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1. Introduction

1.1. Porous media. Consider a fluid moving in a bounded, open, connected set Ω ⊂ Rd
(d = 2, 3) with smooth boundary. If the fluid is viscous and incompressible, we model the flow
with the incompressible Navier-Stokes equations:

ρ(∂tu+ u · ∇u) = µ∆u−∇p+ f in Ω

div u = 0 in Ω

u = 0 on ∂Ω.

(1.1)

Here u : Ω×R+ → R3 is the fluid velocity, p : Ω×R+ → R is the fluid pressure, f : Ω×R+ → R3

is the external force acting on the fluid, ρ > 0 is the constant fluid density, and µ > 0 is the
constant fluid viscosity. The incompressibility condition corresponds to the second equation:
the divergence-free condition guarantees that the fluid flow is volume-preserving

The term ∂tu+ u · ∇u is the acceleration of the fluid. If f doesn’t depend on time, then it’s
reasonable to assume that the net acceleration on the fluid vanishes everywhere in Ω, i.e. that
the fluid is in an equilibrium configuration. This leads to the Stokes equations:

−∆u+∇p = f in Ω

div u = 0 in Ω

u = 0 on ∂Ω.

(1.2)

Here we have set µ = 1 for convenience. Doing so is no loss of generality, as we can always
employ a scaling argument so that µ = 1 in the scaled coordinate system. Note that we would
also arrive at the Stokes system (1.2) by linearizing (1.1), assuming f is time-independent, and
looking for a static solution for which ∂tu = 0.

Our goal in these notes is to study the behavior of a fluid flowing in a porous medium
such as sand, soil, or porous rocks. The idea is that, while the fluid domain is assumed to
be connected, it is permeated by a solid microstructure through which the fluid flows. This
structure is assumed to be periodic and very small relative to the size of the domain. The aim,
then, is to derive an equation for the effective dynamics of the fluid in the limit as the size of
the microstructure vanishes.

1.2. Defining the microstructure. Our aim now is to describe how to obtain a model of
a porous medium that is amenable to analysis via homogenization methods. We must first
describe the microstructure.

The periodic unit cell is defined as Y = Rd/Zd. To any subset A ⊆ Y we associate the lifted
set L(A) ⊆ Rd, defined by

L(A) = {x ∈ Rd | [x] ∈ A}, (1.3)

where [x] ∈ Y is the equivalence class associated to x ∈ Rd. We assume that the cell Y is the
disjoint union Y = Ys ∪ Yf , where Yf denotes the “fluid part” of the cell and Ys denotes the
“solid part.” To model a porous medium, it is natural to allow L(Ys) to be a connected set,
corresponding to an infinite periodic solid structure in which the fluid flows. For simplicity, in
these notes we will consider only the case in which Ys is strictly contained within the unit cell.
This is the case considered by Tartar [4], who was the first to rigorously derive the effective
dynamics. Later work by Allaire [1] and Polisevsky [2] generalized Tartar’s result to handle the
more general case in which the microstructure extends to the boundary of each cell, generating
a connected periodic solid network.

We make the following assumptions on Ys.

(1) Ys ⊂ Y is a non-empty closed set of positive measure.
(2) L(Ys) ∩ ∂[0, 1]d = ∅. That is, the solid part of Y is strictly contained in the unit cell.
(3) ∂Ys is smooth.
(4) Rd\L(Ys) is connected.

We then define Yf = Y \Ys, which is non-empty and open by virtue of (1) and (2) above. Item

(3) implies that ∂Yf and ∂L(Yf ) are both smooth. Item (4) guarantees that L(Yf ) = Rd\L(Ys)
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is connected. This means that fluid may flow anywhere throughout the porous medium; it does
not get trapped by the infinite solid structure.

