends on a quantity z we will write C = C(z) to indicate this. We will
employ the notation a . b to mean that a ≤ Cb for a universal constant C > 0.

Derivatives and norms
We will write Df for the horizontal gradient of f , i.e. Df = ∂1fe1 + ∂2fe2, while ∇f will

denote the usual full gradient. We write Hk(Ω) with k ≥ 0 and and Hs(Σ) with s ∈ R for
the usual Sobolev spaces. We will not need negative index spaces on Ω except ‖·‖−1, which we
take to mean the norm on (0H

1(Ω))∗, where 0H
1(Ω) is defined later in (2.1). We employ this

abuse of notation for the reasons discussed immediately before the statement of Theorem 1.1.
We will typically write H0 = L2; the exception to this is where we use L2([0, T ];Hk) notation
to indicate the space of square-integrable functions with values in Hk. For these spaces, we will
further abuse notation by writing L2H−1 = L2(0H

1(Ω))∗. This is meant to extend the abuse
of notation ‖·‖(0H1(Ω))∗ = ‖·‖−1.
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To avoid notational clutter, we will avoid writing Hk(Ω) or Hk(Σ) in our norms and typically
write only ‖·‖k. Since we will do this for functions defined on both Ω and Σ, this presents some
ambiguity. We avoid this by adopting two conventions. First, we assume that functions have
natural spaces on which they “live.” For example, the functions u, p, and η̄ live on Ω, while η
itself lives on Σ. As we proceed in our analysis, we will introduce various auxiliary functions;
the spaces they live on will always be clear from the context. Second, whenever the norm of a
function is computed on a space different from the one in which it lives, we will explicitly write
the space. This typically arises when computing norms of traces onto Σ of functions that live
on Ω.

1.7. Plan of paper. Our proof of Theorem 1.1 employs an iteration that is based on the
following linear problem for (u, p), where we think of η (and hence A,N , etc) as given,

(1.16)


∂tu−∆Au+∇Ap = F 1 in Ω
divA u = 0 in Ω
SA(p, u)N = F 3 on Σ
u = 0 on Σb,

subject to the initial condition u(0) = u0. Note that the first equation in (1.16) may be rewritten
as ∂tu+ divA SA(p, u) = F 1.

In Section 2 we develop the machinery of time-dependent function spaces so that we can
consider the class of divA−free vector fields. We use an orthogonal splitting of a space to
introduce the pressure as a Lagrange multiplier. In Section 3 we record some elliptic estimates for
the A−Stokes problem and the A−Poisson problem. In Section 4 we develop the local existence
theory for (1.16) by using a time-dependent Galerkin scheme. We iterate this result to produce
high-regularity solutions. In Section 5 we do some preliminary work for the nonlinear problem,
constructing initial data, detailing the compatibility conditions, and constructing solutions to
the transport equation with high-regularity estimates. In Section 6 we construct solutions to
(1.10) through the use of iteration and contraction arguments, completing the proof of Theorem
1.1.

Throughout the paper we assume that N ≥ 3 is an integer. We consider both the non-
periodic and periodic cases simultaneously. When different analysis is needed for each case, we
will indicate so. Otherwise, the argument we write works in both cases.

2. Functional setting

2.1. Time-dependent function spaces. We begin our analysis of (1.16) by introducing some
function spaces. We write Hk(Ω) and Hk(Σ) for the usual L2-based Sobolev spaces of either
scalar or vector-valued functions. Define

0H
1(Ω) := {u ∈ H1(Ω) | u|Σb

= 0},
0H1(Ω) := {u ∈ H1(Ω) | u|Σ = 0}, and

0H
1
σ(Ω) := {u ∈ 0H

1(Ω) | div u = 0},
(2.1)

with the obvious restriction that the last space is for vector-valued functions only.
For our time-dependent function spaces we will consider η (and hence A, J , etc) as given;

in our subsequent analysis η will always be sufficiently regular for all terms derived from η to
make sense. We define a time-dependent inner-product on L2 = H0 by introducing

(2.2) (u, v)H0 :=
∫

Ω
(u · v)J(t)

with corresponding norm ‖u‖H0 :=
√

(u, u)H0 . Then we write H0(t) := {‖u‖H0 < ∞}. Simi-
larly, we define a time-dependent inner-product on 0H

1(Ω) according to

(2.3) (u, v)H1 :=
∫

Ω

(
DA(t)u : DA(t)v

)
J(t),
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and we define the corresponding norm by ‖u‖H1 =
√

(u, u)H1 . Then we define

(2.4) H1(t) := {u | ‖u‖H1 <∞, u|Σ = 0} and X (t) := {u ∈ H1(t) | divA(t) u = 0}.

We will also need the orthogonal decomposition H0(t) = Y(t)⊕ Y(t)⊥, where

(2.5) Y(t)⊥ := {∇A(t)ϕ | ϕ ∈ 0H1(Ω)}.
A further discussion of the space Y(t) can be found later in Remark 3.4. In our use of these
norms and spaces, we will often drop the (t) when there is no potential for confusion.

Finally, for T > 0 and k = 0, 1, we define inner-products on L2([0, T ];Hk(Ω)) by

(2.6) (u, v)Hk
T

=
∫ T

0
(u(t), v(t))Hk dt.

Write ‖u‖Hk
T

for the corresponding norms and HkT for the corresponding spaces. We define the
subspace of divA-free vector fields as

(2.7) XT := {u ∈ H1
T | divA(t) u(t) = 0 for a.e. t ∈ [0, T ]}.

A priori we do not know that the spaces Hk(t) and HkT have the same topology as Hk and
L2Hk, respectively. This can be established under a smallness assumption on η.

Lemma 2.1. There exists a universal ε0 > 0 so that if

(2.8) sup
0≤t≤T

‖η(t)‖3 < ε0,

then

(2.9)
1√
2
‖u‖k ≤ ‖u‖Hk ≤

√
2 ‖u‖k

for k = 0, 1 and for all t ∈ [0, T ]. As a consequence, for k = 0, 1,

(2.10)
1√
2
‖u‖L2Hk ≤ ‖u‖Hk

T
≤
√

2 ‖u‖L2Hk .

Proof. Consider ε ∈ (0, 1/2) with precise value to be chosen later. It is straightforward to verify,
using Lemma A.5 in the non-periodic case and Lemma A.7 in the periodic case, that

(2.11) sup{‖J − 1‖L∞ , ‖A‖L∞ , ‖B‖L∞} ≤ C ‖η‖3 .
Then we may choose ε0 = ε/C so that the right side of (2.11) is bounded by ε. Since K = 1/J ,
this implies that

(2.12) ‖K − 1‖L∞ ≤
ε

1− ε
, ‖K‖L∞ ≤

1
1− ε

,

and

(2.13) ‖I −A‖L∞ ≤
3ε

1− ε
, ‖A+ I‖L∞ ≤ 2

√
3 +

3ε
1− ε

.

In turn, this implies that

(2.14) ‖J‖L∞ ‖I −A‖L∞ ‖I +A‖L∞ ≤
3ε(1 + ε)(2

√
3− (2

√
3− 3)ε)

(1− ε)2
:= g(ε).

Notice that g is a continuous, increasing function on (0, 1/2) so that g(0) = 0. With the
estimates (2.11) and (2.14) in hand, we can show that if ε is chosen sufficiently small, then (2.9)
and (2.10) hold.

In the case k = 0, the estimate (2.9) follows directly from the estimate for J in (2.11):

(2.15)
1
2

∫
Ω
|u|2 ≤ (1− ε)

∫
Ω
|u|2 ≤

∫
Ω
J |u|2 ≤ (1 + ε)

∫
Ω
|u|2 ≤ 2

∫
Ω
|u|2 .

To derive (2.9) when k = 1, we first rewrite

(2.16)
∫

Ω
J |DAu|2 =

∫
Ω
J |Du|2 +

∫
Ω
J(DAu+ Du) : (DAu− Du).
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To estimate the last term, we note that |(DAu± Du)| ≤ 2 |A ± I| |∇u| , which implies that

(2.17)
∣∣∣∣∫

Ω
J(DAu+ Du) : (DAu− Du)

∣∣∣∣ ≤ 4 ‖J‖L∞ ‖I −A‖L∞ ‖I +A‖L∞
∫

Ω
|∇u|2

≤ 4CΩg(ε)
∫

Ω
|Du|2 ,

where CΩ is the constant in Korn’s inequality, Lemma A.10. We may then employ the bounds
(2.11) and (2.17) in (2.16) to estimate

(2.18)
∫

Ω
|DAu|2 J ≥

∫
Ω
J |Du|2 − 4CΩg(ε)

∫
Ω
|Du|2 ≥ (1− ε− 4CΩg(ε))

∫
Ω
|Du|2

and

(2.19)
∫

Ω
|DAu|2 J ≤

∫
Ω
J |Du|2 + 4CΩg(ε)

∫
Ω
|Du|2 ≤ (1 + ε+ 4CΩg(ε))

∫
Ω
|Du|2 .

Then (2.9) with k = 1 follows from (2.18)–(2.19) by choosing ε small enough so that ε +
4CΩg(ε) ≤ 1/2. The estimates (2.10) follow by applying (2.9) for a.e. t ∈ [0, T ], squaring, and
integrating over t ∈ [0, T ]. �

Remark 2.2. Throughout the rest of this paper, we will assume that (2.8) is satisfied so that
(2.9)–(2.10) hold.

Remark 2.3. Because of the bound (2.9) and the usual Korn inequality on Ω, Lemma A.10,
we have a corresponding Korn-type inequality in H1(t): ‖u‖H0 . ‖u‖H1 . The standard trace
embedding H1(Ω) ↪→ H1/2(Σ) and (2.9) imply that ‖u‖H1/2(Σ) . ‖u‖H1 for all t ∈ [0, T ].
Similarly, given f ∈ H1/2(Σ), we may construct an extension f̃ ∈ H1(t) so that ‖f‖H1 .
‖f‖H1/2(Σ).

We now prove a result about the differentiability of norms in our time-dependent spaces.

Lemma 2.4. Suppose that u ∈ H1
T , ∂tu ∈ (H1

T )∗. Then the mapping t 7→ ‖u(t)‖2H0(t) is
absolutely continuous, and

(2.20)
d

dt
‖u(t)‖2H0 = 2〈∂tu(t), u(t)〉(H1)∗ +

∫
Ω
|u(t)|2 ∂tJ(t)

for a.e. t ∈ [0, T ]. Moreover, u ∈ C0([0, T ];H0(Ω)). If v ∈ H1
T , ∂tv ∈ (H1

T )∗ as well, then

(2.21)
d

dt
(u(t), v(t))H0 = 〈∂tu(t), v(t)〉(H1)∗ + 〈∂tv(t), u(t)〉(H1)∗ +

∫
Ω
u(t) · v(t)∂tJ(t).

Proof. In light of Lemma 2.1, the time-dependent spaces H0
T , H1

T , (H1
T )∗ present no obstacle

to the usual method of approximation by temporally smooth functions via convolution. This
allows us to argue as in Theorem 3 in Section 5.9 of [16] to deduce (2.20) and the continuity
u ∈ C0([0, T ];H0(Ω)). The equality (2.21) follows by applying (2.20) to u + v and canceling
terms by using (2.20) with u and with v. �

Now we want to show the spaces 0H
1(Ω) and 0H

1
σ(Ω) are related to the spaces H1(t) and

X (t). To this end, we define the matrix

(2.22) M := M(t) = K∇Φ =

 K 0 0
0 K 0
AK BK 1

 .

Note that M is invertible, and M−1 = JAT . Since J 6= 0 and ∂j(JAij) = 0 for each i = 1, 2, 3,

(2.23) p = divA v ⇔
Jp = J divA v = JAij∂jvi = ∂j(JAijvi) = ∂j(JAT v)j = ∂j(M−1v)j = div(M−1v).

The matrix M(t) induces a linear operatorMt : u 7→ Mt(u) = M(t)u that possesses several nice
properties, the most important of which is that div-free vector fields are mapped to divA-free
vector fields. We record these now.
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Proposition 2.5. For each t ∈ [0, T ], Mt is a bounded, linear isomorphism: from Hk(Ω) to
Hk(Ω) for k = 0, 1, 2; from L2(Ω) to H0(t); from 0H

1(Ω) to H1(t); and from 0H
1
σ(Ω) to X (t).

In each case the norms of the operatorsMt,M−1
t are bounded by a constant times 1+‖η(t)‖9/2.

Moreover, the mapping M given by Mu(t) := Mtu(t) is a bounded, linear isomorphism:
from L2([0, T ];Hk(Ω)) to L2([0, T ];Hk(Ω)) for k = 0, 1, 2; from L2([0, T ];H0(Ω)) to H0

T ; from
L2([0, T ]; 0H

1(Ω)) to H1
T ; and from L2([0, T ]; 0H

1
σ(Ω)) to XT . In each case, the norms of the

operators M and M−1 are bounded by a constant times the sum 1 + sup0≤t≤T ‖η(t)‖9/2.

Proof. For each t ∈ [0, T ], it is easy to see that

(2.24) ‖Mtu‖k . ‖M(t)‖C3 ‖u‖k . (1 + ‖η(t)‖9/2) ‖u‖k
for k = 0, 1, 2, which establishes that Mt is a bounded operator on Hk. Since M(t) is an
invertible matrix, M−1

t v = M(t)−1v = J∇Φ(t)v, which allows us to argue similarly to see that
for k = 0, 1, 2,

∥∥M−1
t v
∥∥
k
. (1 + ‖η(t)‖9/2) ‖v‖k . Hence Mt is an isomorphism of Hk to itself

for k = 0, 1, 2. With this fact in hand, Lemma 2.1 implies thatMt is an isomorphism of H0(Ω)
to H0(t) and of 0H

1(Ω) to H1(t).
To prove thatMt is an isomorphism of 0H

1
σ(Ω) to X (t), we must only establish that div u = 0

if and only if divA(Mu) = 0. To see this we appeal to (2.23) with p = 0 to see that 0 = divA v
if and only if 0 = div(M−1v). Hence, writing v = Mu, we see that div u = 0 if and only if
divA(Mu) = 0.

The mapping properties of the operator M on space-time functions may be established in a
similar manner. �

2.2. Pressure as a Lagrange multiplier. It is well-known [28, 6, 12] that the space 0H
1(Ω)

can be orthogonally decomposed as 0H
1(Ω) = 0H

1
σ(Ω)⊕R(Q), where R(Q) is the range of the

operator Q : H0(Ω)→ 0H
1(Ω), defined by the Riesz representation theorem via the relation

(2.25)
∫

Ω
p div u =

∫
Ω

D(Qp) : Du for all u ∈ 0H
1(Ω).

We now wish to establish a similar decomposition for our spaces X (t) ⊂ H1(t). Unfortunately,
the mappings Mt, while isomorphisms, are not isometries, so we cannot use the known result
to decompose H1(t). Instead, we must adapt the method of [28] to our time-dependent context.

For p ∈ H0(t), we define the functional Qt ∈ (H1(t))∗ by Qt(v) = (p,divA v)H0 . By the Riesz
representation theorem, there exists a unique Qtp ∈ H1(t) so that Qt(v) = (Qtp, v)H1 for all
v ∈ H1(t). This defines a linear operator Qt : H0(t) → H1(t), which is bounded since we may
take v = Qtp to bound

(2.26) ‖Qtp‖2H1 = (Qtp,Qtp)H1 = Qt(v) = (p,divA v)H0

≤ ‖p‖H0 ‖divA v‖H0 ≤ ‖p‖H0 ‖v‖H1 = ‖p‖H0 ‖Qtp‖H1 ,

so that ‖Qtp‖H1 ≤ ‖p‖H0 . In the previous inequality we have utilized the simple bound
‖divA v‖H0 ≤ ‖v‖H1 , which follows from the fact that divA v = tr(DAu)/2. In a straightforward
manner, we may also define a bounded linear operator Q : H0

T → H1
T via the relation

(2.27) (p,divA v)H0
T

= (Qp, v)H1
T

for all v ∈ H1
T .

Arguing as above, we can show that Q satisfies ‖Qp‖H1
T
≤ ‖p‖H0

T
.

In order to study the range of Qt in H1(t) and of Q in H1
T , we will first need a lemma on the

solvability of the equation divA v = p.

Lemma 2.6. Let p ∈ H0(t). Then there exists a v ∈ H1(t) so that divA v = p and ‖v‖H1 .
(1 + ‖η(t)‖9/2) ‖p‖H0. If instead p ∈ H0

T , then there exists a v ∈ H1
T so that divA v = p for a.e.

t ∈ [0, T ], and ‖v‖H1
T
. (1 + sup0≤t≤T ‖η(t)‖9/2) ‖p‖H0

T
.

Proof. It is established in the proof of Lemma 3.3 of [6] that for any q ∈ L2(Ω) the problem
div u = q admits a solution u ∈ 0H

1(Ω) so that ‖u‖1 . ‖q‖0. The result in [6] concerns the
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non-periodic case, but its proof may be easily adapted to the periodic case as well. Choose
q = Jp so that

(2.28) ‖q‖20 =
∫

Ω
|q|2 =

∫
Ω
|p|2 J2 ≤ ‖J‖L∞ ‖p‖

2
H0 ≤ 2 ‖p‖2H0 .

Then by (2.23) we know that v = M(t)u ∈ H1(t) satisfies divA v = p, and Proposition 2.5
implies that

(2.29) ‖v‖H1 . (1 + ‖η(t)‖9/2) ‖u‖1 . (1 + ‖η(t)‖9/2) ‖q‖0 . (1 + ‖η(t)‖9/2) ‖p‖H0 .

If p ∈ H0
T , then for a.e. t ∈ [0, T ], p(t) ∈ H0(t), so we may apply the above analysis to find

v(t) ∈ H1(t) so that divA v(t) = p(t) and the bound (2.29) holds with v = v(t) and p = p(t).
We may then square both sides and integrate over t ∈ [0, T ] to deduce that

(2.30) ‖v‖2H1
T

=
∫ T

0
‖v(t)‖2H1 dt .

(
1 + sup

0≤t≤T
‖η(t)‖29/2

)∫ T

0
‖p(t)‖2H0 dt

.

(
1 + sup

0≤t≤T
‖η(t)‖29/2

)
‖v‖2H0

T
.

�

With this lemma in hand, we can show that R(Qt) is a closed subspace of H1(t) and that
R(Q) is a closed subspace of H1

T .

Lemma 2.7. R(Qt) is closed in H1(t), and R(Q) is closed in H1
T .

Proof. For p ∈ H0(t) let v ∈ H1(t) be the solution to divA v = p provided by Lemma 2.6. Then

(2.31) ‖p‖2H0 = (p,divA v)H0 = Qt(v) = (Qtp, v)H1

≤ ‖Qtp‖H1 ‖v‖H1 . ‖Qtp‖H1 (1 + ‖η(t)‖9/2) ‖p‖H0

so that ‖Qtp‖H1 ≤ ‖p‖H0 . (1 + ‖η(t)‖9/2) ‖Qtp‖H1 . Hence R(Qt) is closed in H1(t). A similar
analysis shows that R(Q) is closed in H1

T . �

Now we can perform the orthogonal decomposition of H1(t) and H1
T .

Lemma 2.8. We have that H1(t) = X (t)⊕R(Qt), i.e. X (t)⊥ = R(Qt). Also, H1
T = XT⊕R(Q),

i.e. X⊥T = R(Q).

Proof. By Lemma 2.7, R(Qt) is a closed subspace of H1(t), and so it suffices to prove that
R(Qt)⊥ = X (t).

Let v ∈ R(Qt)⊥. Then for all p ∈ H0(t), we know that

(2.32)
∫

Ω
p divA vJ = Qt(v) = (Qtp, v)H1 = 0,

and hence divA v = 0. This implies that R(Qt)⊥ ⊆ X (t).
Now suppose that v ∈ X (t). Then divA v = 0 implies that

(2.33) 0 =
∫

Ω
p divA vJ = Qt(v) = (Qtp, v)H1

for all p ∈ H0(t). Hence v ∈ R(Qt)⊥, and we see that X (t) ⊆ R(Qt)⊥.
A similar argument shows that H1

T = XT ⊕R(Q). �

This decomposition will eventually allow us to introduce the pressure function. This will be
accomplished by use of the following result.
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Proposition 2.9. If Λt ∈ (H1(t))∗ is such that Λt(v) = 0 for all v ∈ X (t), then there exists a
unique p(t) ∈ H0(t) so that

(2.34) (p(t), divA v)H0 = Λt(v) for all v ∈ H1(t)

and ‖p(t)‖H0 . (1 + ‖η(t)‖9/2) ‖Λt‖(H1(t))∗.
If Λ ∈ (H1

T )∗ is such that Λ(v) = 0 for all v ∈ XT , then there exists a unique p ∈ H0
T so that

(2.35) (p,divA v)H0
T

= Λ(v) for all v ∈ H1
T

and ‖p‖H0
T
. (1 + sup0≤t≤T ‖η(t)‖9/2) ‖Λ‖(H1

T )∗.

Proof. If Λt(v) = 0 for all v ∈ X (t), then the Riesz representation theorem yields the existence
of a unique w ∈ X (t)⊥ so that Λt(v) = (w, v)H1 for all v ∈ H1(t). By Lemma 2.8, w = Qtp(t) for
some p(t) ∈ H0(t). Then Λt(v) = (Qtp(t), v)H1 = (p(t),divA v)H0 for all v ∈ H1(t). By Lemma
2.6, we may find v(t) ∈ H1(t) so that divA v(t) = p(t) and ‖v(t)‖H1 . (1 + ‖η(t)‖9/2) ‖p(t)‖H0 .
Hence

(2.36) ‖p(t)‖2H0 = (p(t), divA v(t))H0 = Λt(v(t)) ≤ ‖Λt‖(H1(t))∗ (1 + ‖η(t)‖9/2) ‖p(t)‖H0 ,

and the desired estimate holds. A similar argument proves the result for Λ ∈ (H1
T )∗ such that

Λ(v) = 0 for all v ∈ XT . �

3. Elliptic estimates

3.1. Preliminary estimates. In studying the elliptic problems in the rest of this section we
will utilize the fact that the equations can be transformed into constant coefficient equations
on the domain Ω′ = Φ(Ω). In order to properly utilize this transformation we must verify
that composition with Φ generates an isomorphism of Hk(Ω′) to Hk(Ω). This type of result is
standard (see the appendix of [9] for a bounded domain, or Lemma 5.2 of [7] and Lemma 6.2
of [29] for domain Rn), but the precise form we need is not readily available in the literature,
so we record it now.

Lemma 3.1. Let Ψ : Ω → Ω′ be a C1 diffeomorphism satisfying ‖1− det∇Ψ‖L∞ ≤ 1/2 and
∇Ψ−I ∈ Hk(Ω) for an integer k ≥ 3. If v ∈ Hm(Ω′), then v◦Ψ ∈ Hm(Ω) for m = 0, 1, . . . , k+1,
and

(3.1) ‖v ◦Ψ‖Hm(Ω) . C(‖∇Ψ− I‖Hk(Ω)) ‖v‖Hm(Ω′)

for C(‖∇Ψ− I‖Hk(Ω)) a constant depending on ‖∇Ψ− I‖Hk(Ω). Similarly, for u ∈ Hm(Ω),
u ◦Ψ−1 ∈ Hm(Ω′) for m = 0, 1, . . . , k + 1, and

(3.2)
∥∥u ◦Ψ−1

∥∥
Hm(Ω′)

. C(‖∇Ψ− I‖Hk(Ω)) ‖u‖Hm(Ω) .

Let Σ′ = Ψ(Σ) denote the upper boundary of Ω′. If v ∈ Hm−1/2(Σ′) for m = 1, . . . , k − 1,
then v ◦Ψ ∈ Hm−1/2(Σ) and

(3.3) ‖v ◦Ψ‖Hm−1/2(Σ) . C(‖∇Ψ− I‖Hk(Ω)) ‖v‖Hm−1/2(Σ′) .

If u ∈ Hm−1/2(Σ) for m = 1, . . . , k − 1, then v ◦Ψ−1 ∈ Hm−1/2(Σ′) and

(3.4)
∥∥u ◦Ψ−1

∥∥
Hm−1/2(Σ′)

. C(‖∇Ψ− I‖Hk(Ω)) ‖u‖Hm−1/2(Σ) .

Proof. The proof of (3.1)–(3.2) is similar to the proofs of the results in [9, 7, 29] mentioned
above, so we present only a sketch. We first prove that for m = 0, 1, 2, it holds that

(3.5) ‖v ◦Ψ‖Hm(Ω) . C(‖∇Ψ− I‖Hk−1(Ω)) ‖v‖Hm(Ω′) .

Such a bound follows easily from the size of k and the bound on det∇Ψ. We then proceed
inductively for m = 3, . . . , k + 1. Suppose the bound (3.5) holds for m = 0, 1, 2, . . . ,m0 for
2 ≤ m0 ≤ k. To show that it holds for m0 + 1 we write x for coordinates in Ω and y for
coordinates in Ω′ and note that

(3.6)
∂

∂xi
(v ◦Ψ)(x) =

∂v

∂yj
◦Ψ(x) · ∂Ψj

∂xi
(x) =

∂v

∂yi
◦Ψ(x) +

∂v

∂yj
◦Ψ(x) ·

(
∂Ψj

∂xi
(x)− Iij

)
.
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By the induction hypothesis, if v ∈ Hm0+1, then

(3.7)
∂v

∂yj
◦Ψ ∈ Hm0 for all j = 1, 2, 3,

and since we have the multiplicative embedding Hm0 ·Hk ↪→ Hm0 for m0 ≥ 2 and k ≥ 3, we
deduce that

(3.8)
∂

∂xi
(v ◦Ψ) ∈ Hm0 for all i = 1, 2, 3,

and hence that v ◦ Ψ ∈ Hm0+1. Moreover, an estimate of the form (3.5) holds. By induction,
we deduce that (3.1) holds. The result (3.2) follow similarly, utilizing the fact that ∇Ψ−1(y) =
(∇Ψ)−1 ◦Ψ−1(y).

We now turn to the proof of (3.3)–(3.4). First note that since Ψ ∈ Hk+1
loc , we have that Σ′

is locally the graph of a Ck−1,1/2 function. As such (cf. [2]), there exists a bounded extension
operator E : Hm−1/2(Σ′) → Hm(Ω′) for m = 1, . . . , k − 1 with the norm of the operator
depending on C(‖∇Ψ− I‖Hk(Ω)). For v ∈ Hm−1/2(Σ′), let V = Ev ∈ Hm(Ω′). By (3.1), we
have that V ◦ Ψ ∈ Hm(Ω), and by the usual trace theory, v ◦ Ψ = V ◦ Ψ|Σ ∈ Hm−1/2(Σ).
Moreover,

(3.9) ‖v ◦Ψ‖Hm−1/2(Σ) . ‖V ◦Ψ‖Hm(Ω) . C(‖∇Ψ− I‖Hk(Ω)) ‖Ev‖Hm(Ω′)

. C(‖∇Ψ− I‖Hk(Ω)) ‖v‖Hm−1/2(Σ′) ,

which is (3.3). The bound (3.4) follows similarly. �

Remark 3.2. It is easy to show, using Lemma A.7 in the periodic case and Lemma A.5 in the
non-periodic case, that if ‖η‖2k+1/2 is sufficiently small for k ≥ 3, then the mapping Φ defined
by (1.7) is a C1 diffeomorphism that satisfies the hypotheses of Lemma 3.1.

We will also need the following H−1/2 boundary estimates for functions satisfying u,divA u ∈
H0(t).

Lemma 3.3. If v ∈ H0(t) and divA v ∈ H0(t), then v · N ∈ H−1/2(Σ), v · ν ∈ H−1/2(Σb) (with
ν the unit normal on Σb), and

(3.10) ‖v · N‖H−1/2(Σ) + ‖v · ν‖H−1/2(Σb) . ‖v‖H0 + ‖divA v‖H0 .

Proof. We will only prove the result on Σ; the result on Σb may be derived in a similar manner,
using the fact that JAν = ν on Σb.