We will let ε > 0 denote the scale of the microstructure. It is convenient to decompose Rd
into ε− cells. For m ∈ Zd we write

Y ε
m = [εm1, ε(m1 + 1))× · · · × [εmd, ε(md + 1)), (1.4)

where we view Y ε
m ⊂ Rd as being endowed with the subset topology of Rd, not with the periodic

topology of Y itself. This then allows us to tile

Rd =
⋃
m∈Zd

Y ε
m. (1.5)

We will often write

Y ε
m;f = εL(Yf ) ∩ Y ε

m ⊂ Rd and Y ε
m;s = εL(Ys) ∩ Y ε

m ⊂ Rd (1.6)

to denote the fluid and solid parts of the ε−cells, respectively.
Recall that we have assumed that Ω is bounded, open, and connected. Define the set of

interior ε−cells to be
Iε(Ω) = {m ∈ Zd | Y ε

m ⊂ Ω}. (1.7)

This set is useful because if we restrict to using it to define the microstructure, we never have
to worry about the solid part of Y ε

m intersecting ∂Ω and complicating the regularity of the fluid
domain’s boundary. We define

Ωε = Ω\
⋃

m∈Iε(Ω)

Y ε
m;s. (1.8)

Notice in particular that Ωε is bounded, open, and connected, and ∂Ωε is smooth.
We will assume henceforth that ε ∈ (0, ε0), with ε0 < 1 chosen small enough to guarantee

that the following hold for all 0 < ε < ε0:

(1) Iε(Ω) 6= ∅, and
(2) {x ∈ Ω | dist(x, ∂Ω) > ε} 6= ∅.

The first assumption guarantees that Ωε 6= Ω, i.e. there is microstructure embedded in Ω. The
second is a technical assumption made for convenience in proving some lemmas. Since we will
ultimately send ε→ 0, neither of these assumptions induces a loss of generality.

1.3. Darcy’s law. Consider the Stokes problem in Ωε for every ε ∈ (0, ε0):
−∆uε +∇pε = f in Ωε

div uε = 0 in Ωε

uε = 0 on ∂Ω

(1.9)

where f ∈ L2(Ω) is some fixed function. Rather than bother with the fine details of each
ε−problem, it’s natural to seek an effective equation for uε and pε that is valid in the limit
ε→ 0. This is the problem of homogenizing the Stokes system.

A formal two-scale analysis of this problem (see for instance [3]) suggests that

uε ≈ ε2u and pε ≈ p as ε→ 0, (1.10)

where u and p solve Darcy’s law in Ω:
u = K(f −∇p) in Ω

div u = 0 in Ω

u · ν = 0 on ∂Ω.

(1.11)

Here K ∈ Rd×d is a constant symmetric positive definite tensor called the permeability tensor
that can be computed in terms of the microstructure (see Definition 6.1). The system (1.11)
gives rise to a single elliptic equation for p, which determines it uniquely (under the assumption
of zero-average). This in turn determines u uniquely.

Our goal in these notes is to prove this result by following the proof of Tartar [4], who was
the first to derive Darcy’s law rigorously as the homogenization of the Stokes problem. We refer
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to Theorem 6.6 for a precise statement of the result. In order to make the notes more self-
contained, we have expanded on the arguments used in [4], and we have included a discussion
of how to solve the Stokes problem.

2. Function spaces

2.1. Definitions. We need to define various function spaces that will be useful in these notes.
Throughout this section we assume that Γ denotes either a bounded, open, connected subset
of Rd with smooth boundary, or else Yf . In the latter case, the functions on Γ inherit the

periodicity of Y = Rd\Zd.
We begin with the usual L2 based Sobolev space

H1(Γ) = {u ∈ L2(Γ) | ∇u ∈ L2(Γ)}. (2.1)

Here we make no notational distinction between scalar or vector valued Sobolev spaces: which
space is intended will always be clear from the context. We write

H1
0 (Γ) = {u ∈ H1(Γ) | u = 0 on ∂Γ} (2.2)

and

H1
0,σ(Γ) = {u ∈ H1

0 (Γ) | div u = 0}. (2.3)

The symbol σ is used here because these vector fields are often called “solenoidal.” Clearly
H1

0,σ(Γ) is only for vector-valued functions. We endow H1
0 (Γ) with the inner-product

(u, v)1 =

∫
Γ
∇u : ∇v, (2.4)

where : denotes either the Frobenius inner-product when u is vector valued, or else the usual
dot-product when u is scalar. This is an inner-product by virtue of the Poincaré inequality. We
write

‖u‖1 = ‖u‖H1 = ‖u‖H1(Γ) =
√

(u, u)1 (2.5)

for the norm generated by (·, ·)1. We adopt the usual convention of writing

H−1(Γ) = (H1
0 (Γ))∗, (2.6)

where ∗ denotes the dual space.
We will need the subspace of L2 orthogonal to constants:

◦
L2(Γ) = {u ∈ L2(Γ) |

∫
Γ
u = 0}. (2.7)

We will denote the inner-product on L2 by

(u, v)0 =

∫
Γ
u · v, (2.8)

where the 0 refers to the fact that L2 is the Sobolev space with 0 derivatives in L2. We write

‖u‖0 = ‖u‖L2 = ‖u‖L2(Γ) =
√

(u, u)0 (2.9)

for the norm generated by (·, ·)0. We will also need the solenoidal vectors in L2:

L2
σ(Γ) = {u ∈ L2(Γ) | div u = 0 in the sense of distributions}. (2.10)

When we need to specify the dependence of (u, v)1 or (u, v)0 on the space Γ over which
integration is performed, we will sometimes write (u, v)1,Γ and (u, v)0,Γ.
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2.2. Some properties. The solenoidal spaces behave well with respect to smooth approxima-
tion.

Proposition 2.1 (See §1.4 of Temam’s book [5]). Let

Dσ(Γ) = {ϕ ∈ C∞c (Γ;Rd) | divϕ = 0}. (2.11)

The following hold.

(1) Dσ(Γ) is dense in L2
σ(Γ) with respect to the L2 norm.

(2) Dσ(Γ) is dense in H1
0,σ(Γ) with respect to the H1 norm.

The space
◦
L2(Γ) is nice in the sense that it comes with a version of the trace theorem, even

though the space provides very little control of the derivatives.

Proposition 2.2. Let u ∈ L2
σ(Γ) and write ν : ∂Γ→ Sd−1 for the outward-pointing unit normal

on ∂Γ. Then u · ν is well-defined as an element of H−1/2(∂Γ) = (H1/2(Γ))∗, and moreover
u · ν = 0.

Proof. Assume initially that u is smooth and satisfies u,div u ∈ L2. Let f ∈ H1/2(Γ) and let

f̃ ∈ H1(Γ) denote an extension of f such that
∥∥∥f̃∥∥∥

1
. ‖f‖1/2. Then

∣∣∣〈u · ν, f〉−1/2

∣∣∣ =

∣∣∣∣∫
∂Γ
u · νf

∣∣∣∣ =

∣∣∣∣∫
Γ

div(f̃u)

∣∣∣∣ =

∣∣∣∣∫
Γ
∇f̃ · u+ f̃ div u

∣∣∣∣
≤
∥∥∥f̃∥∥∥

1
(‖u‖0 + ‖div u‖0) . ‖f‖1/2 (‖u‖0 + ‖div u‖0). (2.12)

This shows that the normal trace map u · ν is well defined in H−1/2(∂Γ) for every u in the
closure of C∞(Γ̄) with respect to the norm

‖u‖2 =

∫
Γ
|u|2 + |div u|2 . (2.13)

In particular, Proposition 2.1 implies that u · ν ∈ H−1/2(∂Γ). But since u ∈ Dσ(Γ) requires

〈u · ν, f〉−1/2 = 0 for all f ∈ H1/2(∂Γ), we find that u · ν = 0.
�

3. Pressure as a Lagrange multiplier

Here we continue to let Γ be a set of the form described at the start of Section 2.