Let ϕ ∈ H1/2(Σ) be a scalar function, and let ϕ̃ ∈ 0H
1(Ω) be a bounded extension. If we

define the vector field w = ϕ̃e1, then a straightforward computation reveals that

(3.11) 2
∫

Ω
|∇Aϕ̃|2 J ≤ ‖w‖2H1 and that ‖w‖2

0H1(Ω) ≤ 4
∫

Ω
|∇ϕ̃|2 ,

which, when combined with Lemma 2.1, implies that ‖ϕ̃‖H0 + ‖∇Aϕ̃‖H0 . ‖ϕ‖H1/2(Σ). Then

(3.12)
∫

Σ
ϕv · N =

∫
Σ
JAijviϕ(ej · e3) =

∫
Ω

divA(vϕ̃)J =
∫

Ω
ϕ̃divA vJ + v · ∇Aϕ̃J

≤ ‖ϕ̃‖H0 ‖divA v‖H0 + ‖v‖H0 ‖∇Aϕ̃‖H0 . ‖ϕ‖H1/2(Σ) (‖v‖H0 + ‖divA v‖H0) .

The desired bound follows from this inequality by taking the supremum over all ϕ so that
‖ϕ‖H1/2(Σ) ≤ 1. �

Remark 3.4. Recall the space Y(t) ⊂ H0(t), defined by (2.5). It can be shown that if v ∈ Y(t),
then divA v = 0 in the weak sense, so that Lemma 3.3 implies that v · N ∈ H−1/2(Σ) and
v · ν ∈ H−1/2(Σb). Moreover, since the elements of Y(t) are orthogonal to each ∇Aϕ for
ϕ ∈ 0H1(Ω), we find that v · ν = 0 on Σb.



LOCAL WELL-POSEDNESS OF THE VISCOUS SURFACE WAVE PROBLEM 15

3.2. The A−Stokes problem. In order to derive the regularity for our solutions to (1.16), we
will first need to study the regularity of the corresponding stationary problem

(3.13)


−∆Au+∇Ap = F 1 in Ω
divA u = F 2 in Ω
SA(p, u)N = F 3 on Σ
u = 0 on Σb.

Since this problem is stationary, we will temporarily ignore the time dependence of η,A, etc.
We are interested in the regularity theory for strong solutions to (3.13), but before discussing

that, we shall mention the weak formulation. Our method of solution is similar to that of
[28, 6, 12]; we utilize Proposition 2.9 to introduce p after first solving a pressureless problem.
Suppose F 1 ∈ (H1)∗, F 2 ∈ H0, F 3 ∈ H−1/2(Σ). We say (u, p) ∈ H1 ×H0 is a weak solution to
(3.13) if divA u = F 2 a.e. in Ω, and

(3.14)
1
2

(u, v)H1 − (p,divA v)H0 = 〈F 1, v〉(H1)∗ − 〈F 3, v〉−1/2 for all v ∈ H1,

where 〈·, ·〉(H1)∗ denotes the dual pairing in H1 and 〈·, ·〉−1/2 denotes the dual pairing between
H−1/2(Σ) and H1/2(Σ).

Proposition 3.5. Suppose F 1 ∈ (H1)∗, F 2 ∈ H0, F 3 ∈ H−1/2(Σ). Then there is exists a
unique weak solution (u, p) ∈ H1 ×H0 to (3.14).

Proof. By Lemma 2.6, there exists a ū ∈ H1 so that divA ū = F 2. We may then switch
unknowns to w = u− ū so that the weak formulation for w is divAw = 0 and

(3.15)
1
2

(w, v)H1 − (p, divA v)H0 = −1
2

(ū, v)H1 + 〈F 1, v〉(H1)∗ − 〈F 3, v〉−1/2 for all v ∈ H1.

To solve for w without p we restrict the test functions to v ∈ X so that the second term on the
left vanishes. A straightforward application of the Riesz representation theorem then provides
a unique w ∈ X satisfying

(3.16)
1
2

(w, v)H1 = −1
2

(ū, v)H1 + 〈F 1, v〉(H1)∗ − 〈F 3, v〉−1/2 for all v ∈ X .

To introduce the pressure, p, we define Λ ∈ (H1)∗ as the difference between the left and right
sides of (3.16). Then Λ(v) = 0 for all v ∈ X , so by Proposition 2.9, there exists a unique p ∈ H0

satisfying (p, divA v)H0 = Λ(v) for all v ∈ H1, which is equivalent to (3.15). �

The regularity gain available for solutions to (3.13) is limited by the regularity of the coef-
ficients of the operators ∆A,∇A, divA, and hence by the regularity of η. In the next result we
establish the strong solvability of (3.13) and present some elliptic estimates, but we do not yet
seek the optimal regularity.

Lemma 3.6. Suppose that η ∈ Hk+1/2(Σ) for k ≥ 3 is as small as in Remark 3.2 so that
the mapping Φ defined by (1.7) is a C1 diffeomorphism of Ω to Ω′ = Φ(Ω). If F 1 ∈ H0(Ω),
F 2 ∈ H1(Ω), and F 3 ∈ H1/2(Σ), then the problem (3.13) admits a unique strong solution
(u, p) ∈ H2(Ω) × H1(Ω), i.e. u, p satisfy (3.13) a.e. in Ω, Σ, and Σb. Moreover, for r =
2, . . . , k − 1 we have the estimate

(3.17) ‖u‖r + ‖p‖r−1 . C(η)
(∥∥F 1

∥∥
r−2

+
∥∥F 2

∥∥
r−1

+
∥∥F 3

∥∥
r−3/2

)
,

whenever the right hand side is finite, where C(η) is a constant depending on ‖η‖k+1/2.

Proof. We transform the problem (3.13) to one on Ω′ = Φ(Ω) by introducing the unknowns v, q
according to u = v ◦Φ, p = q ◦Φ. Then v, q should be solutions to the usual Stokes problem on
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Ω′ = {−b(y1, y2) ≤ y3 ≤ η(y1, y2)} with upper boundary Σ′ = {y3 = η}:

(3.18)


−∆v +∇q = G1 = F 1 ◦ Φ−1 in Ω′

div v = G2 = F 2 ◦ Φ−1 in Ω′

(qI − Dv)N = G3 = F 3 ◦ Φ−1 on Σ′

v = 0 on Σb.

Note that, according to Lemma 3.1, G1 ∈ H0(Ω′), G2 ∈ H1(Ω′), and G3 ∈ H1/2(Σ′). We claim
that there exist unique v ∈ H2(Ω′), q ∈ H1(Ω′), solving problem (3.18) with

(3.19) ‖v‖H2(Ω′) + ‖q‖H1(Ω′) . C(η)
(∥∥G1

∥∥
H0(Ω′)

+
∥∥G2

∥∥
H1(Ω′)

+
∥∥G3

∥∥
H1/2(Σ′)

)
,

for C(η) a constant depending on ‖η‖k+1/2. Let us assume for the moment that the claim is
true; we first show how (3.17) follows from the claim, and then turn to its proof.

To go from H2 × H1 to higher regularity, we appeal to the theory of elliptic systems with
complementary boundary conditions, developed in [4]. It is well-known that the Stokes system
(3.18) is such an elliptic system. Theorem 10.5 of [4] provides estimates in bounded domains,
but we may argue as in Lemma 3.3 of [6] to transform the localized estimates into estimates
in all of Ω′, provided that the boundary Σ′ is sufficiently smooth. In order for estimates of the
form (3.17) to hold for r = 2, . . . , k − 1, [4] requires that Σ′ be Ck−1, which is satisfied since
η ∈ Ck−1,1/2(Σ). Hence, for r = 2, . . . , k − 1,

(3.20) ‖v‖Hr(Ω)′ + ‖q‖Hr−1(Ω′) . C(η)
(∥∥G1

∥∥
Hr−2(Ω′)

+
∥∥G2

∥∥
Hr−1(Ω)′

+
∥∥G3

∥∥
Hr−3/2(Σ′)

)
,

for C(η) a constant depending on ‖η‖k+1/2, whenever the right side is finite.
We now transform back to Ω with u = v ◦ Φ, p = q ◦ Φ. It is readily verified that u, p are

strong solutions of (3.13). Since Φ satisfies ∇Φ− I ∈ Hk, Lemma 3.1 and (3.20) imply that

(3.21) ‖u‖r + ‖p‖r−1 . C(η)
(∥∥F 1

∥∥
r−2

+
∥∥F 2

∥∥
r−1

+
∥∥F 3

∥∥
r−3/2

)
.

for r = 2, . . . , k − 1 whenever the right side is finite. This is (3.17).
We now turn to the proof of the above claim, which employs ideas from [6]. To demonstrate

the existence of H2×H1 solutions of (3.18), we first consider the special case in which G2 = 0,
G3 = 0, and G1 ∈ H0(Ω′) is arbitrary. In this case, we may argue as in Lemma 3.3 of [6] (which
in turn invokes [28]) to deduce the existence of a unique solution to (3.18) satisfying (3.19) with
G2 = 0, G3 = 0.

To handle the case of non-vanishing G2 and G3, we construct some special auxiliary functions
that allow us to reduce to the special case. First, there exists a v1 ∈ H2(Ω′) ∩ 0H

1(Ω′) so that
div v1 = G2 ∈ H1(Ω′) and

(3.22)
∥∥v1
∥∥
H2(Ω′)

.
∥∥G2

∥∥
H1(Ω′)

.

The existence of v1 may be established as in Lemma 3.3 and Section 4 of [6]. To deal with the
boundary term G3 we first need some projections. For a vector field X : Σ′ → R3 let us write
ΠX for the vector field so that ΠX(y) is the orthogonal projection of X(y) onto the space of
vectors orthogonal to N (y), and let us write Π⊥X(y) for the orthogonal projection onto the
line generated by N (y). Our second special function is v2 ∈ H2(Ω′) ∩ 0H

1
σ(Ω′) that satisfies

Π(−Dv2N ) = Π(G3 + Dv1N ) and

(3.23)
∥∥v2
∥∥
H2(Ω′)

. C(η)
(∥∥G3 + Dv1N

∥∥
H1/2(Σ′)

)
. C(η)

(∥∥G2
∥∥
H1(Ω′)

+
∥∥G3

∥∥
H1/2(Σ′)

)
.

The construction of v2 may be carried out through a simple modification of the proof of Lemma
4.2 in [6], working in Sobolev spaces defined on Ω′ rather than Ω′ × (0, T ). The third special
function is q1 ∈ H1(Ω′) that satisfies q|Σ′ = Π⊥(G3 + Dv1N ) and

(3.24)
∥∥q1
∥∥
H1(Ω′)

. C(η)
(∥∥G3 + Dv1N

∥∥
H1/2(Σ′)

)
. C(η)

(∥∥G2
∥∥
H1(Ω′)

+
∥∥G3

∥∥
H1/2(Σ′)

)
.

The existence of q1 follows from the usual trace and extension theory since G3 + Dv1N ∈
H1/2(Σ′).
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Now, with v1, v2 and q1 in hand, we reduce the solvability of (3.18) with the estimate (3.19)
to the special case discussed above. The construction of these special functions guarantees that
w = v − v1 − v2, Q = q − q1 should satisfy

(3.25)


−∆w +∇Q = G1 + ∆v1 + ∆v2 −∇p2 ∈ H0(Ω′) in Ω′

divw = 0 in Ω′

(QI − Dw)N = 0 on Σ′

w = 0 on Σb.

As above, there exist unique w,Q solving this so that

(3.26) ‖w‖H2(Ω′) + ‖Q‖H1(Ω′) . C(η)
∥∥G1 + ∆v1 + ∆v2 −∇p2

∥∥
H0(Ω′)

.

The existence of unique v, q solving (3.18) is immediate, and the estimate (3.19) follows by
combining (3.26) with (3.22)–(3.24), finishing the proof of the claim.

�

It turns out that we can achieve somewhat more of a regularity gain than is mentioned in
Lemma 3.6 by making a smallness assumption on η. The smallness allows us to view the problem
(3.13) as a perturbation of the Stokes problem on Ω. For this problem there is no constraint to
regularity gain since the coefficients are constant and the boundary is smooth. This allows us
to shift the constraint of regularity gain to the regularity of η in Hk+1/2 rather than in Ck−1.
We note that although we require η ∈ Hk+1/2, the smallness assumption is written in terms of
‖η‖k−1/2.

Proposition 3.7. Let k ≥ 4 be an integer and suppose that η ∈ Hk+1/2. There exists ε0 > 0
so that if ‖η‖k−1/2 ≤ ε0, then solutions to (3.13) satisfy

(3.27) ‖u‖r + ‖p‖r−1 ≤ C
(∥∥F 1

∥∥
r−2

+
∥∥F 2

∥∥
r−1

+
∥∥F 3

∥∥
r−3/2

)
for r = 2, . . . , k, whenever the right side is finite. Here C is a constant that does not depend on
η.

In the case r = k + 1, solutions to (3.13) satisfy

(3.28) ‖u‖k+1 + ‖p‖k ≤ C
(∥∥F 1

∥∥
k−1

+
∥∥F 2

∥∥
k

+
∥∥F 3

∥∥
k−1/2

)
+ C ‖η‖k+1/2

(∥∥F 1
∥∥

2
+
∥∥F 2

∥∥
3

+
∥∥F 3

∥∥
5/2

)
.

Proof. In the case that Σ = R2, we let ρ ∈ C∞c (R2) be such that supp(ρ) ⊂ B(0, 2) and ρ(x) = 1
for x ∈ B(0, 1). For m ∈ N define ηm by Fηm(ξ) = ρ(ξ/m)Fη(ξ), where F denotes the Fourier
transform. Clearly, for each m, ηm ∈ Hj(Σ) for all j ≥ 0, and also ηm → η in Hk−1/2(Σ)
(and in Hk+1/2(Σ) if η ∈ Hk+1/2(Σ)) as m → ∞. In the periodic case, we similarly define ηm

by throwing away high frequencies: Fηm(n) = 0 for |n| ≥ m. In this case ηm has the same
convergence properties as before. Let Am and Nm be defined in terms of ηm. Initially let ε0 be
small enough so that ηm is as small as in Remark 3.2. This allows the mapping Φm defined by
ηm to be a C1 diffeomorphism.

Consider the problem (3.13) with A and N replaced with Am and Nm. Since ηm ∈
Hk+5/2(Σ), we may apply Lemma 3.6 to deduce the existence of a unique pair (um, pm) that
solve (3.13) (with Am,Nm) and that satisfy

(3.29) ‖um‖r + ‖pm‖r−1 . C(‖ηm‖k+5/2)
(∥∥F 1

∥∥
r−2

+
∥∥F 2

∥∥
r−1

+
∥∥F 3

∥∥
r−3/2

)
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for r = 2, . . . , k + 1, whenever the right hand side is finite. We rewrite the equations (3.13) as
a perturbation of the usual Stokes equations on Ω:

(3.30)


−∆um +∇pm = F 1 +G1,m in Ω
div um = F 2 +G2,m in Ω
(pmI − Dum)e3 = F 3 +G3,m on Σ
um = 0 on Σb.

Suppose that ‖ηm‖k+1/2 ≤ 1, which implies that ‖ηm‖`k+1/2 ≤ ‖ηm‖k+1/2 for any ` ≥ 1. This
fact and a straightforward calculation reveal that∥∥G1,m

∥∥
r−2
≤ C ‖ηm‖k−1/2

(
‖um‖r + ‖pm‖r−1

)
,∥∥G2,m

∥∥
r−1
≤ C ‖ηm‖k−1/2 ‖u

m‖r ,
(3.31)

and

(3.32)
∥∥G3,m

∥∥
Hr−3/2(Σ)

≤ C ‖ηm‖k−1/2

(
‖um‖Hr−1/2(Σ) + ‖pm‖Hr−3/2(Σ)

)
≤ C ‖ηm‖k−1/2

(
‖um‖r + ‖pm‖r−1

)
for r = 2, . . . , k and a constant C > 0 independent of η and m. In the case r = k + 1 a minor
variant of this argument shows that

(3.33)
∥∥G1,m

∥∥
k−1

+
∥∥G2,m

∥∥
k

+
∥∥G3,m

∥∥
Hk−1/2(Σ)

≤ C ‖ηm‖k−1/2

(
‖um‖k−1 + ‖pm‖k

)
+ C ‖ηm‖k+1/2 ‖u

m‖7/2
for C independent of η and m. The key to this variant is that nowhere in the terms Gi,m do
there occur products of the highest derivative count of both ηm and um (or pm). Note that the
right sides of (3.31), (3.32), and (3.33) are finite by virtue of the estimate (3.29).

Since the boundaries Σ and Σb are smooth and the problem (3.30) has constant coefficients,
we may argue as in Lemma 3.6, employing the elliptic estimates of [4] as done in Lemma 3.3 of
[6], to arrive at the estimate

(3.34) ‖um‖r + ‖pm‖r−1 ≤ C
(∥∥F 1 +G1,m

∥∥
r−2

+
∥∥F 2 +G2,m

∥∥
r−1

+
∥∥F 3 +G3,m

∥∥
r−3/2

)
for r = 2, . . . , k+ 1 and for C > 0 independent of η and m. We may then combine (3.31)–(3.32)
with (3.34) to find that, if ‖ηm‖k−1/2 ≤ 1, then

(3.35) ‖um‖r + ‖pm‖r−1 ≤ C
(∥∥F 1

∥∥
r−2

+
∥∥F 2

∥∥
r−1

+
∥∥F 3

∥∥
r−3/2

)
+ C ‖ηm‖k−1/2

(
‖um‖r + ‖pm‖r−1

)
+ δr,k+1C ‖ηm‖k+1/2 ‖u

m‖7/2 .

On the right side of (3.35) we have written δr,k+1 for the quantity that vanishes when r 6= k+ 1
and is unity when r = k + 1.

We now derive the estimate (3.27). Since ηm → η in Hk−1/2 we may assume that m is
sufficiently large so that ‖ηm‖k−1/2 ≤ 2 ‖η‖k−1/2. Then if

(3.36) ‖η‖k−1/2 ≤ min
{

1
4C

,
1
2

}
:= ε0

for C > 0 the constant appearing on the right side of (3.35), the bound (3.35) may be rearranged
to get

(3.37) ‖um‖r + ‖pm‖r−1 ≤ 2C
(∥∥F 1

∥∥
r−2

+
∥∥F 2

∥∥
r−1

+
∥∥F 3

∥∥
r−3/2

)
,

for r = 2, . . . , k when the right side is finite.
The bound (3.37) implies that the sequence {um, pm} is uniformly bounded in Hr ×Hr−1,

so up to the extraction of a subsequence, um ⇀ u0 weakly in Hr(Ω) and pm ⇀ p0 weakly
in Hr−1(Ω). Since ηm → η in Hk−1/2(Σ), we also have that Am − A → 0, Jm − J → 0 in
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Hk−1(Ω), and Nm − N → 0 in Hk−3/2(Σ). We multiply the equation divA um = F 2 by Jmw
for w ∈ C∞c (Ω) to see that

(3.38)
∫

Ω
F 2wJm =

∫
Ω

divAm(um)wJm

= −
∫

Ω
um · ∇AmwJm → −

∫
Ω
u0 · ∇AwJ =

∫
Ω

divA(u0)wJ,

from which we deduce that divA(u0) = F 2. Then we multiply the first equation in (3.13) (with
um, etc) by wJm for w ∈ 0H

1(Ω) and integrate by parts to see that

(3.39)
∫

Ω

1
2

DAmum : DAmwJm − pm divAm(w)Jm =
∫

Ω
F 1 · wJm −

∫
Σ
F 3 · w.

Passing to the limit m→∞, we deduce that

(3.40)
∫

Ω

1
2

DAu0 : DAwJ − p0 divAwJ =
∫

Ω
F 1 · wJ −

∫
Σ
F 3 · w,

which reveals, upon integrating by parts again, that u0, p0 satisfy (3.13). Since u, p are the
unique solutions to (3.13), we have that u = u0, p = p0. This, weak lower semi-continuity, and
the bound (3.37) imply (3.27).

Now we derive the estimate (3.28), supposing that F 1 ∈ Hk−1, F 2 ∈ Hk, and F 3 ∈ Hk−1/2.
The bound (3.37) with r = 4 implies that

(3.41) ‖um‖4 ≤ 2C
(∥∥F 1

∥∥
2

+
∥∥F 2

∥∥
3

+
∥∥F 3

∥∥
5/2

)
<∞.

Since ηm → η in Hk+1/2, we are free to assume that m is sufficiently large so that ‖ηm‖k+1/2 ≤
2 ‖η‖k+1/2. Then if ‖η‖k−1/2 ≤ ε0 we may use (3.35) and (3.41) to deduce that

(3.42) ‖um‖k+1 + ‖pm‖k ≤ 2C
(∥∥F 1

∥∥
k−1

+
∥∥F 2

∥∥
k

+
∥∥F 3

∥∥
k−1/2

)
+ 4C ‖η‖k+1/2

(∥∥F 1
∥∥

2
+
∥∥F 2

∥∥
3

+
∥∥F 3

∥∥
5/2

)
.

We may then argue as above to extract weak limits, show that the limits equal u and p, and
then deduce that the bound (3.42) holds with um and pm replaced by u and p. This is (3.28).

�

3.3. The A−Poisson problem. Next we consider the scalar elliptic problem

(3.43)


∆Ap = f1 in Ω
p = f2 on Σ
∇Ap · ν = f3 on Σb,

where ν is the outward-pointing normal on Σb. We will eventually discuss the strong solvability
of this problem, but first we consider the weak formulation of the problem. We define a scalar
H1 in a natural way through the norm

(3.44) ‖f‖2H1 =
∫

Ω
J |∇Af |2 .

Note that ‖f‖2H1 =
∥∥√2fe1

∥∥
H1 , where the right side is the H1 norm for vectors. Then Lemma

2.1 shows that this scalar norm generates the same topology as the usual scalar H1 norm.
For the weak formulation we suppose f1 ∈ (0H1(Ω))∗, f2 ∈ H1/2(Σ), and f3 ∈ H−1/2(Σb).

Let p̄ ∈ H1(Ω) be an extension of f2 so that supp(p̄) ⊂ {−(inf b)/2 < x3 ≤ 0}. We switch
unknowns to q = p−p̄. Then we can define a weak formulation of (3.43) by finding a q ∈ 0H1(Ω)
so that

(3.45) (q, ϕ)H1 = − (p̄, ϕ)H1 − 〈f1, ϕ〉∗ + 〈f3, ϕ〉−1/2 for all ϕ ∈ 0H1(Ω),
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where 〈·, ·〉∗ is the dual pairing with 0H1(Ω) and 〈·, ·〉−1/2 is the dual pairing with H1/2(Σb).
The existence and uniqueness of a solution to (3.45) follows from standard arguments, and the
resulting p = q + p̄ ∈ H1(Ω) satisfies

(3.46) ‖p‖2H1 .
(∥∥f1

∥∥2

(0H1(Ω))∗
+
∥∥f2

∥∥2

H1/2(Σ)
+
∥∥f3

∥∥2

H−1/2(Σb)

)
.

In the event that the action of f1 is given in a more specific fashion, we will rewrite the PDE
(3.43) to accommodate the structure of f1. To make this precise, suppose that the action of f1

on an element ϕ ∈ 0H1(Ω) is given by

(3.47) 〈f1, ϕ〉∗ = (g0, ϕ)H0 + (G,∇Aϕ)H0

for (g0, G) ∈ H0(Ω; R) × H0(Ω; R3) with ‖g0‖20 + ‖G‖20 =
∥∥f1

∥∥2

(0H1(Ω))∗ (standard arguments
show that it is always possible to uniquely write f1 in this way). Then (3.45) may be rewritten
as

(3.48) (∇Ap+G,∇Aϕ)H0 = − (g0, ϕ)H0 + 〈f3, ϕ〉−1/2 for all ϕ ∈ 0H1(Ω).

We may take ϕ ∈ C∞c (Ω) in this equality and integrate by parts to see that divA(∇Ap+G) =
g0 ∈ H0, which allows us to deduce from Lemma 3.3 that (∇Ap + G) · ν ∈ H−1/2(Σb). This
serves as motivation for us to say that p is a weak solution to the PDE

(3.49)


divA(∇Ap+G) = g0 ∈ H0(Ω)
p = f2 ∈ H1/2(Σ)
(∇Ap+G) · ν = f3 ∈ H−1/2(Σb).

This way of writing the weak solution will be utilized later in Theorem 4.3. Note that when
f1 ∈ H0(Ω), there is no need to make this distinction since then G = 0 and f1 = g0.

Our next result on this problem is the analogue of Lemma 3.6; it establishes the strong
solvability of (3.43) and some regularity.

Lemma 3.8. Suppose that η ∈ Hk+1/2(Σ) for k ≥ 3 is as small as in Remark 3.2 so that
the mapping Φ defined by (1.7) is a C1 diffeomorphism of Ω to Ω′ = Φ(Ω). If f1 ∈ H0(Ω),
f2 ∈ H3/2(Σ), and f3 ∈ H1/2(Σb), then the problem (3.43) admits a unique strong solution
p ∈ H2(Ω). Moreover, for r = 2, . . . , k − 1 we have the estimate

(3.50) ‖p‖r . C(η)
(∥∥f1

∥∥
r−2

+
∥∥f2

∥∥
r−1/2

+
∥∥f3

∥∥
r−3/2

)
,

whenever the right hand side is finite, where C(η) is a constant depending on ‖η‖k+1/2.

Proof. If f2 ∈ Hr−1/2(Σ) for r = 2, . . . , k − 1, there exists a ψ ∈ Hr(Ω) so that ψ|Σ = f2,
supp(ψ) ⊂ {−(inf b)/2 < x3 ≤ 0}, and ‖ψ‖r .

∥∥f2
∥∥
r−1/2

. Writing p = q + ψ, the problem
(3.43) may be rewritten for the unknown q as

(3.51)


∆Aq = f1 + g1 in Ω
q = 0 on Σ
∇Aq · ν = f3 on Σb,

where g1 = −∆Aψ ∈ Hr−2.
The problem (3.51) may be solved as in Lemma 3.6 by transforming to the domain Ω′, where

the problem for Q = q ◦ Φ−1 becomes ∆Q = (f1 + g1) ◦ Φ−1 in Ω′ with boundary conditions
Q = 0 on Σ′ and ∇Q · ν = f3 ◦ Φ−1 on Σb. The existence of a unique solution to this problem
is established in the non-periodic case in Lemma 2.8 of [6], and estimates of the form (3.50) for
Q hold by virtue of the elliptic estimates in [3], adapted to Ω′ as in [6]. This method may be
adapted easily to the periodic case as well. Then the existence and uniqueness of a solution to
(3.43) satisfying (3.50) follows by transforming to q = Q ◦ Φ on Ω for a solution to (3.51) and
then applying Lemma 3.1. �
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Our next result is the analogue of Proposition 3.7 for the problem (3.43). For our purposes,
we only need a regularity gain up to k, and this is less important than the estimate in terms of
a constant independent of η. Notice again that the smallness assumption is stated in Hk−1/2

even though we require η ∈ Hk+1/2.

Proposition 3.9. Let k ≥ 4 be an integer and suppose that η ∈ Hk+1/2. There exists ε0 > 0
so that if ‖η‖k−1/2 ≤ ε0, then solutions to (3.43) satisfy

(3.52) ‖p‖r ≤ C
(∥∥f1

∥∥
r−2

+
∥∥f2

∥∥
r−1/2

+
∥∥f3

∥∥
r−3/2

)
for r = 2, . . . , k, whenever the right side is finite. Here C is a constant that does not depend on
η.

Proof. The proof is similar to that of Proposition 3.7. We smooth η to get ηm and solve (3.43)
with A replaced with Am. Then we rewrite the problem as a perturbation of the Poisson
problem

(3.53)


∆pm = f1 + g1,m in Ω
pm = f2 on Σ
∇pm · ν = f3 + g3,mon Σb.

The constants in the elliptic estimates for this problem do not depend on ηm, and we may
estimate gi,m in terms of pm. Then if ‖η‖k−1/2 ≤ ε0 for some ε0 sufficiently small, we can
absorb the highest Sobolev norms on the right side of the elliptic estimate into the left side,
and we deduce (3.52) for pm. Then we pass to the limit m→∞.

�

4. Solving the time-dependent problem (1.16)

4.1. The weak solution. In our analysis of problem (1.16) we will employ two notions of
solution: weak and strong. The definition of a weak solution to (1.16) is motivated by assuming
the existence of a smooth solution to (1.16), multiplying by Jv for v ∈ H1

T , integrating over Ω
by parts, and then in time from 0 to T to see that

(4.1) (∂tu, v)H0
T

+
1
2

(u, v)H1
T
− (p,divA v)H0

T
=
(
F 1, v

)
H0

T
−
(
F 3, v

)
0,Σ,T

for
(
F 3, v

)
0,Σ,T

=
∫ T

0

∫
Σ F

3 · v. Suppose that

(4.2) F 1 ∈ (H1
T )∗, F 3 ∈ L2([0, T ];H−1/2(Σ)), and u0 ∈ Y(0),

where Y(0) is defined by 2.5. Then our definition of a weak solution of (1.16) requires only that
a relaxed form of (4.1) holds. In particular, we say that (u, p) is a weak solution of (1.16) if

(4.3)


u ∈ XT , ∂tu ∈ (H1

T )∗, p ∈ H0
T ,

〈∂tu, v〉∗ + 1
2 (u, v)H1

T
− (p,divA v)H0

T
= 〈F 1, v〉∗ − 〈F 3, v〉−1/2 for every v ∈ H1

T ,

u(0) = u0,

where 〈·, ·〉∗ denotes the dual pairing between (H1
T )∗ and H1

T , and 〈·, ·〉−1/2 denotes the dual
pairing between L2([0, T ];H−1/2(Σ)) and L2([0, T ];H1/2(Σ)). The third condition in (4.3) only
makes sense in light of Lemma 2.4.

If we were to restrict our class of test functions in (4.3) to v ∈ XT , then the term (p,divA v)H0
T

would vanish, and we would be left with a “pressureless” weak formulation of the problem
involving only the velocity field. This leads us to define a weak formulation without the pressure.
Suppose the data satisfy (4.2). Then u is a pressureless weak solution of (1.16) if

(4.4)


u ∈ XT , ∂tu ∈ (H1

T )∗,
〈∂tu, ψ〉∗ + 1

2 (u, ψ)H1
T

= 〈F 1, ψ〉∗ − 〈F 3, ψ〉−1/2 for every ψ ∈ XT ,
u(0) = u0.
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A more natural assumption for this formulation would be to require ∂tu ∈ (XT )∗. However, since
XT ⊂ H1

T , the usual theory of Hilbert spaces provides a unique operator E : (XT )∗ → (H1
T )∗

with the property that Ef |XT
= f and ‖Ef‖(H1

T )∗ = ‖f‖(XT )∗ for all f ∈ (XT )∗. Using this E,
we regard ∂tu ∈ (XT )∗ as an element of (H1

T )∗ in a natural way, which allows us to require that
∂tu ∈ (H1

T )∗.
Since our aim is to construct solutions to (1.16) with high regularity, we will not need to

directly construct weak solutions to (4.4) or (4.3). Rather, weak solutions to problems of this
type will arise as a byproduct of our construction of strong solutions of (1.16). As such, for our
purposes, it will suffice to ignore the issue of existence and only record a couple results on the
properties of weak solutions.

We now record a result on some integral equalities and bounds satisfied by solutions of (4.4).

Lemma 4.1. Suppose that u is a weak solution of (4.4). Then for a.e. t ∈ [0, T ],

(4.5)
1
2
‖u(t)‖2H0(t) +

1
2

∫ t

0
‖u(s)‖2H1(s) ds =

1
2
‖u(0)‖2H0(0) +

∫ t

0
〈F 1(s), u(s)〉(H1(s))∗ds

−
∫ t

0
〈F 3(s), u(s)〉H−1/2(Σ)ds+

1
2

∫ t

0

∫
Ω
|u(s)|2 ∂tJ(s)ds.

Also

(4.6) sup
0≤t≤T

‖u(t)‖2H0(t) + ‖u‖2H1
T
. exp (C0(η)T )

(
‖u(0)‖2H0(0) +

∥∥F 1
∥∥2

(H1
T )∗

+
∥∥F 3

∥∥2

L2H−1/2

)
,

where C0(η) := sup0≤t≤T ‖∂tJK‖L∞ .

Proof. The identity (4.5) follows directly from (4.4) and Lemma 2.4 by using the test function
ψ = uχ[0,t] ∈ XT , where χ[0,t] is a temporal indicator function equal to unity on the interval
[0, t].

From (4.5) it is straightforward to derive the inequality

(4.7)
1
2
‖u(t)‖2H0(t) +

1
2
‖u‖2H1

t
≤ 1

2
‖u(0)‖2H0(0) +

∥∥F 1
∥∥

(H1
t )∗
‖u‖H1

t

+
∥∥F 3

∥∥
L2([0,t];H−1/2)

‖u‖L2([0,t];H1/2) +
C0(η)

2
‖u‖2H0

t
,

where we have written

(4.8) ‖u‖2Hk
t

=
∫ t

0
‖u(s)‖2Hk(s) ds for k = 0, 1,

and similarly defined
∥∥F 1

∥∥
(H1

t )∗
. Note that, according to Remark 2.3, we have the estimate

‖u‖H1/2(Σ) ≤ C ‖u‖H1 for a constant C independent of η. This, inequality (4.7), and Cauchy’s
inequality then imply that

(4.9)
1
2
‖u(t)‖2H0(t) +

1
8
‖u‖2H1

t
≤ 1

2
‖u(0)‖2H0(0) + 2

∥∥F 1
∥∥2

(H1
t )∗

+ 2C
∥∥F 3

∥∥2

L2([0,t];H−1/2)
+
C0(η)

2
‖u‖2H0

t
.

Then (4.6) follows from the differential inequality (4.9) and Gronwall’s lemma. �

We can now parlay the results of Lemma 4.1 into uniqueness results for weak solutions to
(4.4) and (4.3).

Proposition 4.2. Weak solutions to (4.4) are unique. Also, weak solutions (u, p) to (4.3) are
unique.

Proof. If u1 and u2 are both weak solutions to (4.4), then w = u1 − u2 is a weak solution with
F 1 = 0, F 3 = 0, and w(0) = u1(0) − u2(0) = 0. Then the bound (4.6) of Lemma 4.1 implies
that w = 0; hence solutions to (4.4) are unique.
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Now, if (u, p) are a weak solution to (4.3), then we can restrict to test functions ψ ∈ XT to
find that u is a weak solution to (4.4). As such, u is unique. To see that p is unique we define
Λ ∈ (H1

T )∗ via

(4.10) Λ(v) = 〈∂tu, v〉∗ +
1
2

(u, v)H1
T
− 〈F 1, v〉∗ + 〈F 3, v〉−1/2.

Since u is a weak solution to (4.4), we have that Λ(v) = 0 for all v ∈ XT . Proposition 2.9 them
implies that there exists a unique q ∈ H0

T so that (q,divA v)H0
T

= Λ(v) for all v ∈ H1
T . It follows

that q = p and that p is unique.
�

4.2. The strong solution. Now we turn to the construction of strong solutions to (1.16). We
will make stronger assumptions on the data F 1, F 3, u0 than we made in the weak formulation
(4.2). In particular, we will assume that the forcing functions satisfy

F 1 ∈ L2([0, T ];H1(Ω)), ∂tF 1 ∈ L2([0, T ]; (0H
1(Ω))∗),

F 3 ∈ L2([0, T ];H3/2(Σ)), ∂tF 3 ∈ L2([0, T ];H−1/2(Σ)),

F 1(0) ∈ H0(Ω), F 3(0) ∈ H1/2(Σ).

(4.11)

Note that, owing to Lemma 2.4, (4.11) implies that F 1 ∈ C0([0, T ];H0(Ω)) and that F 3 ∈
C0([0, T ];H1/2(Σ)). The initial data will also be taken to be more regular; we take u0 ∈
H2(Ω) ∩ X (0).

The solution that we construct will satisfy (1.16) in the strong sense, but we will also show
that (Dtu, ∂tp) satisfy an equation of the form (1.16) in the weak sense of (4.3). Here we define

(4.12) Dtu := ∂tu−Ru for R := ∂tMM−1

with M the matrix defined by (2.22). We employ the operator Dt because it preserves the
divA−free condition. Before turning to the result, we define the quantity

(4.13) K(η) := sup
0≤t≤T

(
‖η‖29/2 + ‖∂tη‖27/2 +

∥∥∂2
t η
∥∥2

5/2

)
.

We also define an orthogonal projection onto the tangent space of the surface {x3 = η0} ac-
cording to

(4.14) Π0v = v − (v · N0)N0 |N0|−2

for N0 = (−∂1η0,−∂2η0, 1). By construction, Π0v = 0 if and only if v ‖ N0.

Theorem 4.3. Suppose that F 1, F 3 satisfy (4.11), that u0 ∈ H2(Ω)∩X (0), and that u0, F 3(0)
satisfy the compatibility condition

(4.15) Π0

(
F 3(0) + DA0u0N0

)
= 0,where N0 = (−∂1η0,−∂2η0, 1),

and Π0 is the projection defined by (4.14). Further suppose that K(η) is less than the smaller of
ε0 from Lemma 2.1 and ε0 from Proposition 3.7 (in particular, this requires K(η) ≤ 1). Then
there exists a unique strong solution (u, p) to (1.16) so that

u ∈ XT ∩ C0([0, T ];H2(Ω)) ∩ L2([0, T ];H3(Ω)),

∂tu ∈ C0([0, T ];H0(Ω)) ∩ L2([0, T ];H1(Ω)), ∂2
t u ∈ (H1

T )∗,

p ∈ C0([0, T ];H1(Ω)) ∩ L2([0, T ];H2(Ω)), ∂tp ∈ L2([0, T ];H0(Ω)).

(4.16)

The solution satisfies the estimate

(4.17) ‖u‖2L∞H2 + ‖u‖2L2H3 + ‖∂tu‖2L∞H0 + ‖∂tu‖2L2H1 +
∥∥∂2

t u
∥∥2

(H1
T )∗

+ ‖p‖2L∞H1 + ‖∂tp‖2L2H0

. (1 +K(η)) exp (C(1 +K(η))T )
(
‖u0‖22 +

∥∥F 1(0)
∥∥2

0
+
∥∥F 3(0)

∥∥2

1/2

+
∥∥F 1

∥∥2

L2H1 +
∥∥∂tF 1

∥∥2

L2(0H1(Ω))∗
+
∥∥F 3

∥∥2

L2H3/2 +
∥∥∂tF 3

∥∥2

L2H−1/2

)
,
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where C is a constant independent of η. The initial pressure, p(0) ∈ H1(Ω), is determined in
terms of u0, F

1(0), F 3(0) as the weak solution to

(4.18)


divA0(∇A0p(0)− F 1(0)) = −divA0(R(0)u0) ∈ H0(Ω)
p(0) = (F 3(0) + DA0u0N0) · N0 |N0|−2 ∈ H1/2(Σ)
(∇A0p(0)− F 1(0)) · ν = ∆A0u0 · ν ∈ H−1/2(Σb)

in the sense of (3.49). Also, Dtu(0) = ∂tu(0)−R(0)u0 satisfies

(4.19) Dtu(0) = ∆A0u0 −∇A0p(0) + F 1(0)−R(0)u0 ∈ Y(0),

where Y(0) is defined by (2.5).
Moreover, (Dtu, ∂tp) satisfy

(4.20)


∂t(Dtu)−∆A(Dtu) +∇A(∂tp) = DtF

1 +G1 in Ω
divA(Dtu) = 0 in Ω
SA(∂tp,Dtu)N = ∂tF

3 +G3 on Σ
Dtu = 0 on Σb,

in the weak sense of (4.3), where G1, G3 are defined by

(4.21) G1 = −(R+∂tJK)∆Au−∂tRu+(∂tJK+R−RT )∇Ap+divA(DA(Ru)+RDAu+D∂tAu)

with RT denoting the matrix transpose of R, and

(4.22) G3 = DA(Ru)N − (pI − DAu)∂tN + D∂tAuN .
Here the inclusions (4.16) guarantee that G1 and G3 satisfy the same inclusions as F 1, F 3 listed
in (4.11), whereas (4.18) guarantees that the initial data Dtu(0) ∈ Y(0).

Proof. The result will be established by first solving a pressureless problem and then introducing
the pressure via Proposition 2.9. For the pressureless problem we will make use of the Galerkin
method. We divide the proof into several steps.

Step 1 – The Galerkin setup
In order to utilize the Galerkin method, we must first construct a countable basis of H2(Ω)∩

X (t) for each t ∈ [0, T ]. Since the requirement divA v = 0 is time-dependent, any basis of this
space must also be time-dependent. For each t ∈ [0, T ], the space H2(Ω)∩X (t) is separable, so
the existence of a countable basis is not an issue. The technical difficulty is that, in order for
the basis to be useful in the Galerkin method, we must be able differentiate the basis elements
in time, and we must be able to express these time derivatives in terms of finitely many basis
elements. Fortunately, it is possible to overcome this difficulty by employing the matrix M(t),
defined by (2.22).

Since H2(Ω) ∩ 0H
1
σ(Ω) is separable, it possesses a countable basis {wj}∞j=1. Note that this

basis is not time-dependent. Define ψj = ψj(t) := M(t)wj . According to Proposition 2.5,
ψj(t) ∈ H2(Ω) ∩ X (t), and {ψj(t)}∞j=1 is a basis of H2(Ω) ∩ X (t) for each t ∈ [0, T ]. Moreover,

(4.23) ∂tψ
j(t) = ∂tM(t)wj = ∂tM(t)M−1(t)M(t)wj = ∂tM(t)M−1(t)ψj(t) := R(t)ψj(t),

which allows us to express ∂tψj in terms of ψj . For any integer m ≥ 1 we define the finite di-
mensional space Xm(t) := span{ψ1(t), . . . , ψm(t)} ⊂ H2(Ω)∩X (t), and we write Pmt : H2(Ω)→
Xm(t) for the H2(Ω) orthogonal projection onto Xm(t). Clearly, for each v ∈ H2(Ω) ∩ X (t) we
have that Pmt v → v as m→∞.

The next ingredient needed for the Galerkin method is the orthogonal projection onto the
tangent space of the surface {x3 = η(0)}, Π0, defined by (4.14). This projection will be used to
compensate for the fact that our finite-dimensional Galerkin approximation of the initial data
u0 may fail to satisfy the compatibility conditions (4.15).

Step 2 – Solving the Galerkin problem
For our Galerkin problem we will first construct a solution to the pressureless problem as

follows. For each m ≥ 1 we define an approximate solution

(4.24) um(t) = amj (t)ψj(t),with amj : [0, T ]→ R for j = 1, . . . ,m,
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where as usual we use the Einstein convention of summation of the repeated index j. We want
to choose the coefficients amj so that

(4.25) (∂tum, ψ)H0 +
1
2

(um, ψ)H1 =
(
F 1, ψ

)
H0 −

(
F 3 −Π0(F 3(0) + DA0(Pm0 u0)N0), ψ

)
0,Σ

for each ψ ∈ Xm(t), where we have written (·, ·)0,Σ for the usual H0(Σ) inner-product, and
where Π0 and Pm0 are defined in the previous step. We supplement the equation (4.25) with
the initial condition

(4.26) um(0) = Pm0 u0 ∈ Xm(0).

Appealing to (4.23), we find that ∂tum(t) = ȧmj (t)ψj(t) +R(t)um(t), and hence (4.25) is equiv-
alent to the system of ODEs for amj given by

(4.27) ȧmj

(
ψj , ψk

)
H0

+ amj

((
R(t)ψj , ψk

)
H0

+
1
2

(
ψj , ψk

)
H1

)
=
(
F 1, ψk

)
H0
−
(
F 3 −Π0(F 3(0) + DA0u

m(0)N0), ψk
)

0,Σ

for j, k = 1, · · · ,m. The m×m matrix with j, k entry
(
ψj , ψk

)
H0 is invertible, the coefficients

of the linear system (4.27) are C1([0, T ]), and the forcing term is C0([0, T ]), so the usual
well-posedness theory of ODEs guarantees the existence of amj ∈ C1([0, T ]), a unique solution
to (4.27) that satisfies the initial conditions induced by (4.26). This, in turn, provides the
desired solution, um, to (4.25)–(4.26). Since F 1, F 3 satisfy (4.11), the equation (4.27) may be
differentiated in time to see that actually amj ∈ C1,1([0, T ]), with amj twice differentiable a.e. in
[0, T ].

Note that throughout the rest of the proof, we use constants C and the symbol . with the
assumption that the constants do not depend on m.

Step 3 – Energy estimates for um

Since um(t) ∈ Xm(t), we may use ψ = um as a test function in (4.25). Doing so, employing
Remark 2.3, and using the fact that Π0 is an orthogonal projection, we may derive the bound

(4.28) ∂t
1
2
‖um‖2H0 +

1
2
‖um‖2H1 ≤ C

∥∥F 1
∥∥
H0 ‖um‖H1 −

1
2

∫
Ω
|um|2 ∂tJ

+ C ‖um‖H1

(∥∥F 3
∥∥
H1/2(Σ)

+
∥∥F 3(0) + DA0u

m(0)N0

∥∥
H0(Σ)

)
.

We may then apply Cauchy’s inequality to (4.28) to find that

(4.29) ∂t
1
2
‖um‖2H0 +

1
8
‖um‖2H1 ≤ C

∥∥F 3(0) + DA0u
m(0)N0

∥∥2

H0(Σ)

+ C
(∥∥F 1

∥∥2

H0 +
∥∥F 3

∥∥2

H1/2(Σ)

)
+ C0(η)

1
2
‖um‖2H0

for C0(η) := 1 + sup0≤t≤T ‖∂tJK‖L∞ . Note that since Pm0 is the H2(Ω) orthogonal projection,
we may use Proposition 2.1 to bound

(4.30) ‖um(0)‖H0 ≤ 2 ‖um(0)‖0 ≤ 2 ‖um(0)‖2 = 2 ‖Pm0 u0‖2 ≤ 2 ‖u0‖2 .

Now we can apply Gronwall’s lemma to the differential inequality (4.29) and utilize (4.30) to
deduce energy estimates for um:

(4.31) sup
0≤t≤T

‖um‖2H0 + ‖um‖2H1
T
≤ sup

0≤t≤T
‖um‖2H0 +

∫ T

0
exp (C0(η)(T − s)) ‖um(s)‖2H1 ds

. exp (C0(η)T )
(∥∥F 3(0) + DA0u

m(0)N0

∥∥2

H0(Σ)
+ ‖u0‖22 +

∥∥F 1
∥∥2

H0
T

+
∥∥F 3

∥∥2

L2H1/2

)
.

Step 4 – Estimate of ‖∂tum(0)‖H0
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We will eventually derive energy estimates for ∂tum similar to those derived in the previous
step for um, but first we must be able to estimate ‖∂tum(0)‖H0 . If u ∈ H2(Ω) ∩ X (t), ψ ∈ H1,
then an integration by parts reveals that

(4.32)
1
2

(u, ψ)H1 =
∫

Ω
−∆Au · ψJ +

∫
Σ

(DAuN ) · ψ = (−∆Au, ψ)H0 + (DAuN , ψ)0,Σ .

Evaluating (4.25) at t = 0 and employing (4.32), we find that

(4.33) (∂tum(0), ψ)H0 =
(
∆A0u

m(0) + F 1(0), ψ
)
H0 −

(
Π⊥0 (F 3(0) + DA0u

m(0)N0), ψ
)

0,Σ

for all ψ ∈ Xm(0), where we have written Π⊥0 = I − Π0 for the orthogonal projection onto the
line generated by N0.

For ψ ∈ Xm(0), we must estimate the last term in (4.33) in terms of ‖ψ‖H0 . This is possible
due to the appearance of Π⊥0 and Lemma 3.3. Indeed, we know that

(4.34) Π⊥0 (F 3(0) + DA0u
m(0)N0) = (F 3(0) · N0 + DA0u

m(0)N0 · N0)
N0

|N0|2
,

which implies, since |N0|2 ≥ 1 and divA0 ψ = 0, that

(4.35)
∣∣∣∣(Π⊥0 (F 3(0) + DA0u

m(0)N0), ψ
)

0,Σ

∣∣∣∣ ≤ |N0|2
∣∣∣∣(Π⊥0 (F 3(0) + DA0u

m(0)N0), ψ
)

0,Σ

∣∣∣∣
=
∣∣∣(F 3(0) · N0 + DA0u

m(0)N0 · N0, ψ · N0

)
0,Σ

∣∣∣
≤ ‖ψ · N0‖H−1/2(Σ)

∥∥(F 3(0) + DA0u
m(0)N0) · N0)

∥∥
H1/2(Σ)

. C1(η) ‖ψ‖H0

∥∥F 3(0) + DA0u
m(0)N0

∥∥
H1/2(Σ)

.

In the last inequality we have used Lemmas 3.3 and A.1, and we have written C1(η) :=
‖N0‖C1(Σ) .

By virtue of (4.23), we have that

(4.36) ∂tu
m(t)−R(t)um(t) = ȧmj (t)ψj(t) ∈ Xm(t),

so that ψ = ∂tu
m(0)−R(0)um(0) ∈ Xm(0) is a valid choice of a test function in (4.33). We plug

this ψ into (4.33), rearrange, and employ the bound (4.35) to see that

(4.37) ‖∂tum(0)‖2H0 ≤ ‖R(0)um(0)‖H0 ‖∂tum(0)‖H0

+ ‖∂tum(0)−R(0)um(0)‖H0

∥∥∆A0u
m(0) + F 1(0)

∥∥
H0

+ CC1(η) ‖∂tum(0)−R(0)um(0)‖H0

∥∥F 3(0) + DA0u
m(0)N0

∥∥
H1/2(Σ)

.

A simple computation and (4.30) imply that ‖∆A0u
m(0)‖H0 . ‖A0‖2C1 ‖u0‖2 . This allows us

to use Cauchy’s inequality and (4.30) to derive from (4.37) the bound

(4.38) ‖∂tum(0)‖2H0 . C2(η)
(
‖u0‖22 +

∥∥F 1(0)
∥∥2

H0 +
∥∥F 3(0) + DA0u

m(0)N0

∥∥2

H1/2(Σ)

)
for C2(η) := 1 + ‖R(0)‖2L∞ + ‖A0‖2C1 + C1(η)2. This is our desired estimate of ‖∂tum(0)‖H0 .

Step 5 – Energy estimates for ∂tum

We now turn to estimates for ∂tum of a similar form to those we already derived for um.
Suppose for now that ψ(t) = bmj (t)ψj for bmj ∈ C0,1([0, T ]), j = 1, · · · ,m; it is easily verified,
as in (4.36), that ∂tψ − R(t)ψ ∈ Xm(t) as well. We now use this ψ in (4.25), temporally
differentiate the resulting equation, and then subtract from this the equation (4.25) with test
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function ∂tψ −Rψ; this eliminates the appearance of ∂tψ and leaves us with the equality

(4.39) 〈∂2
t u

m, ψ〉(H1)∗ +
1
2

(∂tum, ψ)H1 = 〈∂tF 1, ψ〉(H1)∗ −
(
∂tF

3, ψ
)

0,Σ
−
(
F 3, Rψ

)
0,Σ

+
(
F 1, (∂tJK +R)ψ

)
H0 − (∂tum, (∂tJK +R)ψ)H0 −

1
2

(um, Rψ)H1

− 1
2

∫
Ω

(∂tJKDAum : DAψ + D∂tAu
m : DAψ + DAum : D∂tAψ) J.

Note here that the terms involving 〈·, ·〉(H1)∗ appear when we temporally differentiate because
of Lemma 2.4.

According to (4.36) and the fact that amj is twice differentiable a.e., we may use ψ = ∂tu
m(t)−

R(t)um(t) ∈ Xm(t) as a test function in (4.39). Plugging in this ψ and arguing as in the previous
steps by employing Remark 2.3, Cauchy’s inequality, and trace embeddings, we may deduce from
(4.39) that

(4.40) ∂t

(
1
2
‖∂tum‖2H0 − (∂tum, Rum)H0

)
+

1
8
‖∂tum‖2H1 ≤ CC3(η) ‖um‖2H1

+ C0(η)
(

1
2
‖∂tum‖2H0 − (∂tum, Rum)H0

)
+ C

(∥∥F 1
∥∥2

H0 +
∥∥∂tF 1

∥∥2

(H1)∗

)
+ C

(∥∥F 3
∥∥2

H1/2(Σ)
+
∥∥∂tF 3

∥∥2

H−1/2(Σ)

)
for C0(η) as defined above and

(4.41) C3(η) := sup
0≤t≤T

[
1 + ‖R‖2C1 + ‖∂tR‖2L∞ + ‖∂tA‖2L∞ +

(
1 + ‖A‖2L∞

)(
1 + ‖∂tJK‖2L∞

)]
× sup

0≤t≤T

[
1 + ‖R‖2C1

]
.

Then (4.40), Gronwall’s lemma, and a further application of Cauchy’s inequality imply that

(4.42) sup
0≤t≤T

‖∂tum‖2H0 + ‖∂tum‖2H1
T
. exp (C0(η)T )

(
‖∂tum(0)‖2H0 + C2(η) ‖um(0)‖2H0

)
+ C3(η)

(
sup

0≤t≤T
‖um‖2H0 +

∫ T

0
exp (C0(η)(T − s)) ‖um(s)‖2H1 ds

)
+ exp (C0(η)T )

(∥∥F 1
∥∥2

H0
T

+
∥∥∂tF 1

∥∥2

(H1
T )∗

+
∥∥F 3

∥∥2

L2H1/2 +
∥∥∂tF 3

∥∥2

L2H−1/2

)
.

Now we combine (4.42) with the estimates (4.30), (4.31), and (4.38) to deduce our energy
estimates for ∂tum:

(4.43) sup
0≤t≤T

‖∂tum‖2H0 + ‖∂tum‖2H1
T

. (C2(η) + C3(η)) exp (C0(η)T )
(
‖u0‖22 +

∥∥F 1(0)
∥∥2

H0 +
∥∥F 3(0) + DA0u

m(0)N0

∥∥2

H1/2(Σ)

)
+ exp (C0(η)T )

[
C3(η)

(∥∥F 1
∥∥2

H0
T

+
∥∥F 3

∥∥2

L2H1/2

)
+
∥∥∂tF 1

∥∥2

(H1
T )∗

+
∥∥∂tF 3

∥∥2

L2H−1/2

]
.

Step 6 – Improved energy estimate for um

We can now improve our energy estimates for um by using ψ = ∂tu
m(t)−R(t)um(t) ∈ Xm(t)

as a test function in (4.25). Plugging this in and rearranging yields the equality

(4.44) ∂t
1
4
‖um‖2H1 + ‖∂tum‖2H0 = (∂tum, Rum)H0 +

1
2

(um, Rum)H1 +
(
F 1, ∂tu

m −Rum
)
H0

−
(
F 3 −Π0(F 3(0) + DA0u

m(0)N0), ∂tum −Rum
)

0,Σ

+
1
2

∫
Ω

(
DAum : D∂tAu

m + ∂tJK
|DAum|2

2

)
J.
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We may then argue as before to use (4.44) to derive the inequality

(4.45) ∂t
1
4
‖um‖2H1 + ‖∂tum‖2H0 ≤ C

∥∥F 3(0) + DA0u
m(0)N0

∥∥2

H1/2(Σ)

+ C
(∥∥F 1

∥∥2

H0 +
∥∥F 3

∥∥2

H1/2(Σ)

)
+ C

(
‖∂tum‖2H1 + C3(η) ‖um‖2H1

)
.

We could regard (4.45) as a differential inequality for ‖um‖2H1 and apply Gronwall’s lemma as
before, but this is not necessary since we already control ‖um‖2H1

T
and ‖∂tum‖2H1

T
. Indeed, we

may simply integrate (4.45) in time to deduce an improved energy estimate for um:

(4.46) sup
0≤t≤T

‖um‖2H1 + ‖∂tum‖2H0
T

. (C2(η) + C3(η)) exp (C0(η)T )
(
‖u0‖22 +

∥∥F 1(0)
∥∥2

H0 +
∥∥F 3(0) + DA0u

m(0)N0

∥∥2

H1/2(Σ)

)
+ exp (C0(η)T )

[
C3(η)

(∥∥F 1
∥∥2

H0
T

+
∥∥F 3

∥∥2

L2H1/2

)
+
∥∥∂tF 1

∥∥2

(H1
T )∗

+
∥∥∂tF 3

∥∥2

L2H−1/2

]
.

Step 7 – Estimating terms in (4.43), (4.46)
In order to use (4.43) and (4.46) as uniform bounds, we must first remove the appearance

of um(0) on the right side of the estimates. For this we use Lemma A.2, the embedding
H2(Ω) ↪→ H3/2(Σ), and the bound ‖um(0)‖2 ≤ ‖u0‖2 to find that

(4.47)
∥∥F 3(0) + DA0u

m(0)N0

∥∥2

H1/2(Σ)
. C4(η)

(∥∥F 3(0)
∥∥2

H1/2(Σ)
+ ‖u0‖22

)
for C4(η) := 1 + ‖N0‖2C1(Σ) ‖A0‖2C1 .