3.1. A splitting of H1
0 (Γ). Our goal here is to orthogonally decompose H1

0 (Γ) in a way that
lets us understand the role of the pressure in the Stokes system. We begin by defining a special

operator. Let Q :
◦
L2(Γ)→ H1

0 (Γ) be defined via

(p,div u)0 = (Qp, u)1 for every u ∈ H1
0 (Γ). (3.1)

The operator Q is clearly linear, and it is bounded since

‖Qp‖21 = (Qp,Qp)1 = (p,divQp)0 ≤ ‖p‖0 ‖divQp‖0 . ‖p‖0 ‖Qp‖1 (3.2)

implies that

‖Qp‖1 . ‖p‖0 . (3.3)

Our aim is to show that the range of Q splits H1
0 (Γ) nicely. Before we can prove this we need

a technical lemma.

Lemma 3.1. Let p ∈
◦
L2(Γ). Then there exists u ∈ H1

0 (Γ) such that div u = p, and

‖u‖1 . ‖p‖0 . (3.4)
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Proof. Let ϕ solve {
∆ϕ = p in Γ

∂νϕ = 0 on ∂Γ.
(3.5)

A unique weak solution exists in H1(Γ)∩
◦
L2(Γ) since p ∈

◦
L2(Γ) guarantees that the compatibility

condition ∫
Γ
p = 0 (3.6)

is satisfied. The usual elliptic regularity guarantees that actually u ∈ H2(Γ), and we have the
estimate

‖ϕ‖2 . ‖p‖0 . (3.7)

This H2 estimate guarantees that ∇ϕ×ν ∈ H1/2(∂Γ), and so the usual trace theory in H2(Γ)
allows us to find v ∈ H2(Γ) such that{

v = 0 on ∂Γ

∂νv = −∇ϕ× ν on ∂Γ.
(3.8)

Moreover, we may do so in a bounded way:

‖v‖2 . ‖∇ϕ× ν‖1/2 . ‖ϕ‖2 . ‖p‖0 . (3.9)

Set u = ∇ϕ+ curl v. By construction

div u = ∆ϕ = p in Γ, and u = 0 on ∂Γ (3.10)

(the latter equality is most easily seen by writing curl v in an orthogonal frame determined by
ν and tangent vectors). We know that u ∈ H1(Γ) since ϕ ∈ H2(Γ) and v ∈ H2(Γ), and we have
the estimate

‖u‖1 ≤ ‖∇ϕ‖1 + ‖curl v‖1 . ‖ϕ‖2 + ‖v‖2 . ‖p‖0 . (3.11)

�

With this lemma in hand, we can study the range of Q in H1
0 (Γ).

Proposition 3.2. The following hold.

(1) We have the inequalities

‖p‖0 . ‖Qp‖1 . ‖p‖0 (3.12)

for every p ∈
◦
L2(Γ).

(2) Let R(Q) = {Qp | p ∈
◦
L2(Γ)}. Then R(Q) ⊆ H1

0 (Γ) is closed.

(3) Q :
◦
L2(Γ)→ R(Q) is an isomorphism.

Proof. It suffices to prove the first item since the second and third follow easily form it. Let

p ∈
◦
L2(Γ). Set u ∈ H1

0 (Γ) to be the function given by Lemma 3.1. Since div u = p, we may
estimate

‖p‖20 = (p, p)0 = (p,div u)0 = (Qp, u)1 ≤ ‖Qp‖1 ‖u‖1 . ‖Qp‖1 ‖p‖0 , (3.13)

where the last inequality follows from the estimate in Lemma 3.1. Since Q is a bounded operator,
we deduce that

‖p‖0 . ‖Qp‖1 . ‖p‖0 for all p ∈
◦
L2(Γ). (3.14)

�

Now we decompose H1
0 (Γ).

Proposition 3.3. We have the orthogonal decomposition

H1
0 (Γ) = R(Q)⊕H1

0,σ(Γ). (3.15)
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Proof. Since R(Q) is a closed subspace of H1
0 (Γ), it suffices to prove that R(Q)⊥ = H1

0,σ(Γ).