We now seek to estimate the constants Ci(η), i = 0, . . . , 4 in terms of the quantity K(η). A
simple computation shows that

(4.48) C0(η) + (C2(η) + C3(η))(1 + C4(η)) ≤ sup
0≤t≤T

Q1(‖η̄‖2C2 , ‖∂tη̄‖2C2 ,
∥∥∂2

t η̄
∥∥2

C1),

where Q1 is a polynomial in three variables. According to Lemma A.5 in the non-periodic case

and Lemma A.7 in the periodic case, we have the estimate
∥∥∥∂jt η̄∥∥∥2

Ck
.
∥∥∥∂jt η∥∥∥2

k+3/2
for j, k ≥ 0.

This, (4.48), and the fact that K(η) ≤ 1 then imply that

(4.49) C0(η) + (C2(η) + C3(η))(1 + C4(η)) ≤ Q1(K(η),K(η),K(η)) ≤ C(1 +K(η))

for a constant C independent of η.
Step 8 – Passing to the limit
We now utilize the energy estimates (4.43) and (4.46) in conjunction with (4.47) to pass to the

limit m→∞. According to these energy estimates and Lemma 2.1, we have that the sequence
{um} is uniformly bounded in L∞H1 and {∂tum} is uniformly bounded in L∞H0 ∩ L2H1. Up
to the extraction of a subsequence, we then know that

(4.50) um
∗
⇀ u weakly- ∗ in L∞H1, ∂tu

m ∗
⇀ ∂tu in L∞H0, and ∂tu

m ⇀ ∂tu weakly in L2H1.

By lower semi-continuity and (4.49), the energy estimates imply that the quantity

(4.51) ‖u‖2L∞H1 + ‖∂tu‖2L∞H0 + ‖∂tu‖2L2H1

is bounded above by the right hand side of (4.17).
Because of these convergence results, we can integrate (4.39) in time from 0 to T and send

m → ∞ to deduce that ∂2
t u

m ⇀ ∂2
t u weakly in L2(0H

1(Ω))∗, with the action of ∂2
t u on an

element ψ ∈ L2
0H

1(Ω) defined by replacing um with u everywhere in (4.39). It is more natural
to regard ∂2

t u ∈ (XT )∗ since the action of ∂2
t u is defined with test functions in XT , but the

reasoning presented after (4.4) is applicable to ∂2
t u, so we may regard ∂2

t u ∈ L2
0H

1(Ω) without
ambiguity. From the equation resulting from passing to the limit in (4.39), it is straightforward
to show that

∥∥∂2
t u
∥∥2

(H1
T )∗

is bounded by the right hand side of (4.17). This bound then shows

that ∂tu ∈ C0L2.
Step 9 – The strong solution
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Due to the convergence established in the last step, we may pass to the limit in (4.25) for a.e.
t ∈ [0, T ]. Since um(0)→ u0 in H2 and u0, F

3(0) satisfy the compatibility condition (4.15), we
have that

(4.52)
∥∥Π0(F 3(0) + DA0u

m(0)N0)
∥∥
H1/2(Σ)

→ 0

In the limit, (4.25) implies that for a.e. t,

(4.53) (∂tu, ψ)H0 +
1
2

(u, ψ)H1 =
(
F 1, ψ

)
H0 −

(
F 3, ψ

)
0,Σ

for every ψ ∈ X (t).

Now we introduce the pressure. Define the functional Λt ∈ (H1(t))∗ so that Λt(v) equals
the difference between the left and right sides of (4.53), with ψ replaced by v ∈ H1(t). Then
Λt(v) = 0 for all v ∈ X (t), so by Proposition 2.9 there exists a unique p(t) ∈ H0(t) so that
(p(t), divA v)H0 = Λt(v) for all v ∈ H1(t). This is equivalent to

(4.54) (∂tu, v)H0 +
1
2

(u, v)H1 − (p,divA v)H0 =
(
F 1, v

)
H0 −

(
F 3, v

)
0,Σ

for every v ∈ H1(t),

which in particular implies that (u, p) is the unique weak solution to (1.16) in the sense of (4.3).
For a.e. t ∈ [0, T ], (u(t), p(t)) is the unique weak solution to the elliptic problem (3.13) in the

sense of (3.14), with F 1 replaced by F 1(t) − ∂tu(t), F 2 = 0, and F 3 replaced by F 3(t). Since
F 1(t) − ∂tu(t) ∈ H0(Ω) and F 3(t) ∈ H1/2(Σ), Lemma 3.6 implies that this elliptic problem
admits a unique strong solution, which must coincide with the weak solution. We may then
apply Proposition 3.7 and Lemma 2.1 for the bound

(4.55) ‖u(t)‖2r + ‖p(t)‖2r−1 .
(
‖∂tu(t)‖2Hr−2 +

∥∥F 1(t)
∥∥2

r−2
+
∥∥F 3(t)

∥∥2

Hr−3/2(Σ)

)
when r = 2, 3. When r = 2 we take the supremum of (4.55) over t ∈ [0, T ], and when
r = 3 we integrate over [0, T ]; the resulting inequalities imply that u ∈ L∞H2 ∩ L2H3 and
p ∈ L∞H1 ∩ L2H2 with estimates as in (4.17). This, in turn, implies that (u, p) is a strong
solution to (1.16).

Since we already know that u ∈ L2H3 and ∂tu ∈ L2H1, Lemma A.3 implies that u ∈ C0H2.
Then since F 1 − ∂tu ∈ C0H0 and DAuN + F 3 ∈ C0H1/2(Σ), we know that ∇Ap ∈ C0H0

and p ∈ C0H1/2(Σ) as well, from which we see, via Poincaré’s inequality (Lemma A.9), that
p ∈ C0H1. With these continuity results established, we can compute p(0) and ∂tu(0). We start
with the Dirichlet condition for p(0) on Σ, the second equation in (4.18). Since p ∈ C0H1(Ω),
u ∈ C0H2(Ω), and F 3 ∈ C0H1/2(Σ), the boundary condition SA(p, u)N = F 3, which holds in
H1/2(Σ) for each t > 0, can be evaluated at t = 0. Then the Dirichlet condition for p(0) on Σ
in (4.18) is easily deduced by solving SA0(p(0), u0)N0 = F 3(0) for p(0).

Now we derive the PDE satisfied by p(0) and compute ∂tu(0). Let ϕ ∈ H2(Ω) be a scalar
function satisfying ϕ|Σ = 0 and ∇ϕ|Σb

= 0. Then ∇Aϕ = A∇ϕ ∈ H1(t), and we may choose
v = ∇Aϕ as a test function in (4.54). Since ∂tu− Ru ∈ X (t), we can integrate by parts to see
that

(∂tu,∇Aϕ)H0 = (∂tu−Ru,∇Aϕ)H0 + (Ru,∇Aϕ)H0 = (Ru,∇Aϕ)H0 and

(p,divA∇Aϕ)H0 = (−∇Ap,∇Aϕ)H0 + (p,∇Aϕ · N )0,Σ .
(4.56)

This, (4.32), (4.54), and (1.16) imply that

(4.57)
(
Ru+∇Ap−∆Au− F 1,∇Aϕ

)
H0 = 0 for all such ϕ.

By the established continuity properties, we may set t = 0 in (4.57), again integrate by parts,
and employ a density argument to see that

(4.58)
(
∇A0p(0)− F 1(0),∇A0ϕ

)
H0 = − (−divA0(R(0)u0), ϕ)H0 + 〈∆A0u0 · ν, ϕ〉−1/2

for all ϕ ∈ 0H1(Ω). This establishes that p(0) is the weak solution to (4.18). According to
(3.46) we then have that p(0) ∈ H1(Ω). This and (4.54) allow us to solve for ∂tu(0) as in
(4.19), and then (4.57) implies that ∂tu(0) − R(0)u0 ∈ Y(0) since then Dtu(0)⊥∇A(0)ϕ for
every ϕ ∈ 0H1(Ω).

Step 10 – The weak solution satisfied by Dtu = ∂tu−Ru
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Now we seek to use (4.39) to determine the PDE satisfied by Dtu. As mentioned above, we
may integrate (4.39) in time from 0 to T and pass to the limit m → ∞. For any ψ ∈ XT we
have Rψ ∈ H1

T , so that we may replace all of the terms Rψ in the resulting equation by using
v = Rψ in (4.54); this yields the equality

(4.59) 〈∂2
t u, ψ〉∗ +

1
2

(∂tu, ψ)H1
T

= 〈∂tF 1, ψ〉∗ − 〈∂tF 3, ψ〉−1/2

+
(
∂tJKF

1, ψ
)
H0

T
− (∂tJK∂tu, ψ)H0

T
− (p,divA(Rψ))H0

T

− 1
2

∫ T

0

∫
Ω

(∂tJKDAu : DAψ + D∂tAu : DAψ + DAu : D∂tAψ) J

for all ψ ∈ XT . In (4.59) we have employed the same duality notation as in (4.3).
Now we define Λ ∈ (H1

T )∗ with Λ(v) equal to the difference between the left and right sides of
(4.59) with ψ replaced with v. As above, we may use Proposition 2.9 to find a unique q ∈ H0

T

so that Λ(v) = (q,divA v)H0
T

for all v ∈ H1
T . Simple computations reveal that ∂t(JAij) =

−JAkjRki and JAkj∂jRki = ∂j(JAkjRki) = −∂t∂j(JAij) = 0, which imply that

(4.60) (p,div∂tA v + ∂tJK divA v)H0
T

=
∫ T

0

∫
Ω
p∂jvi∂t(JAij) =

∫ T

0

∫
Ω
p∂jviJAkjRki

=
∫ T

0

∫
Ω
pJAkj∂j(Rkivi)− pJAkjvi∂jRki =

∫ T

0

∫
Ω
pJAkj∂j(Rkivi) = (p,divA(Rv))H0

T
.

This, in turn, implies that the equation Λ(v) = (q,divA v)H0
T

is the same as that which would
result from computing the temporal distributional derivative of (4.54); we deduce that q = ∂tp
and that

(4.61) 〈∂2
t u, v〉∗ +

1
2

(∂tu, v)H1
T
− (∂tp,divA v)H0

T
= 〈∂tF 1, v〉∗ − 〈∂tF 3, v〉−1/2

+
(
∂tJKF

1, v
)
H0

T
− (∂tJK∂tu, v)H0

T
− (p,divA(Rv))H0

T

− 1
2

∫ T

0

∫
Ω

(∂tJKDAu : DAv + D∂tAu : DAv + DAu : D∂tAv) J

for all v ∈ H1
T . As before, we may deduce from (4.61) the bound for ‖∂tp‖2L2L2 stated in (4.17).

We now rewrite the terms in (4.61) to derive the PDE for Dtu, ∂tp. A straightforward
computation shows that on Σ, RTN = ∂tN , so that we may integrate by parts for the equality
(4.62)

(p,divA(Rv))H0
T

= −
(
RT∇Ap, v

)
H0

T
+ 〈pRTN , v〉−1/2 = −

(
RT∇Ap, v

)
H0

T
+ 〈p∂tN , v〉−1/2,

where RT is the matrix transpose of R. Another integration by parts yields

(4.63) − 1
2

∫ T

0

∫
Ω

(∂tJKDAu : DAv + D∂tAu : DAv + DAu : D∂tAv) J

= (divA(RDAu+ D∂tAu), v)H0
T
− 〈DAu∂tN + D∂tAuN , v〉−1/2.

We replace the appearance of ∂2
t u with ∂tDtu via

(4.64) 〈∂2
t u, v〉∗ = 〈∂tDtu, v〉∗ + (R∂tu, v)H0

T
+ (∂tRu, v)H0

T
.

Since (u, p) are a strong solution to (1.16), we may multiply by (RT + ∂tJK)v and integrate to
see that

(4.65)
(
(∂tJK +R)(F 1 − ∂tu), v

)
H0

T
= ((∂tJK +R)(−∆Au+∇Ap), v)H0

T
.

We may then combine (4.61)–(4.65) with the fact that Dtu = ∂tu − Ru ∈ XT to deduce that
(Dtu, ∂tp) are weak solutions of (4.20) with Dtu(0) ∈ Y(0) given by (4.19). Here, the inclusions
G1 ∈ (H1

T )∗ and G3 ∈ L2([0, T ];H−1/2(Σ)) are easily established from the above bounds on
u, p. �
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4.3. Higher regularity. Recall that, as discussed in the introduction, we abuse notation by
writing L2H−1 = L2(0H

1(Ω))∗. In order to state our higher regularity results for the problem
(1.16), we must be able to define the forcing terms and initial data for the problem that results
from temporally differentiating (1.16) several times. To this end, we first define some mappings.
Given F 1, F 3, v, q we define the vector fields G0,G1 on Ω and G3 on Σ by

G0(F 1, v, q) = ∆Av −∇Aq + F 1 −Rv,
G1(v, q) = −(R+ ∂tJK)∆Av − ∂tRv + (∂tJK +R−RT )∇Aq

+ divA(DA(Rv) +RDAv + D∂tAv), and

G3(v, q) = DA(Rv)N − (qI − DAv)∂tN + D∂tAvN ,

(4.66)

and we define the functions f1 on Ω, f2 on Σ, and f3 on Σb according to

f1(F 1, v) = divA(F 1 −Rv),

f2(F 3, v) = (F 3 + DAvN ) · N |N |−2 , and

f3(F 1, v) = (F 1 + ∆Av) · ν.
(4.67)

In the definitions of Gi and fi we assume that A,N , R (recall that R is defined by (4.12)), etc
are evaluated at the same t as F 1, F 3, v, q. These mappings allow us to define the forcing terms
as follows. Write F 1,0 = F 1 and F 3,0 = F 3. When F 1, F 3, u, and p are sufficiently regular for
the following to make sense, we then recursively define the vectors

F 1,j := DtF
1,j−1 + G1(Dj−1

t u, ∂j−1
t p) = Dj

tF
1 +

j−1∑
`=0

D`
tG

1(Dj−`−1
t u, ∂j−`−1

t p),

F 3,j := ∂tF
3,j−1 + G3(Dj−1

t u, ∂j−1
t p) = ∂jtF

3 +
j−1∑
`=0

∂`tG
3(Dj−`−1

t u, ∂j−`−1
t p)

(4.68)

on Ω and Σ, respectively, for j = 1, . . . , 2N .
Now we define various sums of norms of F 1, F 3, and η that will appear in our estimates.

Define the quantities

F(F 1, F 3) :=
2N∑
j=0

∥∥∥∂jtF 1
∥∥∥2

L2H4N−2j−1
+
∥∥∥∂jtF 3

∥∥∥2

L2H4N−2j−1/2

+
2N−1∑
j=0

∥∥∥∂jtF 1
∥∥∥2

L∞H4N−2j−2
+
∥∥∥∂jtF 3

∥∥∥2

L∞H4N−2j−3/2
,

F0(F 1, F 3) :=
2N−1∑
j=0

∥∥∥∂jtF 1(0)
∥∥∥2

4N−2j−2
+
∥∥∥∂jtF 3(0)

∥∥∥2

4N−2j−3/2
.

(4.69)

For brevity, we will only write F for F(F 1, F 3) and F0 for F0(F 1, F 3) throughout the rest of this
section. Lemmas A.3 and 2.4 imply that if F <∞, then

(4.70) ∂jtF
1 ∈ C0([0, T ];H4N−2j−2(Ω)) and ∂jtF

3 ∈ C0([0, T ];H4N−2j−3/2(Σ))

for j = 0, . . . , 2N − 1. The same lemmas also imply that the sum of the L∞Hk norms in the
definition of F can be bounded by a constant that depends on T times the sum of the L2Hk+1

norms. To avoid the introduction of a constant that depends on T , we will retain the L∞ terms.
For η we define

D(η) := ‖η‖2L2H4N+1/2 + ‖∂tη‖2L2H4N−1/2 +
2N+1∑
j=2

∥∥∥∂jt η∥∥∥2

L2H4N−2j+5/2
,

E(η) :=
2N∑
j=0

∥∥∥∂jt η∥∥∥2

L∞H4N−2j
, and K(η) := E(η) + D(η)

(4.71)
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as well as

(4.72) E0(η) := ‖η(0)‖24N + ‖∂tη(0)‖24N−1 +
2N∑
j=2

∥∥∥∂jt η(0)
∥∥∥2

4N−2j+3/2
.

Again, Lemma A.3 implies that η ∈ C0([0, T ];H4N (Σ)), ∂tη ∈ C0([0, T ];H4N−1(Σ)), and ∂jt η ∈
C0([0, T ];H4N−2j+3/2(Σ)) for j = 2, . . . , 2N . Throughout the rest of this section we will assume
that K(η),E0(η) ≤ 1, which implies that Q(K(η)) . 1 + K(η) and Q(E0(η)) . 1 + E0(η) for any
polynomial Q. Note that K(η) ≤ E(η) ≤ K(η), where K(η) is defined by (4.13); also, we have
that ‖η0‖24N−1/2 ≤ E0(η).

We now record an estimate of the F i,j in terms of F,K(η) and certain norms of u, p.

Lemma 4.4. For m = 1, . . . , 2N − 1 and j = 1, . . . ,m, the following estimates hold whenever
the right hand sides are finite:

(4.73)
∥∥F 1,j

∥∥2

L2H2m−2j+1 +
∥∥F 3,j

∥∥2

L2H2m−2j+3/2 . (1 + K(η))

(
F +

j−1∑
`=0

∥∥∥∂`tu∥∥∥2

L∞H2m−2`

+
j−1∑
`=0

∥∥∥∂`tp∥∥∥2

L∞H2m−2`−1
+

j−1∑
`=0

∥∥∥∂`tu∥∥∥2

L2H2m−2`+1
+
∥∥∥∂`tp∥∥∥2

L2H2m−2`

)
,

(4.74)
∥∥F 1,j

∥∥2

L∞H2m−2j +
∥∥F 3,j

∥∥2

L∞H2m−2j+1/2

. (1 + K(η))

(
F +

j−1∑
`=0

∥∥∥∂`tu∥∥∥2

L∞H2m−2`
+
∥∥∥∂`tp∥∥∥2

L∞H2m−2`−1

)
,

and

(4.75)
∥∥∂tF 1,m

∥∥2

L2H−1 +
∥∥∂tF 3,m

∥∥2

L2H−1/2 . (1 + K(η))

(
F +

m∑
`=0

∥∥∥∂`tu∥∥∥2

L∞H2m−2`

+
m−1∑
`=0

∥∥∥∂`tp∥∥∥2

L∞H2m−2`−1
+

m∑
`=0

∥∥∥∂`tu∥∥∥2

L2H2m−2`+1
+
∥∥∥∂`tp∥∥∥2

L2H2m−2`

)
.

Similarly, for j = 1, . . . , 2N − 1,

(4.76)
∥∥F 1,j(0)

∥∥2

4N−2j−2
+
∥∥F 3,j(0)

∥∥2

4N−2j−3/2

. (1 + E0(η))

(
F0 +

j−1∑
`=0

∥∥∥∂`tu(0)
∥∥∥2

4N−2`
+
∥∥∥∂`tp(0)

∥∥∥2

4N−2`−1

)
.

Proof. The estimates follow from simple but lengthy computations, invoking standard argu-
ments. As such, we present only a sketch of how to derive the estimates (4.73). The estimates
(4.74)–(4.76) follow from similar arguments.

To derive the estimate (4.73), we use the definition of F 1,j , F 3,j given by (4.68) and expand
all terms using the Leibniz rule and the definition Dt to rewrite F i,j as a sum of products of
two terms: one involving products of various derivatives of η̄, and one linear in derivatives of
u, p, F 1, or F 3. For a.e. t ∈ [0, T ] we then estimate the the norm (H2m−2j+1 and H2m−2j+3/2,
respectively) of the resulting products by using the usual algebraic properties of Sobolev spaces
(i.e. Lemma A.1) in conjunction with the Sobolev embeddings. The resulting inequalities may
then be integrated in time from 0 to T to find an inequality of the form

(4.77)
∥∥F 1,j

∥∥2

L2H2m−2j+1 +
∥∥F 3,j

∥∥2

L2H2m−2j+3/2 . Q(E(η))(D(η)Y∞ + Y2),
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where Q(·) is a polynomial,

(4.78) Y∞ =
2N−1∑
j=0

∥∥∥∂jtF 1
∥∥∥2

L∞H4N−2j−2
+
∥∥∥∂jtF 3

∥∥∥2

L∞H4N−2j−3/2

+
j−1∑
`=0

∥∥∥∂`tu∥∥∥2

L∞H2m−2`
+

j−1∑
`=0

∥∥∥∂`tp∥∥∥2

L∞H2m−2`−1
,

and

(4.79) Y2 =
2N∑
j=0

∥∥∥∂jtF 1
∥∥∥2

L2H4N−2j−1
+
∥∥∥∂jtF 3

∥∥∥2

L2H4N−2j−1/2

+
j−1∑
`=0

∥∥∥∂`tu∥∥∥2

L2H2m−2`+1
+
∥∥∥∂`tp∥∥∥2

L2H2m−2`
.

Since K(η) ≤ 1, we know that Q(E(η))(1 + D(η)) . (1 + K(η)), and the bound (4.73) follows
immediately from (4.77). �

Next we record an estimates for the difference between ∂tv and Dtv for a general v. The
proof is similar to that of Lemma 4.4, and is thus omitted.

Lemma 4.5. If k = 0, . . . , 4N − 1 and v is sufficiently regular, then

(4.80) ‖∂tv −Dtv‖2L2Hk . (1 + K(η)) ‖v‖2L2Hk ,

and if k = 0, . . . , 4N − 2, then

(4.81) ‖∂tv −Dtv‖2L∞Hk . (1 + K(η)) ‖v‖2L∞Hk .

If m = 1, . . . , 2N − 1, j = 1, . . . ,m, and v is sufficiently regular, then

(4.82)
∥∥∥∂jt v −Dj

t v
∥∥∥2

L2H2m−2j+3
. (1 + K(η))

j−1∑
`=0

(∥∥∥∂`tv∥∥∥2

L2H2m−2`+1
+
∥∥∥∂`tv∥∥∥2

L∞H2m−2`

)
,

(4.83)
∥∥∥∂jt v −Dj

t v
∥∥∥2

L∞H2m−2j+2
. (1 + K(η))

j−1∑
`=0

∥∥∥∂`tv∥∥∥2

L∞H2m−2`
,

and

(4.84)
∥∥∂tDm

t v − ∂m+1
t v

∥∥2

L2H1 +
∥∥∂2

tD
m
t v − ∂m+2

t v
∥∥2

L2H−1

. (1 + K(η))
m+1∑
`=0

(∥∥∥∂`tv∥∥∥2

L2H2m−2`+1
+
∥∥∥∂`tv∥∥∥2

L∞H2m−2`

)
.

Also, if j = 0, . . . , 2N , and v is sufficiently regular, then

(4.85)
∥∥∥∂jt v(0)−Dj

t v(0)
∥∥∥2

4N−2j
. (1 + E0(η))

j−1∑
`=0

∥∥∥∂`tv(0)
∥∥∥2

4N−2`
.

Now we record an estimate for the terms G0 and fi (defined in (4.66) and (4.67), respectively)
that will be used in computing initial data.

Lemma 4.6. Suppose that v, q, G1, G3 are evaluated at t = 0 and are sufficiently regular for
the right sides of the following estimates to make sense. For j = 0, . . . , 2N − 1, we have

(4.86)
∥∥G0(G1, v, q)

∥∥2

4N−2j−2

. (1 + ‖η(0)‖24N + ‖∂tη(0)‖24N−1)
(
‖v‖24N−2j + ‖q‖24N−2j−1 +

∥∥G1
∥∥2

4N−2j−2

)
.
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If j = 0, . . . , 2N − 2, then

(4.87)
∥∥f1(G1, v)

∥∥2

4N−2j−3
+
∥∥f2(G3, v)

∥∥2

4N−2j−3/2
+
∥∥f3(G1, v)

∥∥2

4N−2j−5/2

. (1 + ‖η(0)‖24N )
(∥∥G1

∥∥2

4N−2j−2
+
∥∥G3

∥∥2

4N−2j−3/2
+ ‖v‖24N−2j

)
.

For j = 2N − 1, if divA(0) v = 0 in Ω, then

(4.88)
∥∥f2(G3, v)

∥∥2

1/2
+
∥∥f3(G1, v)

∥∥2

−1/2
. (1 + ‖η(0)‖24N )

(∥∥G1
∥∥2

2
+
∥∥G3

∥∥2

1/2
+ ‖v‖22

)
.

Proof. The proof of the estimates (4.86) and (4.87) as well as the f2 estimate in (4.88) can be
carried out as in the proof Lemma 4.4. We omit further details. For the f3 estimate of (4.88),
we note that divA(0) v = 0 implies that divA(0) ∆A(0)v = 0, so that Lemmas 3.3 and 2.1 provide
the bound

∥∥∆A(0)v · ν
∥∥2

H−1/2(Σb)
.
∥∥∆A(0)v

∥∥2

0
. We may then argue as in Lemma 4.4 to derive

the f3 bound.
�

Now we assume that u0 ∈ H4N (Ω), η0 ∈ H4N+1/2(Σ), F0 < ∞, and that ‖η0‖24N−1/2 ≤
E0(η) ≤ 1 is sufficiently small for the hypothesis of Propositions 3.7 and 3.9 to hold when
k = 4N . We will iteratively construct the initial data Dj

tu(0) for j = 0, . . . , 2N and ∂jt p(0) for
j = 0, . . . , 2N − 1. To do so, we will first construct all but the highest order data, and then we
will state some compatibility conditions for the data. These are necessary to construct D2N

t u(0)
and ∂2N−1

t p(0), and to construct high-regularity solutions in Theorem 4.7.
We now turn to the construction of Dj

tu(0) for j = 0, . . . , 2N − 1 and ∂jt p(0) for j =
0, . . . , 2N − 2, which will employ Lemma 4.6 in conjunction with estimate (4.76) of Lemma
4.4 and (4.85) of Lemma 4.5. For j = 0 we write F 1,0(0) = F 1(0) ∈ H4N−2, F 3,0(0) = F 3(0) ∈
H4N−3/2, and D0

t u(0) = u0 ∈ H4N . Suppose now that F 1,` ∈ H4N−2`−2, F 3,` ∈ H4N−2`−3/2,
and D`

tu(0) ∈ H4N−2` are given for 0 ≤ ` ≤ j ∈ [0, 2N−2]; we will define ∂jt p(0) ∈ H4N−2j−1 as
well as Dj+1

t u(0) ∈ H4N−2j−2, F 1,j+1(0) ∈ H4N−2j−4, and F 3,j+1(0) ∈ H4N−2j−7/2, which
allows us to define all of said data via iteration. By virtue of estimate (4.87), we know
that f1 = f1(F 1,j(0), Dj

tu(0)) ∈ H4N−2j−3, f2 = f2(F 3,j(0), Dj
tu(0)) ∈ H4N−2j−3/2, and

f3 = f3(F 1,j(0), Dj
tu(0)) ∈ H4N−2j−5/2. This allows us to define ∂jt p(0) as the solution to (3.43)

with this choice of f1, f2, f3, and then Proposition 3.9 with k = 4N and r = 4N − 2j − 1 < k

implies that ∂jt p(0) ∈ H4N−2j−1. Now the estimates (4.76), (4.85), and (4.86) allow us to define

Dj+1
t u(0) := G0(F 1,j(0), Dj

tu(0), ∂jt p(0)) ∈ H4N−2j−2,

F 1,j+1(0) := DtF
1,j(0) + G1(Dj

tu(0), ∂jt p(0)) ∈ H4N−2j−4, and

F 3,j+1(0) := ∂tF
3,j(0) + G3(Dj

tu(0), ∂jt p(0)) ∈ H4N−2j−7/2.

(4.89)

Using the above analysis, we iteratively construct all of the desired data except for D2N
t u(0)

and ∂2N−1
t p(0).

By construction, the initial data Dj
tu(0) and ∂jt p(0) are determined in terms of u0 as well as

∂`tF
1(0) and ∂`tF

3(0) for ` = 0, . . . , 2N−1. In order to use these in Theorem 4.3 and to construct
D2N
t u(0) and ∂2N−1

t p(0), we must enforce compatibility conditions for j = 0, . . . , 2N − 1. For
such j, we say that the jth compatibility condition is satisfied if

(4.90)

{
Dj
tu(0) ∈ X (0) ∩H2(Ω)

Π0(F 3,j(0) + DA0D
j
tu(0)N0) = 0.

Note that the construction of Dj
tu(0) and ∂jt p(0) ensures that Dj

tu(0) ∈ H2(Ω) and that
divA0(Dj

tu(0)) = 0, so the condition Dj
tu(0) ∈ X (0) ∩ H2(Ω) may be reduced to the condi-

tion Dj
tu(0)|Σ = 0.

It remains only to define ∂2N−1
t p(0) ∈ H1 and D2N

t u(0) ∈ H0. According to the j =
2N − 1 compatibility condition (4.90), divA0 D

2N−1
t u(0) = 0, which means that we can use
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estimate (4.88) of Lemma 4.6 to see that f2 = f2(F 3,2N−1(0), D2N−1
t u(0)) ∈ H1/2 and f3 =

f3(F 1,2N−1(0), D2N−1
t u(0)) ∈ H−1/2. We also see from (4.90) that we have the equality g0 =

−divA0(R(0)D2N−1
t u(0)) so that g0 ∈ H0. Then, owing to the fact that G = −F 1,2N−1 ∈ H0,

we can define ∂2N−1
t p(0) ∈ H1 as a weak solution to (3.43) in the sense of (3.49) with this choice

of f2, f3, g0, and G Then we define

(4.91) D2N
t u(0) = G0(F 1,2N−1(0), D2N−1

t u(0), ∂2N−1
t p(0)) ∈ H0,

employing (4.86) for the inclusion in H0. In fact, the construction of ∂2N−1
t p(0) guarantees

that D2N
t u(0) ∈ Y(0). In addition to providing the above inclusions, the bounds (4.76), (4.87),

(4.86) also imply the estimate

(4.92)
2N∑
j=0

∥∥∥Dj
tu(0)

∥∥∥2

4N−2j
+

2N−1∑
j=0

∥∥∥∂jt p(0)
∥∥∥2

4N−2j−1
. (1 + E0(η)

(
‖u0‖24N + F0

)
.

Note that, owing to estimate (4.85), the bound (4.92) also holds with ∂jt u(0) replacing Dj
tu(0)

on the left.
Before stating our result on higher regularity for solutions to problem (1.16), we define two

quantities associated to u, p. Write

D(u, p) :=
2N+1∑
j=0

∥∥∥∂jt u∥∥∥2

L2H4N−2j+1
+

2N∑
j=0

∥∥∥∂jt p∥∥∥2

L2H4N−2j
,

E(u, p) :=
2N∑
j=0

∥∥∥∂jt u∥∥∥2

L∞H4N−2j
+

2N−1∑
j=0

∥∥∥∂jt p∥∥∥2

L∞H4N−2j−1
,

K(u, p) := E(u, p) + D(u, p).

(4.93)

Note that, again, Lemmas 2.4 and A.3 imply that E(u, p) ≤ C(T )D(u, p) for C(T ) a constant
depending on T . To avoid introducing this constant we will use both E(u, p) and D(u, p).

Theorem 4.7. Suppose that u0 ∈ H4N (Ω), η0 ∈ H4N+1/2(Σ), F < ∞, and that K(η) ≤ 1
is sufficiently small so that K(η), defined by (4.13), satisfies the hypotheses of Theorem 4.3
and Proposition 3.9. Let Dj

tu(0) ∈ H4N−2j(Ω) and ∂jt p(0) ∈ H4N−2j−1 for j = 0, . . . , 2N − 1
along with D2N

t u(0) ∈ Y(0) all be determined as above in terms of u0 and ∂jtF
1(0), ∂jtF

3(0)
for j = 0, . . . , 2N − 1. Suppose that for j = 0, . . . , 2N − 1, the initial data satisfy the jth

compatibility condition (4.90).
Then there exists a unique strong solution (u, p) to (1.16) so that

∂jt u ∈ C0([0, T ];H4N−2j(Ω)) ∩ L2([0, T ];H4N−2j+1(Ω)) for j = 0, . . . , 2N,

∂jt p ∈ C0([0, T ];H4N−2j−1(Ω)) ∩ L2([0, T ];H4N−2j(Ω)) for j = 0, . . . , 2N − 1,

∂2N+1
t u ∈ (H1

T )∗, and ∂2N
t p ∈ L2([0, T ];H0(Ω)).

(4.94)

The pair (Dj
tu, ∂

j
t p) satisfies the PDE

(4.95)


∂t(D

j
tu)−∆A(Dj

tu) +∇A(∂jt p) = F 1,j in Ω
divA(Dj

tu) = 0 in Ω
SA(∂jt p,D

j
tu)N = F 3,j on Σ

Dj
tu = 0 on Σb

in the strong sense with initial data (Dj
tu(0), ∂jt p(0)) for j = 0, . . . , 2N − 1, and in the weak

sense of (4.3) with initial data D2N
t u(0) ∈ Y(0) for j = 2N . Here the vectors F 1,j and F 3,j are

as defined by (4.68). Moreover, the solution satisfies the estimate

(4.96) E(u, p) + D(u, p) . (1 + E0(η) + K(η)) exp (C(1 + E(η))T )
(
‖u0‖24N + F0 + F

)
for a constant C > 0, independent of η.
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Proof. For notational convenience, throughout the proof we write

(4.97) Z := (1 + E0(η) + K(η)) exp (C(1 + E(η))T )
(
‖u0‖24N + F0 + F

)
.

Since the 0th order compatibility condition (4.90) is satisfied and K(η) is small enough for
K(η) to satisfy the hypotheses of Theorem 4.3, we may apply Theorem 4.3. It guarantees the
existence of (u, p) satisfying the inclusions ∂jt u ∈ L2H3−2j for j = 0, 1, 2 and ∂jt p ∈ L2H2−2j for
j = 0, 1. The (Dj

tu, ∂
j
t p) are solutions in that (4.95) is satisfied in the strong sense when j = 0

and in the weak sense when j = 1. Finally, the estimate (4.17) holds, but we may replace its
right hand side by Z since K(η) ≤ E(η) ≤ K(η).

For an integer m ≥ 0, let Pm denote the proposition asserting the following three statements.
First, that (Dj

tu, ∂
j
t p) are solutions to (4.95) in the strong sense for j = 0, . . . ,m and in the weak

sense for j = m+1. Second, that ∂jt u ∈ L2H2m−2j+3 for j = 0, 1, . . . ,m+2, ∂jt u ∈ L∞H2m−2j+2

for j = 0, 1, . . . ,m+ 1, ∂jt p ∈ L2H2m−2j+2 for j = 0, 1, . . . ,m + 1, and ∂jt p ∈ L∞H2m−2j+1 for
j = 0, 1, . . . ,m. Third, that the estimate

(4.98)
m+1∑
j=0

∥∥∥∂jt u∥∥∥2

L∞H2m−2j+2
+

m∑
j=0

∥∥∥∂jt p∥∥∥2

L∞H2m−2j+1

+
m+2∑
j=0

∥∥∥∂jt u∥∥∥2

L2H2m−2j+3
+
m+1∑
j=0

∥∥∥∂jt p∥∥∥2

L2H2m−2j+2
. Z

holds.
The above analysis implies that P0 holds. We claim that if Pm holds for some m = 0, . . . , 2N−

2, then Pm+1 also holds. Once the claim is established, a finite induction implies that Pm holds
for all m = 0, . . . , 2N − 1, which immediately implies all of the conclusions of the theorem. The
rest of the proof is dedicated to the proof of this claim.

Suppose that Pm holds for some m = 0, . . . , 2N − 2. We may then combine (4.98) with the
estimates (4.73), (4.74), and (4.75) of Lemma 4.4 to see that

(4.99)
m+1∑
j=1

(∥∥F 1,j
∥∥2

L2H2m−2j+3 +
∥∥F 3,j

∥∥2

L2H2m−2j+7/2 +
∥∥F 1,j

∥∥2

L∞H2m−2j+2 +
∥∥F 3,j

∥∥2

L∞H2m−2j+5/2

)

+
∥∥∂tF 1,m+1

∥∥2

L2H−1 +
∥∥∂tF 3,m+1

∥∥2

L2H−1/2 . (1 + K(η))

(
F +

m+1∑
`=0

∥∥∥∂`tu∥∥∥2

L∞H2m−2`+2

+
m∑
`=0

∥∥∥∂`tp∥∥∥2

L∞H2m−2`+1
+
m+1∑
`=0

∥∥∥∂`tu∥∥∥2

L2H2m−2`+3
+
∥∥∥∂`tp∥∥∥2

L2H2m−2`+2

)
. (1 + K(η)) (F + Z) . Z.

The last inequality in (4.99) follows from the fact that K(η) ≤ 1 and the definition of Z.
We now show that the first assertion of Pm+1 holds. To this end, we note that the es-

timate (4.99) implies that F 1,m+1 ∈ L2H1, ∂tF 1,m+1 ∈ L2H−1, F 3,m+1 ∈ L2H3/2, and
∂tF

3,m+1 ∈ L2H−1/2. These inclusions, together with the fact that Dm+1
t u(0) satisfies the

(m+ 1)st order compatibility condition (4.90), allow us to apply Theorem 4.3 to solve problem
(1.16), with F 1, F 3 replaced by F 1,m+1, F 3,m+1 and with initial data Dm+1

t u(0). The resulting
strong solution solution must equal (Dm+1

t u, ∂m+1
t p), the weak solution to (4.95) provided by

Pm, since strong solutions are also weak solutions and Proposition 4.2 guarantees that weak so-
lutions are unique. Furthermore, the theorem implies that (Dm+2

t u, ∂m+2
t p) are a weak solution

to (4.95). Since Pm already provided that (Dj
tu, ∂

j
t p) are solutions to (4.95) in the strong sense

for j = 0, . . . ,m, we deduce that the first assertion of Pm+1 holds.
It remains to prove the the second and third assertions of Pm+1; they are intertwined and

will be derived simultaneously. To begin, we note that the previous application of Theorem 4.3



LOCAL WELL-POSEDNESS OF THE VISCOUS SURFACE WAVE PROBLEM 37

also provides, by way of (4.17), the estimate

(4.100)∥∥Dm+1
t u

∥∥2

L2H3 +
∥∥∂tDm+1

t u
∥∥2

L2H1 +
∥∥∂2

tD
m+1
t u

∥∥2

L2H−1 +
∥∥∂m+1

t p
∥∥2

L2H2 +
∥∥∂m+2

t p
∥∥2

L2H0

+
∥∥Dm+1

t u
∥∥2

L∞H2 +
∥∥∂tDm+1

t u
∥∥2

L∞H0 +
∥∥∂m+1

t p
∥∥2

L∞H1

. (1 + K(η)) exp (C(1 + E(η))T )
(∥∥Dm+1

t u(0)
∥∥2

2
+
∥∥F 1,m+1(0)

∥∥2

0
+
∥∥F 3,m+1(0)

∥∥2

1/2
+ F

)
. (1 + E0(η) + K(η)) exp (C(1 + E(η))T )

(
‖u0‖24N + F0 + F

)
. Z,

where in the second inequality we have employed estimate (4.76) to control the F i,m+1(0) terms
and the bound (4.92) to bound the resulting temporal derivatives or u and p at t = 0. The
estimates of the u terms in (4.100), together with the estimates (4.82)–(4.84) of Lemma 4.5 and
the estimate (4.98), imply that

(4.101)
∥∥∂m+1

t u
∥∥2

L2H3 +
∥∥∂m+2

t u
∥∥2

L2H1 +
∥∥∂m+3

t u
∥∥2

L2H−1 +
∥∥∂m+1

t u
∥∥2

L∞H2 +
∥∥∂m+2

t u
∥∥2

L∞H0

. (1 + K(η))

(
m+2∑
`=0

∥∥∥∂`tu∥∥∥2

L2H2m−2`+3
+
m+1∑
`=0

∥∥∥∂`tu∥∥∥2

L∞H2m−2`+2

)
+ Z

. (1 + K(η))Z + Z . Z.

Hence

(4.102)
m+2∑
j=m+1

∥∥∥∂jt u∥∥∥2

L∞H2(m+1)−2j+2

m+1∑
j=m+1

∥∥∥∂jt p∥∥∥2

L∞H2(m+1)−2j+1

+
m+3∑
j=m+1

∥∥∥∂jt u∥∥∥2

L2H2(m+1)−2j+3
+

m+2∑
j=m+1

∥∥∥∂jt p∥∥∥2

L2H2(m+1)−2j+2
. Z,

which means that in order to derive the estimate (4.98) with m replaced by m + 1, it suffices
to prove that

(4.103)
m∑
j=0

∥∥∥∂jt u∥∥∥2

L∞H2(m+1)−2j+2
+
∥∥∥∂jt p∥∥∥2

L∞H2(m+1)−2j+1

+
m∑
j=0

∥∥∥∂jt u∥∥∥2

L2H2(m+1)−2j+3
+
∥∥∥∂jt p∥∥∥2

L2H2(m+1)−2j+2
. Z.

Once (4.103) is established, summing (4.102) and (4.103) implies that (4.98) holds with m
replaced by m+ 1, which further implies that the second and third assertions of Pm+1 hold, so
that then all of Pm+1 holds.

In order to prove (4.103) we will use the elliptic regularity of Proposition 3.7 (with k = 4N)
and an iteration argument. The estimates of Dm+1

t u in (4.100), together with (4.98) and the
estimates (4.80) and (4.81) of Lemma 4.5, allow us to deduce that

(4.104) ‖∂tDm
t u‖

2
L∞H2 + ‖∂tDm

t u‖
2
L2H3 . Z.

Since (4.95) is satisfied in the strong sense for j = m, we may rearrange to find that for a.e.
t ∈ [0, T ], (Dm

t , ∂
m
t p) solve the elliptic problem (3.13) with F 1 replaced by F 1,m − ∂tD

m
t u,

F 2 = 0, and F 3 replaced by F 3,m. We may then apply Proposition 3.7 with r = 5 to deduce
that the estimate (3.27) holds for a.e. t ∈ [0, T ]; squaring this estimate and integrating over
[0, T ] then yields the inequality

(4.105) ‖Dm
t u‖

2
L2H5 + ‖∂mt p‖

2
L2H4 .

∥∥F 1,m − ∂tDm
t u
∥∥2

L2H3 +
∥∥F 3,m

∥∥2

L2H7/2

.
∥∥F 1,m

∥∥2

L2H3 + ‖∂tDm
t u‖

2
L2H3 +

∥∥F 3,m
∥∥2

L2H7/2 . Z,
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where in the last inequality we have used (4.99) and (4.104). Similarly, we may apply Proposition
3.7 with r = 4 to deduce

(4.106) ‖Dm
t u‖

2
L∞H4 + ‖∂mt p‖

2
L∞H3 .

∥∥F 1,m − ∂tDm
t u
∥∥2

L∞H2 +
∥∥F 3,m

∥∥2

L∞H5/2 . Z.

We may argue as before to deduce from (4.105) and (4.106) that

(4.107) ‖∂mt u‖
2
L∞H4 + ‖∂mt u‖

2
L2H5 . Z

as well. This argument may be iterated to estimate ∂jt u, ∂jt p for j = 1, . . . ,m; this yields the
estimate

(4.108)
m∑
j=1

∥∥∥∂jt u∥∥∥2

L∞H2(m+1)−2j+2
+
∥∥∥∂jt p∥∥∥2

L∞H2(m+1)−2j+1

+
m∑
j=1

∥∥∥∂jt u∥∥∥2

L2H2(m+1)−2j+3
+
∥∥∥∂jt p∥∥∥2

L2H2(m+1)−2j+2
. Z.

We then apply Proposition 3.7 with r = 2(m+ 1) + 2 ≤ 4N to see that

(4.109) ‖u‖2L∞H2(m+1)+1 + ‖p‖2L∞H2(m+1)+1 .
∥∥F 1 − ∂tu

∥∥2

L∞H2(m+1) +
∥∥F 3

∥∥2

L∞H2(m+1)+1/2

.
∥∥F 1

∥∥2

L∞H2(m+1) + ‖∂tu‖2L∞H2(m+1) +
∥∥F 3

∥∥2

L∞H2(m+1)+1/2 . Z,

and then again with r = 2(m+ 1) + 3 ≤ 4N + 1 to see that

(4.110) ‖u‖2L2H2(m+1)+3 + ‖p‖2L2H2(m+1)+2 .
∥∥F 1 − ∂tu

∥∥2

L2H2(m+1)+1 +
∥∥F 3

∥∥2

L2H2(m+1)+3/2

+ ‖η‖2L2H4N+1/2

(∥∥F 1 − ∂tu
∥∥2

L∞H2 +
∥∥F 3

∥∥2

L∞H5/2

)
.
∥∥F 1

∥∥2

L2H2(m+1)+1 + ‖∂tu‖2L2H2(m+1)+1

+
∥∥F 3

∥∥2

L2H2(m+1)+3/2 + K(η)(F + Z) . Z.

Summing (4.108)–(4.110) then gives (4.103), completing the proof.
�

5. Preliminaries for the nonlinear problem

5.1. Forcing estimates. We want to eventually use our linear theory for the problem (1.16)
in order to solve the nonlinear problem (1.10). To do so, we define forcing terms F 1, F 3 to be
used in the linear theory that match the terms in (1.10). That is, given u, η, we define

F 1(u, η) = ∂tη̄b̃K∂3u− u · ∇Au, and

F 3(u, η) = ηN = −ηDη + ηe3,
(5.1)

where A,N ,K are determined as usual by η.
We will need to be able to estimate various norms of F 1(u, η) and F 3(u, η) in terms of the

norms of u and η that appear in K(η), E0(η), and K(u, p), defined by (4.71), (4.72), and (4.93),
respectively. The norms of the F i terms are contained in F and F0, as defined by (4.69). We
will actually need a slight modification of K(u, p), which we define as

(5.2) K2N (u) =
2N∑
j=0

∥∥∥∂jt u∥∥∥2

L2H4N−2j+1
+
∥∥∥∂jt u∥∥∥2

L∞H4N−2j
.

Our estimates are the content of the following lemma.

Lemma 5.1. Suppose that K(η) ≤ 1 and K2N (u) <∞. Then

(5.3) F(F 1(u, η), F 3(u, η)) . [1 + T + K(η)] E(η) + K(η)
[
K2N (u) + (K2N (u))2

]
+ (K2N (u))2.
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Proof. All terms in the definition of F 1(u, η), F 3(u, η) are quadratic or higher-order except the
term ηe3 in F 3. As such, we may argue as in the proof of Lemma 4.4 to deduce the bound

(5.4) F(F 1(u, η), F 3(u, η)− ηe3) . E(η)K(η) + K(η)(K(η) + K2N (u) + (K2N (u))2) + (K2N (u))2.

Here the appearance of the term E(η)K(η) is due to the term ηDη in F 3, while the appearance
of K2N (u)2 is due to the term u · ∇u that appears when we write u · ∇Au = u · ∇u+ u · ∇A−Iu
in F 1.

On the other hand, by definition, we have

(5.5) F(0, ηe3) =
2N∑
j=0

∥∥∥∂jt η∥∥∥2

L2H4N−2j−1/2
+

2N−1∑
j=0

∥∥∥∂jt η∥∥∥2

L∞H4N−2j−3/2

. (1 + T )
2N∑
j=0

∥∥∥∂jt η∥∥∥2

L∞H4N−2j
= (1 + T )E(η).

Then, since F(X,Y +Z) . F(X,Y ) +F(0, Z), we may combine (5.4) with (5.5) to deduce (5.3).
�

5.2. Data estimates. In the construction of the initial data performed after Lemma 4.6 it
was assumed that ∂jt η(0) for j = 0, . . . , 2N and ∂jtF

1(0), ∂jtF
3(0) for j = 0, . . . , 2N − 1 were

all known. Knowledge of the former allowed us to compute R(0), A0, N0, etc along with their
temporal derivatives; these quantities then served as coefficients in deriving the initial conditions
for u, p and their temporal derivatives. Since for the full nonlinear problem the function η is
unknown and its evolution is coupled to that of u and p, we must revise the construction of
the data to include this coupling, assuming only that u0 and η0 are given. This will also reveal
the compatibility conditions that must be satisfied by u0 and η0 in order to solve the nonlinear
problem (1.10). To this end we first define the quantities

(5.6) E0 := ‖u0‖24N + ‖η0‖24N , and F0 := ‖η0‖24N+1/2 .

For our estimates we must also introduce the quantity

(5.7) E0(u, p) =
2N∑
j=0

∥∥∥∂jt u(0)
∥∥∥2

4N−2j
+

2N−1∑
j=0

∥∥∥∂jt p(0)
∥∥∥2

4N−2j−1
.

We will also need a more exact enumeration of the terms in E0(u, p), E0(η), and F0 (as defined
in (5.7), (4.72), and (4.69), respectively). For j = 0, . . . , 2N − 1 we define

(5.8) F
j
0(F 1(u, η), F 3(u, η)) :=

j∑
`=0

∥∥∥∂`tF 1(0)
∥∥∥2

4N−2`−2
+
∥∥∥∂`tF 3(0)

∥∥∥2

4N−2`−3/2
, and

(5.9) E
j
0(η) := ‖η0‖24N + ‖∂tη(0)‖24N−1 +

j∑
`=2

∥∥∥∂`tη(0)
∥∥∥2

4N−2`+3/2
,

with the sum in (5.9) only including the first term when j = 0 and only the first two terms
when j = 1. For j = 0 we write E0

0(u, p) := ‖u0‖24N , and for j = 1, . . . , 2N we write

(5.10) E
j
0(u, p) :=

j∑
`=0

∥∥∥∂`tu(0)
∥∥∥2

4N−2j
+

j−1∑
`=0

∥∥∥∂`tp(0)
∥∥∥2

4N−2j−1
.

The following lemma records more refined versions of the estimates (4.76) and (4.85) as well
as some other related estimates that are useful in dealing with the initial data.

Lemma 5.2. For F 1(u, η) and F 3(u, η) defined by (5.1) and j = 0, . . . , 2N − 1, it holds that

(5.11) F
j
0(F 1(u, η), F 3(u, η)) ≤ Pj(Ej+1

0 (η),Ej0(u, p))

for Pj(·, ·) a polynomial so that Pj(0, 0) = 0.
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For j = 1, . . . , 2N−1 let F 1,j(0) and F 3,j(0) be determined by (4.68) and (5.1), using ∂`tη(0),
∂`tu(0), and ∂`tp(0) for appropriate values of `. Then

(5.12)
∥∥F 1,j(0)

∥∥2

4N−2j−2
+
∥∥F 3,j(0)

∥∥2

4N−2j−3/2
≤ Pj(Ej+1

0 (η),Ej0(u, p))

for Pj(·, ·) a polynomial so that Pj(0, 0) = 0.
For j = 0, . . . , 2N it holds that

(5.13)
∥∥∥∂jt u(0)−Dj

tu(0)
∥∥∥2

4N−2j
≤ Pj(Ej0(η),Ej0(u, p))

for Pj(·, ·) a polynomial so that Pj(0, 0) = 0.
For j = 1, . . . , 2N − 1 it holds that

(5.14)

∥∥∥∥∥
j∑
`=0

(
j

`

)
∂`tN (0) · ∂j−`t u(0)

∥∥∥∥∥
2

H4N−2j+3/2(Σ)

≤ Pj(Ej0(η),Ej0(u, p))

for Pj(·, ·) a polynomial so that Pj(0, 0) = 0. Also,

(5.15) ‖u0 · N0‖2H4N−1(Σ) . ‖u0‖24N + ‖η0‖24N .

Proof. These bounds may be derived by arguing as in the proof of Lemma 4.4. As such, we
again omit the details. �

This lemma allows us to modify the construction presented after Lemma 4.6 to construct all
of the initial data ∂jt u(0), ∂jt η(0) for j = 0, . . . , 2N and ∂jt p(0) for j = 0, . . . , 2N − 1. Along
the way we will also derive estimates of E0(u, p) + E0(η) in terms of E0 and determine the
compatibility conditions for u0, η0 necessary for existence of solutions to (1.10).

We assume that u0, η0 satisfy F0 <∞ and that ‖η0‖24N−1/2 ≤ E0 ≤ 1 is sufficiently small for
the hypothesis of Proposition 3.9 to hold when k = 4N . As before, we will iteratively construct
the initial data, but this time we will use the estimates in Lemma 5.2. Define ∂tη(0) = u0 · N0,
where u0 ∈ H4N−1/2(Σ) when traced onto Σ, and N0 is determined in terms of η0. Estimate
(5.15) implies that ‖∂tη(0)‖24N−1 . E0, and hence that E0

0(u, p) + E1
0(η) . E0. We may use this

bound in (5.11) with j = 0 to find that

(5.16) F0
0(F 1(u, η), F 3(u, η)) ≤ P0(E1

0(η),E0
0(u, p)) ≤ P (E0)

for a polynomial P (·) so that P (0) = 0. Note that in this estimate and in the estimates below,
we employ a convention with polynomials of E0 similar to the one we employ with constants:
they are allowed to change from line to line, but they always satisfy P (0) = 0.

Suppose now that j ∈ [0, 2N − 2] and that ∂`tu(0) are known for ` = 0, . . . , j, ∂`tη(0) are
known for ` = 0, . . . , j + 1, and ∂`tp(0) are known for ` = 0, . . . , j − 1 (with the understanding
that nothing is known of p(0) when j = 0), and that

(5.17) E
j
0(u, p) + E

j+1
0 (η) + F

j
0(F 1(u, η), F 3(u, η)) ≤ P (E0).

According to the estimates (5.12) and (5.13), we then know that

(5.18)
∥∥F 1,j(0)

∥∥2

4N−2j−2
+
∥∥F 3,j(0)

∥∥2

4N−2j−3/2
+
∥∥∥Dj

tu(0)
∥∥∥2

4N−2j
≤ P (E0).

By virtue of estimates (4.87) and (5.17), we know that

(5.19)
∥∥∥f1(F 1,j(0), Dj

tu(0))
∥∥∥2

4N−2j−3
+
∥∥∥f2(F 3,j(0), Dj

tu(0))
∥∥∥2

4N−2j−3/2

+
∥∥∥f3(F 1,j(0), Dj

tu(0))
∥∥∥2

4N−2j−5/2
≤ P (E0).

This allows us to define ∂jt p(0) as the solution to (3.43) with f1, f2, f3 given by f1, f2, f3. Then
Proposition 3.9 with k = 4N and r = 4N − 2j − 1 < k implies that

(5.20)
∥∥∥∂jt p(0)

∥∥∥2

4N−2j−1
≤ P (E0).
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Now the estimates (4.86), (5.17), and (5.18) allow us to define

(5.21) Dj+1
t u(0) := G0(F 1,j(0), Dj

tu(0), ∂jt p(0)) ∈ H4N−2j−2,

and owing to (5.13), we have the estimate

(5.22)
∥∥∥∂j+1

t u(0)
∥∥∥2

4N−2(j+1)
≤ P (E0).

Now we define ∂j+2
t η(0) =

∑j+1
`=0

(
j
`

)
∂`tN (0) ·∂j−`t u(0). The estimate (5.15), together with (5.17)

and (5.22) then imply that

(5.23)
∥∥∥∂j+2

t η(0)
∥∥∥2

4N−2(j+2)+3/2
≤ P (E0).

We may combine (5.17) with (5.20)–(5.23) to deduce that

(5.24) E
j+1
0 (u, p) + E

j+2
0 (η) ≤ P (E0),

but then (5.11) implies that F
j+1
0 (F 1(u, η), F 3(u, η)) ≤ P (E0) as well, and we deduce that the

bound (5.17) also holds with j replaced by j + 1.
Using the above analysis, we may iterate from j = 0, . . . , 2N − 2 to deduce that

(5.25) E2N−1
0 (u, p) + E2N

0 (η) + F2N−1
0 (F 1(u, η), F 3(u, η)) ≤ P (E0).

After this iteration, it remains only to define ∂2N−1
t p(0) and D2N

t u(0). In order to do this,
we must first impose the compatibility conditions on u0 and η0. These are the same as in
(4.90), but because now the temporal derivatives of η have been constructed as well, we restate
them in a slightly different way. Let ∂jt u(0), F 1,j(0), F 3,j(0) for j = 0, . . . , 2N − 1, ∂jt η(0) for
j = 0, . . . , 2N , and ∂jt p(0) for j = 0, . . . , 2N − 2 be constructed in terms of η0, u0 as above.
Let Π0 be the projection defined in terms of η0 as in (4.14) and Dt be the operator defined by
(4.12). We say that u0, η0 satisfy the (2N)th order compatibility conditions if

(5.26)


divA0(Dj

tu(0)) = 0 in Ω
Dj
tu(0) = 0 on Σb

Π0(F 3,j(0) + DA0D
j
tu(0)N0) = 0 on Σ

for j = 0, . . . , 2N−1. Note that if u0, η0 satisfy (5.26), then the jth order compatibility condition
(4.90) is satisfied for j = 0, . . . , 2N − 1.

Now we define ∂2N−1
t p(0) and D2N

t u(0). We use the compatibility conditions (5.26) and argue
as above and in the derivation of (4.88) in Lemma 4.6 to estimate

(5.27)
∥∥∥f2(F 3,2N−1(0), D2N−1

t u(0))
∥∥∥2

1/2
+
∥∥∥f3(F 1,2N−1(0), D2N−1

t u(0))
∥∥∥2

−1/2
≤ P (E0)

and

(5.28)
∥∥F 1,2N−1(0)

∥∥2

0
+
∥∥∥divA0(R(0)D2N−1

t u(0))
∥∥∥2

0
≤ P (E0).

We then define ∂2N−1
t p(0) ∈ H1 as a weak solution to (3.43) in the sense of (3.49) with this

choice of f2 = f2, f3 = f3, g0 = −divA0(R(0)D2N−1
t u(0)), and G = −F 1,2N−1(0). The estimate

(3.46), when combined with (5.27)–(5.28), allows us to deduce that

(5.29)
∥∥∥∂2N−1

t p(0)
∥∥∥2

1
≤ P (E0).

Then we set D2N
t u(0) = G0(F 1,2N−1(0), D2N−1

t u(0), ∂2N−1
t p(0)), employing (4.86) to see that

D2N
t ∈ H0. In fact, the construction of ∂2N−1

t p(0) guarantees that D2N
t u(0) ∈ Y(0). Arguing

as before, we also have the estimate

(5.30)
∥∥∂2N

t u(0)
∥∥2

0
. P (E0)

This completes the construction of the initial data, but we will record a form of the estimates
(5.25), (5.29)–(5.30) in the following proposition.



42 YAN GUO AND IAN TICE

Proposition 5.3. Suppose that u0, η0 satisfy F0 <∞ and that E0 ≤ 1 is sufficiently small for
the hypothesis of Proposition 3.9 to hold when k = 4N . Let ∂jt u(0), ∂jt η(0) for j = 0, . . . , 2N
and ∂jt p(0) for j = 0, . . . , 2N − 1 be given as above. Then

(5.31) E0 ≤ E0(u, p) + E0(η) . E0

Proof. The first inequality in (5.31) is trivial. Summing (5.25) and (5.29)–(5.30) yields the
estimate E0(u, p) + E0(η) ≤ P (E0) for a polynomial P satisfying P (0) = 0. Since E0 ≤ 1, we
have that P (E0) . E0, and the last inequality in (5.31) follows directly. �

5.3. Transport problem. Thus far we have considered solving for (u, p), given η. Now we
discuss how to solve for η, given u (more precisely, its trace on Σ). We do so by considering the
transport problem

(5.32)

{
∂tη + u1∂1η + u2∂2η = u3 in R2

η(0) = η0.

We now state a well-posedness theory for (5.32) involving the quantities E0, F0, K2N (u), K(η)
as defined by (5.6), (5.2), (4.71), respectively. We will also need one more quantity, which we
write as

(5.33) F(η) := ‖η‖2L∞H4N+1/2 .

Theorem 5.4. Suppose that u0, η0 satisfy F0 <∞ and that E0(η) ≤ 1 is sufficiently small for
the hypothesis of Proposition 3.9 to hold when k = 4N . Let ∂jt η(0), ∂jt u(0) for j = 1, . . . , 2N be
defined in terms of u0, η0 as in Section 5.2 and suppose that u satisfies K2N (u) ≤ 1 and achieves
the initial conditions ∂jt u(0) for j = 0, . . . , 2N . Then the problem (5.32) admits a unique
solution η that satisfies F(η)+K(η) <∞ and achieves the initial data ∂jt η(0) for j = 0, . . . , 2N .
Moreover, there exists a 0 < T̄ ≤ 1, depending on N , so that if 0 < T ≤ T̄ min{1, 1/F0}, then
we have the estimates

(5.34) F(η) . F0 + TK2N (u),

(5.35) E(η) . E0 + TK2N (u),

(5.36) D(η) . E0 + TF0 + K2N (u).

Proof. The proof proceeds through three steps. We first establish the solvability of problem
(5.32), then we establish the L∞Hk estimates needed to bound E(η) as in (5.35), and then we
handle the L2Hk estimates for the terms in D(η) to derive (5.36). Summing the bounds (5.35)
and (5.36) shows that K(η) <∞.

Step 1 – Solving the transport equation
The assumptions on u imply, via trace theory, that u ∈ L2([0, T ];H4N+1/2(Σ)), which allows

us to employ the a priori estimates for solutions of the transport equation derived in [13] (more
specifically, Proposition 2.1 with p = p2 = r = 2, σ = 4N + 1/2). Although the well-posedness
of (5.32) is not proved in [13], it can be deduced from the a priori estimates in a standard way;
full details are provided in Theorem 3.3.1 of the unpublished note [14]. The result is that (5.32)
admits a unique solution η ∈ C0([0, T ];H4N+1/2(Σ)) with η(0) = η0 that satisfies the estimate

(5.37) ‖η‖L∞H4N+1/2 ≤ exp
(
C

∫ T

0
‖u(t)‖H4N+1/2(Σ) dt

)(√
F0 +

∫ T

0
‖u3(t)‖H4N+1/2(Σ) dt

)
for C > 0. By trace theory, we have ‖u(t)‖H4N+1/2(Σ) .

√
K2N (u), so that the Cauchy-Schwarz

inequality implies C
∫ T

0 ‖u(t)‖H4N+1/2(Σ) dt .
√
T
√

K2N (u) .
√
T , and hence that

(5.38) exp
(
C

∫ T

0
‖u(t)‖H4N+1/2(Σ) dt

)
≤ 2

for T ≤ T̄ with T̄ ≤ 1 sufficiently small. We deduce from (5.37) and (5.38) that

(5.39)
√
F(η) ≤ 2(

√
F0 +

√
TK2N (u)),
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from which (5.34) easily follows.
Step 2 – Bounding E(η)
Proposition 2.1 of [13] also implies the a priori estimate

(5.40) ‖η‖L∞H4N ≤ exp
(
C

∫ T

0
‖u(t)‖H4N+1/2(Σ) dt

)(
‖η0‖4N +

∫ T

0
‖u3(t)‖H4N (Σ) dt

)
. (
√

E0(η) +
√
TK2N (u)),

where we have used the smallness of T̄ , trace theory, and Cauchy-Schwarz as above. Since ∂tη
satisfies ∂tη = u3 −Dη · u and K2N (u) <∞, we know that ∂tη is temporally differentiable and
satisfies ∂t(∂tη) + u · D(∂tη) = ∂tu3 − ∂tu · Dη with initial condition ∂tη(0) = u0 · N0, which
matches the initial data constructed in terms of u0, η0. We may again apply Proposition 2.1 of
[13] and then use (5.40) to find

(5.41) ‖∂tη‖L∞H4N−2 ≤ 2
(
‖∂tη(0)‖4N−2 +

∫ T

0
‖∂tu3‖H4N−2(Σ) + ‖∂tu ·Dη‖H4N−2(Σ)

)
. ‖∂tη(0)‖4N−2 + (1 + ‖η‖L∞H4N−1)

∫ T

0
‖∂tu‖H4N−2(Σ) .

√
E0(η)

+
√
TK2N (u) (1 + ‖η‖L∞H4N−1) .

√
E0(η) +

√
TK2N (u)

(
1 +

√
E0(η) +

√
TK2N (u)

)
. P (

√
E0(η),

√
TK2N (u))

for a polynomial P (·, ·) with P (0, 0) = 0. A straightforward modification of this argument
allows us to iterate to obtain, for j = 1, . . . , 2N , the estimate

(5.42)
∥∥∥∂jt η∥∥∥

L∞H4N−2j
≤ P (

√
E0(η),

√
TK2N (u))

for P (·, ·) a polynomial with P (0, 0) = 0. We also find that the initial data ∂jt η(0) is achieved
for j = 0, . . . , 2N . Squaring (5.40) and (5.42) and summing, we then deduce that E(η) ≤
P (E0(η), TK2N (u)) for another polynomial with P (0, 0) = 0. Since E0(η) ≤ 1 and TK2N (u) ≤
T̄K2N (u) ≤ 1, we then have that

(5.43) E(η) . E0(η) + TK2N (u),

which yields (5.35) when combined with Proposition 5.3.
Step 3 – Bounding D(η)
Now we control the terms in D(η). From (5.39), Cauchy-Schwarz, and the fact that T ≤ 1,

we see that

(5.44) ‖η‖L2H4N+1/2 ≤
√
T
√
F(η) ≤ 2(

√
TF0 +

√
K2N (u)).

We may then use the equation (5.32), trace theory, the fact that H4N−1/2(Σ) is an algebra, and
estimate (5.44) to bound

(5.45) ‖∂tη‖L2H4N−1/2 . ‖u3‖L2H4N−1/2 + ‖u‖L∞H4N−1/2 ‖η‖L2H4N+1/2

.
√

K2N (u)(1 +
√
TF0 +

√
K2N (u)) . P (

√
TF0,

√
K2N (u))

for P a polynomial with P (0, 0) = 0. We argue similarly (employing (5.45) along the way) to
find that

(5.46)
∥∥∂2

t η
∥∥
L2H4N−3/2 . ‖∂tu3‖L2H4N−1/2 + ‖η‖L∞H4N−1/2 ‖∂tu‖L2H4N−3/2

+ ‖∂tη‖L2H4N−1/2 ‖u‖L∞H4N−3/2 .
√

K2N (u)(1 + ‖η‖L∞H4N−1/2 + ‖∂tη‖L2H4N−1/2)

.
√

K2N (u)(1 +
√

E(η) + P (
√
TF0,

√
K2N (u))) . P (

√
TF0,

√
K2N (u),

√
E(η))

for a polynomial P with P (0, 0, 0) = 0. Iterating this argument for j = 2, . . . , 2N+1 then yields
the inequalities

(5.47)
∥∥∥∂jt η∥∥∥

L2H4N−2j+5/2
≤ P (

√
TF0,

√
K2N (u),

√
E(η))
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for a polynomial with P (0, 0, 0) = 0. We may then square and sum (5.44)–(5.47) to find
that D(η) ≤ P (TF0,K2N (u),E(η)), but then (5.43) and the bound T ≤ 1 imply that D(η) ≤
P (TF0,K2N (u),E0(η)) for another P . By assumption, TF0 ≤ T̄ ≤ 1, and K2N (u),E0(η) ≤ 1 as
well; hence

(5.48) D(η) . TF0 + K2N (u) + E0(η),

which provides the estimate (5.36) when combined with Proposition 5.3.
�

5.4. An extension result. In our nonlinear well-posedness argument we will need to be able
to take the initial data ∂jt u(0), j = 0, . . . , 2N , constructed in Section 5.2 and extend it to a
function u satisfying K2N (u) . E0(u, 0). This extension is the content of the following lemma.

Lemma 5.5. Suppose that ∂jt u(0) ∈ H4N−2j(Ω) for j = 0, . . . , 2N . Then there exists an
extension u, achieving the initial data, so that

(5.49) ∂jt u ∈ L2([0,∞);H4N−2j+1(Ω)) ∩ L∞([0,∞);H4N−2j(Ω))

for j = 0, . . . , 2N . Moreover K2N (u) . E0(u, 0), where in the definition of K2N (u) we take
T =∞.

Proof. Owing to the usual theory of extensions and restrictions in Sobolev spaces, it suffices to
prove the result with Ω replaced by R3 in the non-periodic case and (L1T)× (L2T)× R in the
periodic case. The proof in the periodic case can be derived from the non-periodic proof by
trivially changing some integrals over frequencies to sums. As such, we present only the proof
in R3.

Let fj ∈ H4N−2j(R3) denote the extension of ∂jt u(0) ∈ H4N−2j(Ω). It suffices to construct
Fj(x, t) for j = 0, . . . , 2N so that ∂kt Fj(x, 0) = δj,kfj(x) (δj,k is the Kronecker delta) and

(5.50)
∥∥∥∂kt Fj∥∥∥2

L2H4N−2k+1
+
∥∥∥∂kt Fj∥∥∥2

L∞H4N−2k
. ‖fj‖24n−2j

for k = 0, . . . , 2N . Indeed, with such Fj in hand, the sum F =
∑2N

j=0 Fj is the desired extension.
Note that in the norms of (5.50) the symbol LpHm denotes Lp([0,∞);Hm(R3)).

Let ϕj ∈ C∞c (R) be such that ϕ(k)
j (0) = δj,k for k = 0, . . . , 2N (here (k) is the number

of derivatives). We then define F̂j(ξ, t) = ϕj(t〈ξ〉2)f̂j(ξ)〈ξ〉−2j , where ·̂ denotes the Fourier

transform and 〈ξ〉 =
√

1 + |ξ|2. By construction, ∂kt F̂j(ξ, t) = ϕ
(k)
j (t〈ξ〉2)f̂j(ξ)〈ξ〉2(k−j) so that

∂kt F (·, 0) = δj,kfj . We estimate∥∥∥∂kt Fj(·, t)∥∥∥2

4N−2k
=
∫

R3

〈ξ〉2(4N−2k)
∣∣∣ϕ(k)
j (t〈ξ〉2)

∣∣∣2 ∣∣∣f̂j(ξ)∣∣∣2 〈ξ〉2(2k−2j)dξ

=
∫

R3

∣∣∣ϕ(k)
j (t〈ξ〉2)

∣∣∣2 ∣∣∣f̂j(ξ)∣∣∣2 〈ξ〉2(4N−2j)dξ ≤
∥∥∥ϕ(k)

j

∥∥∥2

L∞
‖fj‖24N−2j ,

(5.51)

so that
∥∥∂kt Fj∥∥2

L∞H4N−2k . ‖fj‖24N−2j . Similarly,∥∥∥∂kt Fj∥∥∥2

L2H4N−2k+1
=
∫ ∞

0

∫
R3

〈ξ〉2(4N−2k+1)
∣∣∣ϕ(k)
j (t〈ξ〉2)

∣∣∣2 ∣∣∣f̂j(ξ)∣∣∣2 〈ξ〉2(2k−2j)dξdt

=
∫ ∞

0

∫
R3

∣∣∣ϕ(k)
j (t〈ξ〉2)

∣∣∣2 ∣∣∣f̂j(ξ)∣∣∣2 〈ξ〉2(4N−2j+1)dξdt

=
∫

R3

∣∣∣f̂j(ξ)∣∣∣2 〈ξ〉2(4N−2j+1)

(∫ ∞
0

∣∣∣ϕ(k)
j (t〈ξ〉2)

∣∣∣2 dt) dξ
=
∫

R3

∣∣∣f̂j(ξ)∣∣∣2 〈ξ〉2(4N−2j+1)

(
1
〈ξ〉2

∫ ∞
0

∣∣∣ϕ(k)
j (r)

∣∣∣2 dr) dξ
=
∥∥∥ϕ(k)

j

∥∥∥2

L2

∫
R3

∣∣∣f̂j(ξ)∣∣∣2 〈ξ〉2(4N−2j)dξ =
∥∥∥ϕ(k)

j

∥∥∥2

L2
‖fj‖24N−2j

(5.52)
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so that
∥∥∂kt Fj∥∥2

L2H4N−2k+1 . ‖fj‖24N−2j . Note that in (5.52), we have used Fubini’s theorem to
switch the order of integration; this is possible since ϕ is compactly supported. We then have
that Fj satisfies the desired properties, completing the proof.

�

6. Local well-posedness of the nonlinear problem

6.1. Sequence of approximate solutions. In order to construct the solution to (1.10), we
will pass to the limit in a sequence of approximate solutions. The construction of this sequence
is the content of our next result.

Theorem 6.1. Assume the initial data are given as in Section 5.2 and satisfy the (2N)th

compatibility conditions (5.26). There exist 0 < δ < 1 and 0 < T̄ < 1 so that if E0 ≤ δ, F0 <∞,
and 0 < T ≤ T0 := T̄ min{1, 1/F0}, then there exists an infinite sequence {(um, pm, ηm)}∞m=1

with the following three properties. First, for m ≥ 1 it holds that

(6.1)


∂tu

m+1 −∆Amum+1 +∇Ampm+1 = ∂tη̄
mb̃Km∂3u

m − um · ∇Amum in Ω
divAm um+1 = 0 in Ω
SAm(pm+1, um+1)Nm = ηmNm on Σ
um+1 = 0 on Σb

and

(6.2) ∂tη
m+1 = um+1 · Nm+1 on Σ,

where Am,Nm,Km are given in terms of ηm. Second, (um, pm, ηm) achieve the initial data
for each m ≥ 1, i.e. ∂jt u

m(0) = ∂jt u(0) and ∂jt η
m(0) = ∂jt η(0) for j = 0, . . . , 2N , while

∂jt p
m(0) = ∂jt p(0) for j = 0, . . . , 2N − 1. Third, for each m ≥ 1 we have the estimates

(6.3) K(ηm) + K(um, pm) ≤ C(E0 + TF0), and F(ηm) ≤ C(F0 + E0 + TF0)

for a universal constant C > 0.

Proof. We divide the proof into three steps. First, we construct an initial pair (u0, η0) that will
be used as a starting point for constructing (um, pm, ηm) for m ≥ 1. Second, we prove that if
(um, pm, ηm) are known and satisfy certain estimates, then we can construct (um+1, pm+1, ηm+1).
Third, we combine the first two steps in an appropriate way to iteratively construct all of the
(um, pm, ηm). Throughout the proof we will need to explicitly enumerate the various constants
appearing in estimates where previously we have written .. We do so with C1, . . . , C9 > 0.

Before proceeding to the steps, we define some terms and make some assumptions. Let δ1 > 0
be such that if K(η) ≤ δ1, then the hypotheses of Theorem 4.7 are satisfied. Similarly, let δ2 > 0
be the constant such that if E0(η) ≤ δ2, then the hypotheses of Theorem 5.4 are satisfied. We
assume that δ is sufficiently small so that E0 ≤ δ satisfies the hypotheses of Proposition 5.3,
and so that (using the estimate (5.31))

(6.4) E0(η) + E0(u, p) ≤ C1E0 ≤ C1δ ≤ min{1, δ2}.
This allows us to use (5.11) of Lemma 5.2 with j = 2N − 1 to bound

(6.5) F0(F 1(u, η), F 2(u, η)) ≤ C2E0.

Step 1 – Seeding the sequence
We begin by extending the initial data ∂jt u(0) ∈ H4N−2j(Ω) to a time-dependent function

u0 so that ∂jt u
0(0) = ∂jt u(0). We do so by applying Lemma 5.5. Although this produces a

u0 defined on the time interval [0,∞), we may restrict to [0, T ] without increasing any of the
space-time norms in K2N (u0). We may combine the estimate of K2N (u0) provided by Lemma
5.5 with (6.4) to bound

(6.6) K2N (u0) ≤ C3E0.

With u0 in hand, we define η0 as the solution to (5.32) with u0 replacing u. To do so, we
apply Theorem 5.4, the hypotheses of which are satisfied by virtue of (6.4) and (6.6) if we



46 YAN GUO AND IAN TICE

further restrict to C3δ ≤ 1. Restricting T̄ as in the theorem, we find our solution η0, which
satisfies ∂jt η

0(0) = ∂jt η(0) as well as the estimates

F(η0) ≤ C4(F0 + TK2N (u0))

E(η0) ≤ C5(E0 + TK2N (u0))

D(η0) ≤ C6(E0 + TF0 + K2N (u0)).

(6.7)

Step 2 – The iteration argument
We claim that there exist γ1, γ2, γ3, γ4 > 0 and 0 < δ̃, T̃ < 1 (both depending on the γi) so

that if δ ≤ δ̃ and T̄ ≤ T̃ , then the following property is satisfied. If (um, ηm) are known and
satisfy the estimates

E(ηm) ≤ γ1(E0 + TF0), D(ηm) ≤ γ2(E0 + TF0),

K2N (um) ≤ γ3(E0 + TF0), F(ηm) ≤ C4F0 + γ4(E0 + TF0),
(6.8)

then there exists a unique triple (um+1, pm+1, ηm+1) that achieves the initial data, satisfies (6.1)
and (6.2), and obeys the estimates

E(ηm+1) ≤ γ1(E0 + TF0), D(ηm+1) ≤ γ2(E0 + TF0),

K(um+1, pm+1) ≤ γ3(E0 + TF0), F(ηm+1) ≤ C4F0 + γ4(E0 + TF0).
(6.9)

To prove the claim, we will first use ηm to solve for (um+1, pm+1), and then we will use the
resulting um+1 to solve for ηm+1. Along the way, we will restrict the size of δ̃ and T̃ in terms
of γi, i = 1, 2, 3, 4. We will define the γi in terms of the Ci, so the δ̃ and T̃ can be thought
of as universal constants. Note that the estimates of (6.9) are stronger than those of (6.8)
since K2N (um+1) ≤ K(um+1, pm+1). This asymmetry is useful to us since in Step 1 we have not
bothered to construct p0, so only (u0, η0) are available to begin the iterative construction of
{(um, pm, ηm)}∞m=1.

We assume initially that

(6.10) δ̃, T̃ ≤ 1
2

min
{

min{1, δ1}
(γ1 + γ2)

,
1
γ3

}
,

so that (6.8) implies that K2N (um) ≤ 1 and

(6.11) K(ηm) = E(ηm) + D(ηm) ≤ (γ1 + γ2)(E0 + T0F0) ≤ min{δ1, 1},
the latter of which allows us to use Theorem 4.7 to produce a unique pair (um+1, pm+1) that
achieves the desired initial data and satisfies (6.1). Moreover, from (4.96) and (6.4)–(6.5), we
have the estimate

(6.12) K(um+1, pm+1) ≤ C7(1 + E0 + K(ηm)) exp (C8(1 + E(ηm))T )×[
(1 + C2)E0 + F(F 1(um, ηm), F 3(um, ηm))

]
.

Assume that 2T̃C8 ≤ log 2; then

(6.13) C7(1 + E0 + K(ηm)) exp (C8(1 + E(ηm))T ) ≤ 3C7 exp(2C8T̃ ) ≤ 6C7.

On the other hand, we can use our bounds on ηm, um in Lemma 5.1 to see that

(6.14) F(F 1(um, ηm), F 3(um, ηm)) ≤ C9

[
3E(ηm) + 2K(ηm)K2N (um) + (K2N (um))2

]
.

Combining (6.12)–(6.14) with (6.8) then shows that

(6.15) K(um+1, pm+1) ≤ 6C7 [(1 + C2)E0 + 3C9γ1(E0 + TF0)

+2C9γ3(γ1 + γ2)(E0 + TF0)2 + C9γ
2
3(E0 + TF0)2

]
.

We have now enumerated all of the constants Ci, i = 1, . . . , 9, that we need to define the γi,
i = 1, . . . , 4. We choose the values of the γi according to

γ1 := 2C5, γ3 := 6C7(3 + C2 + 3C9γ1) + C3,

γ4 := C4, γ2 := C6(1 + γ3).
(6.16)
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Notice that even though we have used γ1 to define γ3 and γ3 to define γ2, all of the γi are
determined in terms of the constants Ci.

Now we will use the choice of the γi in (6.16) to derive the K(um+1, pm+1) estimate of (6.9)
from (6.15). To do this, we further restrict

(6.17) δ̃, T̃ ≤ 1
2

min
{

1
2C9γ3(γ1 + γ2)

,
1

C9γ2
3

}
.

Then since E0 + TF0 ≤ δ̃ + T̃ , we may use (6.15) to bound

(6.18) K(um+1, pm+1) ≤ 6C7(3 + C2 + 3C9γ1)(E0 + TF0) ≤ γ3(E0 + TF0).

Now we construct ηm+1. Recall that δ̃, T̃ ≤ 1/(2γ3); this and (6.18) then yield the bound
K2N (um+1) ≤ 1. This estimate then allows us to apply Theorem 5.4 to find ηm+1 that solves
(6.2) and achieves the initial data. Estimates (5.34)–(5.36) of the theorem, together with (6.18)
and the bound T0γ3 ≤ T̃ γ3 ≤ 1, imply that

F(ηm+1) ≤ C4(F0 + T0K2N (um+1)) ≤ C4F0 + C4(E0 + TF0)

E(ηm+1) ≤ C5(E0 + T0K2N (um+1)) ≤ 2C5(E0 + TF0)

D(ηm+1) ≤ C6(E0 + TF0 + K2N (um+1)) ≤ C6(1 + γ3)(E0 + TF0).

(6.19)

Using the definitions of the γi given in (6.16), we see from (6.19) that the ηm+1 estimates of
(6.9) hold. Then, owing to (6.18), all of the estimates in (6.9) hold, which completes the proof
of the claim.

Step 3 – Construction of the full sequence
We assume that γ1, γ2, γ3, γ4 are given by (6.16) and that δ̃ and T̃ are as small as in Step 2.

We assume that δ ≤ δ̃ and T̄ ≤ T̃ in addition to the other restrictions on their size made in Step
1 and before. Returning to (6.6), note that C3 ≤ γ3, which means that K2N (u0) ≤ γ3(E0 +TF0).
We can also combine (6.6) and (6.7) and further restrict T̄ ≤ 1/C3 to deduce that

F(η0) ≤ C4F0 + T0C3C4E0 ≤ C4F0 + γ4(E0 + TF0)

E(η0) ≤ C5(1 + T0C3)E0 ≤ 2C5E0 ≤ γ1(E0 + TF0)

D(η0) ≤ C6(E0 + TF0 + C3E0) ≤ C6(1 + C3)(E0 + TF0) ≤ γ2(E0 + TF0).

(6.20)

Note that in the last inequality we have used the fact that C3 ≤ γ3 to bound C6(1 + C3) ≤
C6(1 + γ3) = γ2. We are then free to use the pair (u0, η0) as the starting point in Step 2, which
allows us to construct (u1, p1, η1) satisfying the desired PDE and initial conditions, along with
the estimates

E(η1) ≤ γ1(E0 + TF0), D(η1) ≤ γ2(E0 + TF0),

K(u1, p1) ≤ γ3(E0 + TF0), F(η1) ≤ C4F0 + γ4(E0 + TF0).
(6.21)

We then iterate from m = 1, . . . ,∞, using (um, ηm) and Step 2 to produce the next element of
the sequence, (um+1, pm+1, ηm+1), which satisfies (6.9). All of the conclusions of the theorem
follow.

�

6.2. Contraction. While the estimates (6.3) of Theorem 6.1 will allow us to extract weak
limits from the sequence {(um, pm, ηm)}∞m=1, weak convergence of a subsequence is not enough
to allow us to pass to the limit in (6.1)–(6.2) in order to produce the desired solution to (1.10).
We are thus led to study the strong convergence of the sequence, and in particular to consider
its contraction in some norm.

We now define the norms in which we will show the sequence contracts. For T > 0 we define

N(v, q;T ) = ‖v‖2L∞H2 + ‖v‖2L2H3 + ‖∂tv‖2L∞H0 + ‖∂tv‖2L2H1 + ‖q‖2L∞H1 + ‖q‖2L2H2 ,

M(ζ;T ) = ‖ζ‖2L∞H5/2 + ‖∂tζ‖2L∞H3/2 +
∥∥∂2

t ζ
∥∥2

L2H1/2 ,
(6.22)

where we write LpHk for Lp([0, T ];Hk(Ω)) in N and Lp([0, T ];Hk(Σ)) in M.
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The next result provides a comparison of N for pairs of solutions to problems of the form
(6.1)–(6.2). We will use it later in Theorem 6.3 to show that the sequence of approximate
solutions contracts, but we will also use it to prove the uniqueness of solutions to (1.10). In
order to avoid confusion with the sequence {(um, pm, ηm)}, we refer to velocities as vj , wj ,
pressures as qj , and surface functions as ζj for j = 1, 2.

Theorem 6.2. Let w1, w2, v1, v2, q1, q2, and ζ1, ζ2 satisfy

(6.23) sup
{
E(ζ1),E(ζ2),E(v1, q1),E(v2, q2),E(w1, 0),E(w2, 0)

}
≤ ε,

where the temporal L∞ norms in E are computed over the interval [0, T ] with 0 < T . Suppose
that for j = 1, 2,

(6.24)



∂tv
j −∆Ajvj +∇Ajqj = ∂tζ̄

j b̃Kj∂3w
j − wj · ∇Ajwj in Ω

divAj vj = 0 in Ω
SAj (qj , vj)N j = ζjN j on Σ
vj = 0 on Σb,

∂tζ
j = wj · N j on Σ,

where Aj ,Kj ,N j are determined by ζj as usual. Further suppose that ∂kt v
1(0) = ∂kt v

2(0) for
k = 0, 1, ζ1(0) = ζ2(0), and q1(0) = q2(0).

Then there exist ε1 > 0, T1 > 0 so that if ε ≤ ε1 and 0 < T ≤ T1, then

(6.25) N(v1 − v2, q1 − q2;T ) ≤ 1
2
N(w1 − w2, 0;T )

and

(6.26) M(ζ1 − ζ2;T ) ≤ 2N(w1 − w2, 0;T ).

Proof. The proof proceeds through six steps. First, we define v = v1 − v2, w = w1 − w2,
q = q1 − q2, and derive the PDEs satisfied by v, q. We also identify the energy evolution for
some norms of ∂tv, ∂tq. Second, we bound various forcing terms that appear in the energy
evolution and on the right side of the PDEs for v, q. Third, we prove some bounds for ∂tv, ∂tq,
using the energy evolution equation. Fourth, we use elliptic estimates to bound norms of v, q.
Fifth, we derive estimates for ζ1 − ζ2 in terms of w. Sixth, we close the estimate to derive the
contraction estimates (6.25), (6.26).

Step 1 – PDEs and energy evolution for differences
We now derive the PDE satisfied by v, q, which are defined above. We subtract the equations

in (6.24) with j = 2 from the same equations with j = 1. With the help of some simple algebra,
we can write the resulting equations in terms of v, q:

(6.27)



∂tv −∆A1v +∇A1q = divA1(D(A1−A2)v
2) +H1 in Ω

divA1 v = H2 in Ω
SA1(q, v)N 1 = D(A1−A2)v

2N 1 +H3 on Σ
v = 0 on Σb

v(t = 0) = 0,

where H1, H2, H3 are defined by

(6.28) H1 = div(A1−A2)(DA2v2)− (A1 −A2)∇q2

+ ∂tζ̄
1b̃K1(∂3w

1 − ∂3w
2) + (∂tζ̄1 − ∂tζ̄2)b̃K1∂3w

2 + ∂tζ̄
1b̃(K1 −K2)∂3w

2

− (w1 − w2) · ∇A1w1 − w2 · ∇A1(w1 − w2)− w2 · ∇(A1−A2)w
2,

(6.29) H2 = −div(A1−A2) v
2,

(6.30) H3 = −q2(N 1 −N 2) + DA1v2(N 1 −N 2)− D(A1−A2)v
2(N 1 −N 2)

+ (ζ1 − ζ2)N 1 + ζ2(N 1 −N 2).
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The solutions are sufficiently regular for us to differentiate (6.27) in time, which results in
the equations

(6.31)



∂t(∂tv)−∆A1(∂tv) +∇A1(∂tq) = divA1(D(∂tA1−∂tA2)v
2) + H̃1 in Ω

divA1 ∂tv = H̃2 in Ω
SA1(∂tq, ∂tv)N 1 = D(∂tA1−∂tA2)v

2N 1 + H̃3 on Σ
∂tv = 0 on Σb

∂tv(t = 0) = 0,

where H̃1, H̃2, and H̃3 are given by

(6.32) H̃1 = ∂tH
1 + div∂tA1(D(A1−A2)v

2) + divA1(D(A1−A2)∂tv
2)

+ div∂tA1(DA1v) + divA1(D∂tA1v)−∇∂tA1q,

(6.33) H̃2 = ∂tH
2 − div∂tA1 v,

(6.34) H̃3 = ∂tH
3 + D(A1−A2)∂tv

2N 1 + D(A1−A2)v
2∂tN 1 − SA1(q, v)∂tN 1 + D∂tA1vN 1.

Now we multiply (6.31) by J1∂tv, integrate over Ω, and integrate by parts as in the proof of
Theorem 4.3 to deduce the evolution equation

(6.35) ∂t

∫
Ω

|∂tv|2

2
J1 +

1
2

∫
Ω
|DA1∂tv|2 J1 =

∫
Ω

|∂tv|2

2
(∂tJ1K1)J1 +

∫
Ω
J1∂tqH̃

2

+
∫

Ω
J1
(

divA1(D(∂tA1−∂tA2)v
2) + H̃1

)
· ∂tv

−
∫

Σ

(
D(∂tA1−∂tA2)v

2N 1 + H̃3
)
· ∂tv.

Another integration by parts reveals that

(6.36)
∫

Ω
J1 divA1(D(∂tA1−∂tA2)v

2) · ∂tv = −1
2

∫
Ω
J1D(∂tA1−∂tA2)v

2 : DA1∂tv

+
∫

Σ
D(∂tA1−∂tA2)v

2N 1 · ∂tv.

We then employ (6.36) to rewrite (6.35), and then we integrate in time from 0 to t < T ; since
∂tv(t = 0) = 0, we arrive at the equation

(6.37)
∫

Ω

|∂tv|2

2
J1(t) +

1
2

∫ t

0

∫
Ω
|DA1∂tv|2 J1 =

∫ t

0

∫
Ω

|∂tv|2

2
(∂tJ1K1)J1

+
∫ t

0

∫
Ω
J1(H̃1 · ∂tv + H̃2∂tq)−

1
2

∫ t

0

∫
Ω
J1D(∂tA1−∂tA2)v

2 : DA1∂tv −
∫ t

0

∫
Σ
H̃3 · ∂tv.

Step 2 – Estimates of the forcing terms
In order for the equation (6.37) to be useful, we must be able to estimate the terms that

appear on its right. To this end, we now derive estimates for H̃1, H̃2, ∂tH̃
2 in H0(Ω) and H̃3

in H−1/2(Σ). We claim that the following estimates hold; in each we have written P (·) for a
polynomial so that P (0) = 0.

(6.38)
∥∥∥H̃1

∥∥∥
0
. P (

√
ε)
[ ∥∥ζ1 − ζ2

∥∥
3/2

+
∥∥∂tζ1 − ∂tζ2

∥∥
1/2

+
∥∥∂2

t ζ
1 − ∂2

t ζ
2
∥∥

0

+
∥∥w1 − w2

∥∥
1

+
∥∥∂tw1 − ∂tw2

∥∥
1

+ ‖v‖2 + ‖q‖1
]

(6.39)
∥∥∥H̃2

∥∥∥
0
. P (

√
ε)
[∥∥ζ1 − ζ2

∥∥
1/2

+
∥∥∂tζ1 − ∂tζ2

∥∥
1/2

+ ‖v‖1
]
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(6.40)
∥∥∥∂tH̃2

∥∥∥
0
. P (

√
ε)
[ ∥∥ζ1 − ζ2

∥∥
1/2

+
∥∥∂tζ1 − ∂tζ2

∥∥
1/2

+
∥∥∂2

t ζ
1 − ∂2

t ζ
2
∥∥

1/2

+ ‖v‖1 + ‖∂tv‖1
]

(6.41)
∥∥∥H̃3

∥∥∥
−1/2

. P (
√
ε)
[∥∥ζ1 − ζ2

∥∥
1/2

+
∥∥∂tζ1 − ∂tζ2

∥∥
1/2

+ ‖v‖2 + ‖q‖1
]

+
∥∥∂tζ1 − ∂tζ2

∥∥
−1/2

According to the definitions (6.32)–(6.34), all of the summands in H̃1, H̃2, ∂tH̃2 are quadratic,
of the form X×Y , where Y is one of v, q, ∂jt ζ

1−∂jt ζ2 for j = 0, 1, 2, or ∂jtw
1−∂jtw2 for j = 0, 1.

The bounds (6.38)–(6.40) may be established by estimating the products X × Y with Lemmas
A.1, A.4, A.6, A.7, and A.5 and the usual Sobolev and trace embeddings; the appearance of the
terms P (

√
ε) is due to the X terms, whose appropriate Sobolev norm may be bounded above

by a polynomial in

(6.42)
√

sup {E(ζ1),E(ζ2),E(v1, q1),E(v2, q2),E(w1, 0),E(w2, 0)} ≤
√
ε.

The estimate (6.41) follows similarly by using (A.3) of Lemma A.1, except that H̃3 has a single
term, namely (∂tζ1 − ∂tζ2)e3, that is not quadratic and that causes the last term on the right
side of (6.41) to not be multiplied by P (

√
ε). The same sort of argument also allows us to

deduce the bound

(6.43)
∥∥D(∂tA1−∂tA2)v

2
∥∥

0
. P (

√
ε)
[∥∥ζ1 − ζ2

∥∥
1/2

+
∥∥∂tζ1 − ∂tζ2

∥∥
1/2

]
.

We will eventually employ an elliptic estimate with (6.27), so we will also need estimates
of H1, H2, H3 and the two other terms appearing on the right side of (6.27). The following
estimates hold for r = 0, 1 (again P denotes a polynomial with P (0) = 0):

(6.44)
∥∥H1

∥∥
r
. P (

√
ε)
[∥∥ζ1 − ζ2

∥∥
r+1/2

+
∥∥∂tζ1 − ∂tζ2

∥∥
r−1/2

+
∥∥w1 − w2

∥∥
r+1

]
(6.45)

∥∥H2
∥∥
r+1
. P (

√
ε)
∥∥ζ1 − ζ2

∥∥
r+3/2

(6.46)
∥∥H3

∥∥
r+1/2

. P (
√
ε)
∥∥ζ1 − ζ2

∥∥
r+3/2

+
∥∥ζ1 − ζ2

∥∥
r+1/2

(6.47)
∥∥divA1(D(A1−A2)v

2)
∥∥
r
. P (

√
ε)
∥∥ζ1 − ζ2

∥∥
r+1/2

(6.48)
∥∥D(A1−A2)v

2N 1
∥∥
r+1/2

. P (
√
ε)
∥∥ζ1 − ζ2

∥∥
r+3/2

.

The proof of (6.44)–(6.48) may be carried out in the same manner we used above to prove
(6.38)–(6.41).

Step 3 – Estimates of ∂tv from (6.37)
Now we employ the estimates of the forcing terms from the previous step in (6.37) in order

to deduce estimates for ∂tv. First we note that, owing to (6.42) and Sobolev embeddings, we
can bound

(6.49)
∥∥J1

∥∥
L∞

+
∥∥K1

∥∥
L∞
. 1 + P (

√
ε) and

∥∥∂tJ1
∥∥
L∞
. P (

√
ε)

for P a polynomial with P (0) = 0.
Because of the time derivative on q, the most delicate term in (6.37) is the product J1H̃2∂tq.

To handle it we integrate by parts in time and use the fact that q(0) = 0 to see that

(6.50)
∫ t

0

∫
Ω
J1H̃2∂tq =

∫ t

0

[
∂t

∫
Ω
J1qH̃2 −

∫
Ω
∂tJ

1qH̃2 + J1q∂tH̃
2

]
=
∫

Ω
J1qH̃2(t)− J1qH̃2(0)−

∫ t

0

∫
Ω
∂tJ

1qH̃2 + J1q∂tH̃
2

=
∫

Ω
J1qH̃2(t)−

∫ t

0

∫
Ω
∂tJ

1qH̃2 + J1q∂tH̃
2.
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This, (6.49), and the estimates (6.39) and (6.40) then imply that

(6.51)
∫ t

0

∫
Ω
J1H̃2∂tq . P (

√
ε) ‖q‖L∞H0

 1∑
j=0

∥∥∥∂jt ζ1 − ∂jt ζ2
∥∥∥
L∞H1/2

+ ‖v‖L∞H1


+ P (

√
ε)
∫ t

0
‖q‖0

 2∑
j=0

∥∥∥∂jt ζ1 − ∂jt ζ2
∥∥∥

1/2
+ ‖v‖1 + ‖∂tv‖1

 ,
where the L∞ norms are computed over the temporal interval [0, T ].

The other terms on the right of (6.37) are not so delicate and may be estimated directly with
(6.38), (6.41), and (6.43). Indeed, these estimates together with trace theory and the Poincaré
inequality imply that

(6.52)
∫ t

0

∫
Ω
J1H̃1 · ∂tv −

1
2
J1D(∂tA1−∂tA2)v

2 : DA1∂tv −
∫ t

0

∫
Σ
H̃3 · ∂tv

≤
∫ t

0

∥∥J1
∥∥
L∞

∥∥∥H̃1
∥∥∥

0
‖∂tv‖0 +

1
2

∥∥J1
∥∥
L∞

∥∥D(∂tA1−∂tA2)v
2
∥∥

0
‖DA1∂tv‖0

+
∫ t

0

∥∥∥H̃3
∥∥∥
−1/2
‖∂tv‖H1/2(Σ) .

∫ t

0
‖∂tv‖1

[
P (
√
ε)
√
Z +

∥∥∂tζ1 − ∂tζ2
∥∥
−1/2

]
,

where we have written

(6.53) Z :=
∥∥ζ1 − ζ2

∥∥2

3/2
+
∥∥∂tζ1 − ∂tζ2

∥∥2

1/2
+
∥∥∂2

t ζ
1 − ∂2

t ζ
2
∥∥2

1/2

+
∥∥w1 − w2

∥∥2

1
+
∥∥∂tw1 − ∂tw2

∥∥2

1
+ ‖v‖22 + ‖q‖21 .

Also, we may use (6.42) to bound

(6.54)
∫ t

0

∫
Ω

|∂tv|2

2
(∂tJ1K1)J1 ≤ C

√
ε

∫ t

0

∫
Ω

|∂tv|2

2
J1

for some constant C > 0.
We now combine the estimates (6.51), (6.52), and (6.54) with (6.37), employ Lemma 2.1 to

bound ‖∂tv‖1 /2 ≤
∥∥∥√J1DA1∂tv

∥∥∥
0
, and utilize Cauchy’s inequality to absorb

∫ t
0 ‖∂tv‖

2
1 onto the

left side of the resulting inequality; this yields the bound

(6.55)
1
2

∫
Ω
|∂tv|2 J1(t) +

1
8

∫ t

0
‖∂tv‖21 ≤ C

√
ε

∫ t

0

∫
Ω

|∂tv|2

2
J1 + P (

√
ε)
∫ t

0
‖q‖20

+ P (
√
ε) ‖q‖L∞H0

 1∑
j=0

∥∥∥∂jt ζ1 − ∂jt ζ2
∥∥∥
L∞H1/2

+ ‖v‖L∞H1


+ P (

√
ε)
∫ t

0
‖q‖0

 2∑
j=0

∥∥∥∂jt ζ1 − ∂jt ζ2
∥∥∥

1/2
+ ‖v‖1


+
∫ t

0

[
P (
√
ε)Z + C

∥∥∂tζ1 − ∂tζ2
∥∥2

−1/2

]
.

This bound can be viewed as a differential inequality of the form

(6.56) x(t) + y(t) ≤ C
√
ε

∫ t

0
x(s)ds+ F (t),

where x, y, F ≥ 0, x(0) = 0, and F (t) is increasing in t. Gronwall’s lemma then implies that

(6.57) x(t) + y(t) ≤ eC
√
εtF (t).
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We assume that ε1 and T1 are sufficiently small for eC
√
εt ≤ eC

√
ε1T1 ≤ 2. Then from (6.55),

(6.57), and Lemma 2.1 we deduce the bound

(6.58) ‖∂tv‖2L∞H0 + ‖∂tv‖2L2H1 ≤ P (
√
ε) ‖q‖2L2H0 + C

∥∥∂tζ1 − ∂tζ2
∥∥2

L2H−1/2 +
∫ T

0
P (
√
ε)Z

+ P (
√
ε) ‖q‖L∞H0

 1∑
j=0

∥∥∥∂jt ζ1 − ∂jt ζ2
∥∥∥
L∞H1/2

+ ‖v‖L∞H1


+ P (

√
ε) ‖q‖L2H0

 2∑
j=0

∥∥∥∂jt ζ1 − ∂jt ζ2
∥∥∥
L2H1/2

+ ‖v‖L2H1

 ,
where again the temporal L∞ and L2 norms are computed over [0, T ].

Step 4 – Elliptic estimates for v and q
In order to close our estimates, we must be able to estimate v and q. This will be accomplished

with an elliptic estimate. We combine Proposition 3.7 with the estimates (6.44)–(6.48) to deduce
the bound for r = 0, 1,

(6.59) ‖v‖2r+2 + ‖q‖2r+1 . ‖∂tv‖
2
r +

∥∥H1
∥∥2

r
+
∥∥divA1(D(A1−A2)v

2)
∥∥2

r
+
∥∥H2

∥∥2

r+1

+
∥∥H3

∥∥2

r+1/2
+
∥∥D(A1−A2)v

2N 1
∥∥2

r+1/2
. ‖∂tv‖2r +

∥∥ζ1 − ζ2
∥∥2

r+1/2

+ P (
√
ε)
[∥∥ζ1 − ζ2

∥∥2

r+3/2
+
∥∥∂tζ1 − ∂tζ2

∥∥2

r−1/2
+
∥∥w1 − w2

∥∥2

r+1

]
.

We set r = 0 in (6.59) and then take the supremum in time over [0, T ] to find

(6.60) ‖v‖2L∞H2 + ‖q‖2L∞H1 . ‖∂tv‖2L∞H0 +
∥∥ζ1 − ζ2

∥∥2

L∞H1/2

+ P (
√
ε)
[∥∥ζ1 − ζ2

∥∥2

L∞H3/2 +
∥∥∂tζ1 − ∂tζ2

∥∥2

L∞H−1/2 +
∥∥w1 − w2

∥∥2

L∞H1

]
.

Then we set r = 1 in (6.59) and integrate over [0, T ] to find

(6.61) ‖v‖2L2H3 + ‖q‖2L2H2 . ‖∂tv‖2L2H1 +
∥∥ζ1 − ζ2

∥∥2

L2H3/2

+ P (
√
ε)
[∥∥ζ1 − ζ2

∥∥2

L2H5/2 +
∥∥∂tζ1 − ∂tζ2

∥∥2

L2H1/2 +
∥∥w1 − w2

∥∥2

L2H2

]
.

Step 5 – Estimates of ζ1 − ζ2

Now we turn to estimating the difference ζ1 − ζ2 in terms of w1 − w2. We subtract the
equations satisfied by ζ2 from the one for ζ1 to find that

(6.62)

{
∂t(ζ1 − ζ2) + w1 ·D(ζ1 − ζ2) = (w1 − w2) · N 2 in Σ
(ζ1 − ζ2)(t = 0) = 0.

The PDE (6.62) is a transport equation for ζ1 − ζ2, so we can employ Lemma A.8 to estimate

(6.63)
∥∥ζ1 − ζ2

∥∥
L∞H5/2 ≤ exp

(
C

∫ T

0

∥∥w1(r)
∥∥
H7/2(Σ)

dr

)∫ T

0

∥∥(w1 − w2) · N 2(r)
∥∥
H5/2(Σ)

dr

. eC
√
T
√
ε(1 + P (

√
ε))
∫ T

0

∥∥(w1 − w2)(r)
∥∥

3
dr

. eC
√
T
√
ε(1 + P (

√
ε))
√
T
∥∥w1 − w2

∥∥
L2H3 .

We can further restrict ε1 and T1 so that eC
√
T
√
ε ≤ 2 and 1 + P (

√
ε) ≤ 2; then

(6.64)
∥∥ζ1 − ζ2

∥∥
L∞H5/2 .

√
T
∥∥w1 − w2

∥∥
L2H3 .
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Then we use the first equation in (6.62), trace theory, and the estimate (6.64) to see that

(6.65)
∥∥∂tζ1 − ∂tζ2

∥∥
L∞H3/2 ≤

∥∥(w1 − w2) · N 2
∥∥
L∞H3/2 +

∥∥w1 ·D(ζ1 − ζ2)
∥∥
L∞H3/2

. (1 + P (
√
ε))
∥∥w1 − w2

∥∥
L∞H3/2(Σ)

+ P (
√
ε)
∥∥ζ1 − ζ2

∥∥
L∞H5/2

.
∥∥w1 − w2

∥∥
L∞H2 + P (

√
ε)
√
T
∥∥w1 − w2

∥∥
L2H3 .

Similarly, we differentiate (6.62) in time to find that

(6.66)
∥∥∂2

t ζ
1 − ∂2

t ζ
2
∥∥
L2H1/2 . (1 + P (

√
ε))
∥∥∂tw1 − ∂tw2

∥∥
L2H1 + P (

√
ε)
[ ∥∥w1 − w2

∥∥
L2H1

+
∥∥ζ1 − ζ2

∥∥
L2H3/2 +

∥∥∂tζ1 − ∂tζ2
∥∥
L2H3/2

]
.
∥∥∂tw1 − ∂tw2

∥∥
L2H1

+ P (
√
ε)
√
T
[ ∥∥w1 − w2

∥∥
L∞H1 +

∥∥ζ1 − ζ2
∥∥
L∞H3/2 +

∥∥∂tζ1 − ∂tζ2
∥∥
L∞H3/2

]
.
∥∥∂tw1 − ∂tw2

∥∥
L2H1 + P (

√
ε)
√
T
∥∥w1 − w2

∥∥
L∞H2 + P (

√
ε)T

∥∥w1 − w2
∥∥
L2H3 .

Step 6 – Synthesis: contraction
We now have all of the ingredients to prove our contraction result. We write

Nv(T ) := N(v1 − v2, q1 − q2;T )

Nw(T ) := N(w1 − w2, 0;T )

M(T ) := M(ζ1 − ζ2;T ),

(6.67)

where M and N are defined by (6.22). We will first rewrite the bounds (6.58), (6.60), and (6.61)
in terms of these new quantities.

We begin with the right side of (6.58). According to the definition of Z, (6.53), we may
bound

(6.68) ‖q‖2L2H0 +
∫ T

0
Z . (1 + T ) [M(T ) + Nw(T )] + TNv(T )

Similarly,

(6.69) ‖q‖L2H0

 2∑
j=0

∥∥∥∂jt ζ1 − ∂jt ζ2
∥∥∥
L2H1/2

+ ‖v‖L2H1


.
√
T
√

Nv(T )
[
(1 +

√
T )
√

M(T ) +
√
T
√

Nv(T )
]
,

(6.70)
∥∥∂tζm+1 − ∂tζ2

∥∥2

L2H−1/2 ≤ TM(T ),

and

(6.71) ‖q‖L∞H0

 1∑
j=0

∥∥∥∂jt ζ1 − ∂jt ζ2
∥∥∥
L∞H1/2

+ ‖v‖L∞H1


.
√

Nv(T )
[√

M(T ) +
√

Nv(T )
]
.

Then, using (6.68)–(6.71) and Cauchy’s inequality, we may rewrite (6.58) as

(6.72) ‖∂tv‖2L∞H0 + ‖∂tv‖2L2H1 .
[
T + P (

√
ε)(1 + T )

]
M(T ) +

[
P (
√
ε)(1 + T )

]
Nw(T )

+
[
P (
√
ε)(1 + T )

]
Nv(T ).

Now we turn to the elliptic estimates (6.60)–(6.61). The bound (6.60) becomes

(6.73) ‖v‖2L∞H2 + ‖q‖2L∞H1 . ‖∂tv‖2L∞H0 +
∥∥ζ1 − ζ2

∥∥2

L∞H1/2 + P (
√
ε) [M(T ) + Nw(T )] .

Note here that we have kept the term with ζ1−ζ2 because it does not yet have a small multiplier
in front of it. On the other hand, the bound (6.61) becomes

(6.74) ‖v‖2L2H3 + ‖q‖2L2H2 . ‖∂tv‖2L2H1 + T (1 + P (
√
ε)) [M(T ) + Nw(T )] .
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We need not retain the ζ1 − ζ2 term in (6.74) since we can control the square of the temporal
L2 norm by the square of the L∞ norm to pick up a T factor.

Next we reformulate the bounds (6.64)–(6.66) in a similar fashion. The estimate (6.64)
becomes

(6.75)
∥∥ζ1 − ζ2

∥∥2

L∞H5/2 . TNw(T ).

Similarly, we may sum (6.65) and (6.66) to bound

(6.76)
∥∥∂tζ1 − ∂tζ2

∥∥2

L∞H3/2 +
∥∥∂tζ1 − ∂tζ2

∥∥2

L2H1/2 .
[
1 + (T + T 2)P (

√
ε)
]
Nw(T ).

Summing (6.75) and (6.76) yields

(6.77) M(T ) .
[
1 + (T + T 2)P (

√
ε)
]
Nw(T ).

The estimate (6.26) directly follows from (6.77) and the definitions (6.67) if ε1 and T1 are small
enough.

We now combine the above to get an estimate for Nv from our estimates for v, q. Note that
due to (6.75), estimate (6.73) also holds with

∥∥ζ1 − ζ2
∥∥2

L∞H1/2 replaced by TNw(T ) on the right.
We then add this modified version of (6.73) to (6.74), and then add to this a large constant
times (6.72). If the constant is chosen to be sufficiently large, we can absorb the appearances
of ∂tv norms on the right side into the left; doing so, we arrive at the bound

(6.78) Nv(T ) .
[
T + P (

√
ε)(1 + T )

]
M(T ) +

[
T + P (

√
ε)(1 + T )

]
Nw(T )

+
[
P (
√
ε)(1 + T )

]
Nv(T ).

This estimate may be combined with (6.77) to see that

(6.79) Nv(T ) .
[
1 + (T + T 2)P (

√
ε)
] [
T + P (

√
ε)(1 + T )

]
Nw(T )

+
[
P (
√
ε)(1 + T )

]
Nv(T ).

By further restricting ε1 and T1, we may replace (6.79) by Nv(T ) ≤ 1
4Nw(T ) + 1

2Nv(T ), which
may be rearranged to see that Nv(T ) ≤ 1

2Nw(T ), which gives (6.25) after using the definitions
of Nw(T ), Nv(T ) given in (6.67). �

6.3. Local well-posedness: the proof of Theorem 1.1. Now we combine Theorems 6.1
and 6.2 to produce a solution to problem (1.10). Note that Theorem 1.1 follows directly from
the following theorem by changing notation.

Theorem 6.3. Assume that u0, η0 satisfy E0,F0 < ∞ and that the initial data ∂jt u(0), etc
are as constructed in Section 5.2 and satisfy the (2N)th compatibility conditions (5.26). Then
there exist 0 < δ0, T0 < 1 so that if E0 ≤ δ0 and 0 < T ≤ T0 min{1, 1/F0}, then the following
hold. There exists a solution triple (u, p, η) to the problem (1.10) on the time interval [0, T ] that
achieves the initial data and satisfies

(6.80) K(η) + K(u, p) ≤ C(E0 + TF0) and F(η) ≤ C(F0 + E0 + TF0)

for a universal constant C > 0. The solution is unique among functions that achieve the initial
data and satisfy E(η) + E(u, p) < ∞. Moroever, η is such that the mapping Φ(·, t), defined by
(1.7), is a C4N−2 diffeomorphism for each t ∈ [0, T ].

Proof. We again divide the proof into several steps. First, we use Theorem 6.1 to construct a
sequence of approximate solutions. Then we use Theorem 6.2 to show the sequence contracts
in the norm

√
M(η;T ) + N(u, p;T ), which yields strong convergence of the sequence. Next, we

use an interpolation argument to improve the convergence results. These then allow us to pass
to the limit in the PDEs to deduce that the limit solves the problem (1.10). Finally, we again
use Theorem 6.2 to show that our solution is unique.

We assume throughout the proof that T0 ≤ min{T1, T̄}, where T̄ is given by Theorem 6.1,
and T1 is given by Theorem 6.2. Let C > 0 denote the universal constant in Theorem 6.1. We
further assume that T0 ≤ ε1/(2C), where ε1 > 0 is the constant from Theorem 6.2.

Step 1 – The sequence of approximate solutions
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Suppose that δ0 ≤ δ, where δ is given in Theorem 6.1. The hypotheses then allow us to
apply Theorem 6.1 to produce the sequence of triples {(um, pm, ηm)}∞m=1, all elements of which
achieve the initial data, satisfy the PDEs (6.1), (6.2), and obey the bounds

(6.81) sup
m≥1

(K(ηm) + K(um, pm)) ≤ C(E0 + TF0) and sup
m≥1
F(ηm) ≤ C(F0 + E0 + TF0).

We further assume that δ0 is small enough for Cδ0 ≤ ε1/2 (with ε1 again from Theorem 6.2) so
that (6.81) implies, in particular, that

(6.82) sup
m≥1

max {E(ηm),E(um, pm)} ≤ C(E0 + TF0) ≤ C(δ0 + T0) ≤ ε1.

The uniform bounds (6.81) allow us to take weak and weak-∗ limits, up to the extraction of
a subsequence:

(6.83)


∂jt u

m ⇀ ∂jt u weakly in L2([0, T ];H4N−2j+1(Ω)) for j = 0, . . . , 2N + 1
∂jt u

m ∗
⇀ ∂jt u weakly- ∗ in L∞([0, T ];H4N−2j(Ω)) for j = 0, . . . , 2N

∂jt p
m ⇀ ∂jt p weakly in L2([0, T ];H4N−2j(Ω)) for j = 0, . . . , 2N

∂jt p
m ∗
⇀ ∂jt p weakly- ∗ in L∞([0, T ];H4N−2j−1(Ω)) for j = 0, . . . , 2N − 1

and

(6.84)



ηm ⇀ η weakly in L2([0, T ];H4N+1/2(Σ))
∂tη

m ⇀ ∂tη weakly in L2([0, T ];H4N−1/2(Σ))
∂jt η

m ⇀ ∂jt η weakly in L2([0, T ];H4N−2j+5/2(Σ)) for j = 2, . . . , 2N + 1
ηm

∗
⇀ η weakly- ∗ in L∞([0, T ];H4N+1/2(Σ))

∂jt η
m ∗
⇀ ∂jt η weakly- ∗ in L∞([0, T ];H4N−2j(Σ)) for j = 1, . . . , 2N.

Note that in the first convergence result of (6.83) we mean H−1(Ω) = (0H
1(Ω))∗ when j =

2N + 1. According to the weak and weak-∗ lower semicontinuity of the norms in K(ηm),
K(um, pm), and F(ηm) we find that the limit (u, p, η) satisfies

(6.85) K(η) + K(u, p) ≤ C(E0 + TF0) and F(η) ≤ C(F0 + E0 + TF0).

The collection of triples (v, q, ζ) that achieve the initial data, i.e. ∂jt v(0) = ∂jt u(0), ∂jt ζ(0) =
∂jt η(0), for j = 0, . . . , 2N and ∂jt q(0) = ∂jt p(0) for j = 0, . . . , 2N − 1, is clearly convex;
Lemma A.3 implies that it is also closed with respect to the topology generated by the norm√

D(ζ) + D(v, q). As such, the collection is also closed in the corresponding weak topology.
Then, since each (um, pm, ηm) is in this collection, we deduce that the limit (u, p, η) is as well.
Hence (u, p, η) achieves the initial data.

Step 2 – Contraction
Now we want to improve the weak convergence results of the previous step to strong conver-

gence in the norm
√

M(η;T ) + N(u, p;T ), where M and N are defined by (6.22). For m ≥ 1
we set v1 = um+2, v2 = um+1, w1 = um+1, w2 = um, q1 = pm+2, q2 = pm+1, ζ1 = ηm+1,
ζ2 = ηm in Theorem 6.2. Because of (6.1)–(6.2) we have that (6.24) holds; the initial data of
wj , vj , qj , ζj match for j = 1, 2 by construction. Also, (6.82) implies that (6.23) holds, so all of
the hypotheses of Theorem 6.2 are satisfied. Then (6.25) and (6.26) imply that

(6.86) N(um+2 − um+1, pm+2 − pm+1;T ) ≤ 1
2
N(um+1 − um, pm+1 − pm;T )

and

(6.87) M(ηm+1 − ηm;T ) ≤ 2N(um+1 − um, pm+1 − pm;T ).

The bound (6.86) implies that the sequence {(um, pm)}∞m=1 is Cauchy in the norm
√

N(·, ·;T ),
so as m→∞

(6.88)


um → u in L∞([0, T ];H2(Ω)) ∩ L2([0, T ], H3(Ω))
∂tu

m → ∂tu in L∞([0, T ];H0(Ω)) ∩ L2([0, T ], H1(Ω))
pm → p in L∞([0, T ];H1(Ω)) ∩ L2([0, T ], H2(Ω)).
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Because of (6.87), we further deduce that the sequence {ηm}∞m=1 is Cauchy in the norm√
M(·;T ), so that as m→∞

(6.89)


ηm → η in L∞([0, T ];H5/2(Σ))
∂tη

m → ∂tη in L∞([0, T ];H3/2(Σ))
∂2
t η

m → ∂2
t η in L2([0, T ];H1/2(Σ)).

Step 3 – Interpolation for improved strong convergence
Since (um, pm, ηm) obey the bounds (6.81), we can parlay the convergence results (6.88),

(6.89) into convergence in better norms by use of interpolation theory. We first interpolate with
L2H0 norms of temporal derivatives (such estimates take the form

(6.90)
∥∥∥∂kt f∥∥∥

L2H0
≤ C(T ) ‖f‖θL2H0

∥∥∥∂jt f∥∥∥1−θ

L2H0

for j > k ≥ 0 and θ = θ(j, k) ∈ (0, 1) and C(T ) a constant depending on T ), which reveals that

(6.91)


∂jt u

m → ∂jt u in L2([0, T ];H0(Ω)) for j = 0, . . . , 2N − 1
∂jt p

m → ∂jt p in L2([0, T ];H0(Ω)) for j = 0, . . . , 2N − 1
∂jt η

m → ∂jt η in L2([0, T ];H0(Σ)) for j = 0, . . . , 2N.

Here the range of j is determined by the range of j appearing in D(η) and D(u, p). Then we
use spatial interpolation between H0 and Hk to deduce from (6.91) that

(6.92)



∂jt u
m → ∂jt u in L2([0, T ];H4N−2j(Ω)) for j = 0, . . . , 2N − 1

∂jt p
m → ∂jt p in L2([0, T ];H4N−2j−1(Ω)) for j = 0, . . . , 2N − 1

ηm → η in L2([0, T ];H4N (Σ))
∂tη

m → ∂tη in L2([0, T ];H4N−1(Σ))
∂jt η

m → ∂jt η in L2([0, T ];H4N−2j+2(Σ)) for j = 2, . . . , 2N.

Here the Sobolev index is determined by the Sobolev index k in the L2Hk norms of D(η) and
D(u, p). Finally, we use the temporal L2 convergence of (6.92) to get L∞ and C0 convergence
by applying Lemma A.3. This yields

(6.93)



∂jt u
m → ∂jt u in C0([0, T ];H4N−2j−1(Ω)) for j = 0, . . . , 2N − 2

∂jt p
m → ∂jt p in C0([0, T ];H4N−2j−2(Ω)) for j = 0, . . . , 2N − 2

ηm → η in C0([0, T ];H4N−1/2(Σ))
∂tη

m → ∂tη in C0([0, T ];H4N−3/2(Σ))
∂jt η

m → ∂jt η in C0([0, T ];H4N−2j+1(Σ)) for j = 2, . . . , 2N − 1.

Step 4 – Passing to the limit in the PDEs
The strong convergence results of (6.93) are more than sufficient for us to pass to the limit

in the equations (6.1), (6.2) for each t ∈ [0, T ]. Doing so, we find that the limits (u, p, η) are a
strong solution to problem (1.10) on the time interval t ∈ [0, T ].

Step 5 – Uniqueness
We now turn to the question of uniqueness of our solution (u, p, η). Suppose that (v, q, ζ)

is another solution to (1.10) on the time interval [0, T ] that achieves the same initial data as
(u, p, η) and which satisfies E(ζ) + E(v, q) < ∞. By continuity we may restrict to a temporal
subinterval [0, T∗] ⊂ [0, T ] so that E0(η) + E0(u, p) ≤ E(ζ) + E(v, q) ≤ ε1, where ε1 is given in
Theorem 6.2 and the norms are computed on [0, T∗]. We then set v1 = w1 = u, v2 = w2 = v,
q1 = p, q2 = q, ζ1 = η, and ζ2 = ζ in Theorem 6.2 to deduce that

(6.94) N(u− v, p− q;T∗) ≤
1
2
N(u− v, p− q;T∗) and M(η − ζ;T∗) ≤ 2N(u− v, p− q;T∗),

which implies that u = v, p = q, η = ζ on the time interval [0, T∗]. This argument can then
be iterated in the usual way, repeatedly increasing T∗, to extend the uniqueness to all of the
interval [0, T ].

Step 6 – Diffeomorphism
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It is easy to check that the smallness of K(η) is sufficient to guarantee that the map Φ, given
by (1.7), is a C1 diffeomorphism for each t ∈ [0, T ]. The fact that it is in C4N−2 follows easily
from Lemma A.7 in the periodic case and Lemma A.5 in the infinite case.

�

Appendix A. Analytic tools

A.1. Products in Sobolev spaces. We will need some estimates of the product of functions
in Sobolev spaces.

Lemma A.1. The following hold for sufficiently smooth subsets of Rn.

(1) Let 0 ≤ r ≤ s1 ≤ s2 be such that s1 > n/2. Let f ∈ Hs1, g ∈ Hs2. Then fg ∈ Hr and

(A.1) ‖fg‖Hr . ‖f‖Hs1 ‖g‖Hs2 .

(2) Let 0 ≤ r ≤ s1 ≤ s2 be such that s2 > r + n/2. Let f ∈ Hs1, g ∈ Hs2. Then fg ∈ Hr

and

(A.2) ‖fg‖Hr . ‖f‖Hs1 ‖g‖Hs2 .

(3) Let 0 ≤ r ≤ s1 ≤ s2 be such that s2 > r + n/2. Let f ∈ H−r(Σ), g ∈ Hs2(Σ). Then
fg ∈ H−s1(Σ) and

(A.3) ‖fg‖−s1 . ‖f‖−r ‖g‖s2 .

Proof. The proofs of (A.1) and (A.2) are standard; the bounds are first proved in Rn with the
Fourier transform, and then the bounds in sufficiently nice subsets of Rn are deduced by use of
an extension operator. To prove (A.3) we argue by duality. For ϕ ∈ Hs1 we use (A.2)bound

(A.4)
∫

Σ
ϕfg . ‖ϕg‖r ‖f‖−r . ‖ϕ‖s1 ‖g‖s2 ‖f‖−r ,

so that taking the supremum over ϕ with ‖ϕ‖s1 ≤ 1 we get (A.3).
�

We will also need the following variant.

Lemma A.2. Suppose that f ∈ C1(Σ) and g ∈ H1/2(Σ). Then

(A.5) ‖fg‖1/2 . ‖f‖C1 ‖g‖1/2 .

Proof. Consider the operator F : Hk → Hk given by F (g) = fg for k = 0, 1. It is a bounded
operator for k = 0, 1 since

(A.6) ‖fg‖0 ≤ ‖f‖C1 ‖g‖0 and ‖fg‖1 . ‖f‖C1 ‖g‖1 .

Then the theory of interpolation of operators implies that F is bounded from H1/2 to itself,
with operator norm less than a constant times

√
‖f‖C1

√
‖f‖C1 = ‖f‖C1 , which is the desired

result. �

A.2. Continuity and temporal derivatives. We will need the following interpolation result,
which affords us control of the L∞Hk norm of a function f , given that we control f in L2Hk+m

and ∂tf in L2Hk−m.

Lemma A.3. Let Γ denote either Σ or Ω. Suppose that ζ ∈ L2([0, T ];Hs1(Γ)) and ∂tζ ∈
L2([0, T ];Hs2(Γ)) for s1 ≥ s2 ≥ 0. Let s = (s1 + s2)/2. Then ζ ∈ C0([0, T ];Hs(Γ)) (after
possibly being redefined on a set of measure 0), and

(A.7) ‖ζ‖L∞Hs .

(
1 +

1
T

)(
‖ζ‖2L2Hs1 + ‖∂tζ‖2L2Hs2

)
.



58 YAN GUO AND IAN TICE

Proof. According to the usual theory of extensions and restrictions in Sobolev spaces, it suffices
to prove the result with Γ = Rn or Γ = (L1T) × (L2T) × Rm for n = 2, 3, m = 0, 1. We will
prove the result assuming that Γ = Rn; the proof in the other case may be derived similarly,
replacing integrals in Fourier space with sums, etc. Assume for the moment that ζ is smooth.
Writingˆ̇for the Fourier transform, we compute

(A.8) ∂t ‖ζ(t)‖2s = 2<
(∫

Rn

〈ξ〉2sζ̂(ξ, t)∂tζ̂(ξ, t)dξ
)
≤ 2

∫
Rn

〈ξ〉2s
∣∣∣ζ̂(ξ, t)

∣∣∣ ∣∣∣∂tζ̂(ξ, t)
∣∣∣ dξ

= 2
∫

Rn

〈ξ〉s1
∣∣∣ζ̂(ξ, t)

∣∣∣ 〈ξ〉s2 ∣∣∣∂tζ̂(ξ, t)
∣∣∣ dξ ≤ ∫

Rn

〈ξ〉2s1
∣∣∣ζ̂(ξ, t)

∣∣∣2 dξ +
∫

Rn

〈ξ〉2s2
∣∣∣∂tζ̂(ξ, t)

∣∣∣2 dξ
= ‖ζ(t)‖2s1 + ‖∂tζ(t)‖2s2 .

Hence for r, t ∈ [0, T ], we have that ‖ζ(t)‖2s ≤ ‖ζ(r)‖2s + ‖ζ‖2L2Hs1 + ‖∂tζ‖2L2Hs2 . We can then
integrate both sides of this inequality with respect to r ∈ [0, T ] to deduce the bound
(A.9)

sup
0≤t≤T

‖ζ(t)‖2s ≤
1
T
‖ζ‖2L2Hs + ‖ζ‖2L2Hs1 + ‖∂tζ‖2L2Hs2 .

(
1 +

1
T

)(
‖ζ‖2L2Hs1 + ‖∂tζ‖2L2Hs2

)
.

If ζ is not smooth, we may employ a standard mollification argument (cf. Section 5.9 of [16])
in conjunction with (A.9) to deduce that ζ ∈ C0([0, T ];Hs(Rn)) and that (A.7) holds.

�

A.3. Poisson integral: non-periodic case. For a function f , defined on Σ = R2, the Poisson
integral in R2 × (−∞, 0) is defined by

(A.10) Pf(x′, x3) =
∫

R2

f̂(ξ)e2π|ξ|x3e2πix′·ξdξ.

Although Pf is defined in all of R2 × (−∞, 0), we will only need bounds on its norm in the
restricted domain Ω = R2 × (−b, 0). This yields a couple improvements of the usual estimates
of Pf on the set R2 × (−∞, 0).

Lemma A.4. Let Pf be the Poisson integral of a function f that is either in Ḣq(Σ) or
Ḣq−1/2(Σ) for q ∈ N (here Ḣs is the usual homogeneous Sobolev space of order s). Then

(A.11) ‖∇qPf‖20 .
∫

R2

|ξ|2q
∣∣∣f̂(ξ)

∣∣∣2(1− e−4πb|ξ|

|ξ|

)
dξ,

and in particular

(A.12) ‖∇qPf‖20 . ‖f‖
2
Ḣq−1/2(Σ)

and ‖∇qPf‖20 . ‖f‖
2
Ḣq(Σ)

.

Proof. Employing Fubini, the horizontal Fourier transform, and Parseval, we may bound

(A.13) ‖∇qPf‖20 .
∫

R2

∫ 0

−b
|ξ|2q

∣∣∣f̂(ξ)
∣∣∣2 e4π|ξ|x3dx3dξ ≤

∫
R2

|ξ|2q
∣∣∣f̂(ξ)

∣∣∣2(∫ 0

−b
e4π|ξ|x3dx3

)
dξ

.
∫

R2

|ξ|2q
∣∣∣f̂(ξ)

∣∣∣2(1− e−4πb|ξ|

|ξ|

)
dξ.

This is (A.11). To deduce (A.12) from (A.11), we simply note that

(A.14)
1− e−4πb|ξ|

|ξ|
≤ min

{
4πb,

1
|ξ|

}
,

which means we are free to bound the right hand side of (A.13) by either ‖f‖2
Ḣq−1/2(Σ)

or

‖f‖2
Ḣq(Σ)

. �

We will also need L∞ estimates.
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Lemma A.5. Let Pf be the Poisson integral of f , defined on Σ. Let q ∈ N, s > 1. Then

(A.15) ‖∇qPf‖2L∞ . ‖D
qf‖2s .

Proof. We use the definition of Pf and the trivial estimate exp(2π |ξ|x3) ≤ 1 in Ω to bound

(A.16) ‖∇qPf‖L∞ .
∫

R2

|ξ|q
∣∣∣f̂(ξ)

∣∣∣ dξ.
The estimate (A.15) then follows from this and the easy bound

(A.17)
∫

R2

|ξ|q
∣∣∣f̂(ξ)

∣∣∣ dξ . ‖Dqf‖s
(∫

R2

〈ξ〉−2sdξ

)1/2

. ‖Dqf‖s ,

which holds when s > 1.
�

A.4. Poisson integral: periodic case. Suppose that Σ = (L1T) × (L2T). We define the
Poisson integral in Ω− = Σ× (−∞, 0) by

(A.18) Pf(x) =
∑

n∈(L−1
1 Z)×(L−1

2 Z)

e2πin·x′e2π|n|x3 f̂(n),

where for n ∈ (L−1
1 Z)× (L−1

2 Z) we have written

(A.19) f̂(n) =
∫

Σ
f(x′)

e−2πin·x′

L1L2
dx′.

It is well known that P : Hs(Σ)→ Hs+1/2(Ω−) is a bounded linear operator for s > 0. We now
show that how derivatives of Pf can be estimated in the smaller domain Ω.

Lemma A.6. Let Pf be the Poisson integral of a function f that is either in Ḣq(Σ) or
Ḣq−1/2(Σ) for q ∈ N. Then

(A.20) ‖∇qPf‖20 . ‖f‖
2
Ḣq−1/2(Σ)

and ‖∇qPf‖20 . ‖f‖
2
Ḣq(Σ)

.

Proof. Since Pf is defined on Σ×(−∞, 0), it suffices to prove the estimates on Ω̃ := Σ×(−b+, 0)
since Ω ⊂ Ω̃. By Fubini and Parseval,

(A.21) ‖∇qPf‖2
H0(Ω̃)

.
∑

n∈(L−1
1 Z)×(L−1

2 Z)

∫ 0

−b+
|n|2q

∣∣∣f̂(n)
∣∣∣2 e4π|n|x3dx3

.
∑

n∈(L−1
1 Z)×(L−1

2 Z)

|n|2q
∣∣∣f̂(n)

∣∣∣2(1− e−4πb+|n|

|n|

)
.

However,

(A.22)
1− e−4πb+|n|

|n|
≤ min

{
4πb+,

1
|n|

}
,

which means we are free to bound the right hand side of (A.21) by either ‖f‖2
Ḣq−1/2(Σ)

or

‖f‖2
Ḣq(Σ)

. �

We will also need L∞ estimates.

Lemma A.7. Let Pf be the Poisson integral of a function f that is in Ḣq+s(Σ) for q ≥ 1 an
integer and s > 1. Then

(A.23) ‖∇qPf‖2L∞ . ‖f‖
2
Ḣq+s .

The same estimate holds for q = 0 if f satisfies
∫

Σ f = 0.
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Proof. We estimate

(A.24) ‖∇qPf‖L∞ .
∑

n∈(L−1
1 Z)×(L−1

2 Z)

∣∣∣f̂(n)
∣∣∣ |n|q

. ‖f‖Ḣq+s

 ∑
n∈(L−1

1 Z)×(L−1
2 Z)\{0}

|n|−2s

1/2

. ‖f‖Ḣq+s

if s > 1. The same estimate works with q = 0 if f̂(0) = 0. �

A.5. Transport estimate. Let Σ be either periodic or non-periodic. Consider the equation

(A.25)

{
∂tη + u ·Dη = g in Σ× (0, T )
η(t = 0) = η0

with T ∈ (0,∞]. We have the following estimate of the transport of regularity for solutions to
(A.25), which is a particular case of a more general result proved in [13]. Note that the result in
[13] is stated for Σ = R2, but the same result holds in the periodic setting Σ = (L1T)× (L2T),
as described in [14].

Lemma A.8 (Proposition 2.1 of [13]). Let η be a solution to (A.25). Then there is a universal
constant C > 0 so that for any 0 ≤ s < 2

(A.26) sup
0≤r≤t

‖η(r)‖Hs ≤ exp
(
C

∫ t

0
‖Du(r)‖H3/2 dr

)(
‖η0‖Hs +

∫ t

0
‖g(r)‖Hs dr

)
.

Proof. Use p = p2 = 2, N = 2, and σ = s in Proposition 2.1 of [13] along with the embedding
H3/2 ↪→ B1

2,∞ ∩ L∞. �

A.6. Poincaré-type inequalities. Let Σ and Ω be either periodic or non-periodic.

Lemma A.9. It holds that

(A.27) ‖f‖2L2(Ω) . ‖f‖
2
L2(Σ) + ‖∂3f‖2L2(Ω)

for all f ∈ H1(Ω). Also, if f ∈W 1,∞(Ω), then

(A.28) ‖f‖2L∞(Ω) . ‖f‖
2
L∞(Σ) + ‖∂3f‖2L∞(Ω) .

Proof. By density we may assume that f is smooth. Writing x = (x′, x3) for x′ ∈ Σ and
x3 ∈ (−b(x′), 0), we have

(A.29)
∣∣f(x′, x3)

∣∣2 =
∣∣f(x′, 0)

∣∣2 − 2
∫ 0

x3

f(x′, z)∂3f(x′, z)dz

≤
∣∣f(x′, 0)

∣∣2 + 2
∫ 0

−b(x′)

∣∣f(x′, z)
∣∣ ∣∣∂3f(x′, z)

∣∣ dz.
We may integrate this with respect to x3 ∈ (−b(x′), 0) to get

(A.30)
∫ 0

−b(x′)

∣∣f(x′, x3)
∣∣2 dx3 .

∣∣f(x′, 0)
∣∣2 + 2

∫ 0

−b(x′)

∣∣f(x′, z)
∣∣ ∣∣∂3f(x′, z)

∣∣ dz.
Now we integrate over x′ ∈ Σ to find

(A.31)
∫

Ω
|f(x)|2 dx . ‖f‖2L2(Σ) + 2

∫
Ω
|f(x)| |∂3f(x)| dx

≤ ‖f‖2L2(Σ) + ε ‖f‖2L2(Ω) +
1
ε
‖∂3f‖2L2(Ω)

for any ε > 0. Choosing ε > 0 sufficiently small then yields (A.27). The estimate (A.28) follows
similarly, taking suprema rather than integrating. �

We will need a version of Korn’s inequality, which is proved, for instance, in Lemma 2.7 [6].
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Lemma A.10. It holds that ‖u‖1 . ‖Du‖0 for all u ∈ H1(Ω; R3) so that u = 0 on Σb.

We also record the standard Poincaré inequality, which applies for functions taking either
vector or scalar values.

Lemma A.11. It holds that ‖f‖0 . ‖f‖1 . ‖∇f‖0 for all f ∈ H1(Ω) so that f = 0 on Σb.
Also, ‖f‖L∞(Ω) . ‖f‖W 1,∞(Ω) . ‖∇f‖L∞(Ω) for all f ∈W 1,∞(Ω) so that f = 0 on Σb.

A.7. An elliptic estimate. The proof of the following estimate may be found in [6] in the
non-periodic case. The same proof holds in the periodic case with obvious modification.

Lemma A.12. Suppose (u, p) solve

(A.32)


−∆u+∇p = φ ∈ Hr−2(Ω)
div u = ψ ∈ Hr−1(Ω)
(pI − D(u))e3 = α ∈ Hr−3/2(Σ)
u|Σb

= 0.

Then for r ≥ 2,

(A.33) ‖u‖2Hr + ‖p‖2Hr−1 . ‖φ‖2Hr−2 + ‖ψ‖2Hr−1 + ‖α‖2Hr−3/2 .

References

[1] H. Abels. The initial-value problem for the Navier-Stokes equations with a free surface in Lq-Sobolev spaces.
Adv. Differential Equations 10 (2005), no. 1, 45–64.

[2] R. Adams. Sobolev spaces. Pure and Applied Mathematics, Vol. 65. Academic Press, New York-London, 1975.
[3] S. Agmon, A. Douglis, L. Nirenberg. Estimates near the boundary for solutions of elliptic partial differential
equations satisfying general boundary conditions. I. Comm. Pure Appl. Math. 12 1959 623–727.

[4] S. Agmon, A. Douglis, L. Nirenberg. Estimates near the boundary for solutions of elliptic partial differential
equations satisfying general boundary conditions. II. Comm. Pure Appl. Math. 17 1964 35–92.

[5] H. Bae. Solvability of the free boundary value problem of the Navier-Stokes equations. Discrete Contin. Dyn.
Syst. 29 (2011), no. 3, 769–801.

[6] J. Beale. The initial value problem for the Navier-Stokes equations with a free surface. Comm. Pure Appl.
Math. 34 (1981), no. 3, 359–392.

[7] J. Beale. Large-time regularity of viscous surface waves. Arch. Rational Mech. Anal. 84 (1983/84), no. 4,
307–352.

[8] J. Beale, T. Nishida. Large-time behavior of viscous surface waves. Recent topics in nonlinear PDE, II (Sendai,
1984), 1–14, North-Holland Math. Stud., 128, North-Holland, Amsterdam, 1985.

[9] J.P. Bourguignon, H. Brezis. Remarks on the Euler equation. J. Functional Analysis 15 (1974), 341–363.
[10] D. Christodoulou, H. Lindblad. On the motion of the free surface of a liquid. Comm. Pure Appl. Math. 53
(2000), no. 12, 1536–1602.

[11] D. Coutand, S. Shkoller. Unique solvability of the free-boundary Navier-Stokes equations with surface ten-
sion. Preprint (2003) [arXiv:math/0212116].

[12] D. Coutand, S. Shkoller. Well-posedness of the free-surface incompressible Euler equations with or without
surface tension. J. Amer. Math. Soc. 20 (2007), no. 3, 829–930.

[13] R. Danchin. Estimates in Besov spaces for transport and transport-diffusion equations with almost Lipschitz
coefficients. Rev. Mat. Iberoamericana 21 (2005), no. 3, 863–888.

[14] R. Danchin. Fourier analysis methods for PDEs. Preprint (2005). Lab. d’Analyse et de Math. Appliques,
UMR 8050, http://perso-math.univ-mlv.fr/users/danchin.raphael/recherche.html.

[15] I. V. Denisova. Problem of the motion of two viscous incompressible fluids separated by a closed free interface.
Acta Appl. Math. 37 (1994), no. 1-2, 31–40.

[16] L. Evans. Partial differential equations. Second edition. Graduate Studies in Mathematics, 19. American
Mathematical Society, Providence, RI, 2010.

[17] P. Germain, N. Masmoudi, J. Shatah. Global solutions for the gravity water waves equation in dimension 3.
Preprint (2009) [arXiv:math.AP/0906.5343].

[18] Y. Guo, I. Tice. Decay of viscous surface waves without surface tension. Unpublished monograph (2010)
[arXiv:math.AP/1011.5179].

[19] Y. Guo, I. Tice. Decay of viscous surface waves without surface tension in horizontally infinite domains.
Preprint (2011) [arXiv:math.AP/1011.5179].

[20] Y. Guo, I. Tice. Almost exponential decay of periodic viscous surface waves without surface tension. Preprint
(2011) [arXiv:math.AP/1011.5179].

[21] Y. Hataya. Decaying solution of a Navier-Stokes flow without surface tension. J. Math. Kyoto Univ. 49
(2009), no. 4, 691–717.



62 YAN GUO AND IAN TICE

[22] D. Lannes. Well-posedness of the water-waves equations. J. Amer. Math. Soc. 18 (2005), no. 3, 605–654.
[23] H. Lindblad. Well-posedness for the motion of an incompressible liquid with free surface boundary. Ann. of
Math. 162 (2005), no. 1, 109–194.

[24] T. Nishida, Y. Teramoto, H. Yoshihara. Global in time behavior of viscous surface waves: horizontally
periodic motion. J. Math. Kyoto Univ. 44 (2004), no. 2, 271–323.
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