Let u ∈ H1
0,σ(Γ). Then

0 = (p,div u)0 = (Qp, u)1 for every p ∈
◦
L2(Γ), (3.16)

and so u ∈ R(Q)⊥. Hence H1
0,σ(Γ) ⊆ R(Q)⊥.

On the other hand, if u ∈ R(Q)⊥, then

(p,div u)0 = (Qp, u)1 = 0 for all p ∈
◦
L2(Γ), (3.17)

and so div u = C for some constant C ∈ R. Then

C |Γ| =
∫

Γ
C =

∫
Γ

div u =

∫
∂Γ
u · ν = 0⇒ C = 0, (3.18)

and so we find that u ∈ H1
0,σ(Γ). Hence R(Q)⊥ ⊆ H1

0,σ(Γ).
�

3.2. Finding the pressure. With the orthogonal decomposition of Proposition 3.3 in hand,
we can completely characterize the functionals that vanish on H1

0,σ(Γ).

Theorem 3.4. Suppose that Λ ∈ H−1(Γ) satisfies Λ(v) = 0 for all v ∈ H1
0,σ(Γ). Then there

exists a unique p ∈
◦
L2(Γ) such that Λ(v) = (p,div v)0 for all v ∈ H1

0 (Γ). Also,

‖p‖0 . ‖Λ‖H−1(Γ) . (3.19)

Proof. According to the Riesz representation theorem, there exists u ∈ H1
0 (Γ) such that Λ(v) =

(u, v)1 for all v ∈ H1
0 (Γ). The decomposition given by Proposition 3.3 guarantees that u ∈ R(Q).

Then u = Qp for some unique p ∈
◦
L2(Γ), and

Λ(v) = (u, v)1 = (Qp, v)1 = (p,div v)0 for all v ∈ H1
0 (Γ). (3.20)

Let v ∈ H1
0 (Γ) be given by Lemma 3.1. Then

‖p‖20 = (p,div v)0 = Λ(v) ≤ ‖Λ‖H−1(Γ) ‖v‖1 . ‖Λ‖H−1(Γ) ‖p‖0 , (3.21)

which implies (3.19). �

Remark 3.5. It is often said that this theorem shows that the pressure in the Stokes problem
arises as a Lagrange multiplier. This will be justified in the next section (see Remark 4.4).

4. Solving the Stokes problem

Our goal now is to produce weak solutions to the Stokes problem (1.2) in domains Γ of the
form considered above. Let’s assume for the moment that we have a smooth solution pair (u, p)
to (1.2) for some smooth f . Taking the dot-product of the first equation with v ∈ H1

0 (Γ) and
integrating over Γ, we find that∫

Γ
f · v =

∫
Γ
(−∆u+∇p) · v =

∫
Γ
∇u : ∇v − pdiv v +

∫
∂Γ
−v · ∂νu+ pv · ν

=

∫
Γ
∇u : ∇v − p div v. (4.1)

We may rewrite this in a manner suitable for defining weak solutions:

(u, v)1 − (p,div v)0 = 〈f, v〉−1 , (4.2)

where 〈·, ·〉−1 denotes the dual pairing between H1
0 (Γ) and H−1(Γ). The equality (4.2) seems

like a good starting point for defining a notion of weak solution. We also want to enforce the
incompressibility condition div u = 0, so it’s natural to require u ∈ H1

0,σ(Γ). This leads us to a
definition.
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Definition 4.1. Let f ∈ H−1(Γ). A weak solution to the Stokes problem (1.2) is a pair (u, p)
with

u ∈ H1
0,σ(Γ) and p ∈

◦
L2(Γ) (4.3)

such that

(u, v)1 − (p,div v)0 = 〈f, v〉−1 for every v ∈ H1
0 (Γ). (4.4)

Remark 4.2. The inclusion p ∈
◦
L2(Γ) is natural since (1.2) only requires that p is determined

up to a constant. As such, we might as well require that
∫

Γ p = 0 in order to choose that
constant.

The difficulty with the weak formulation is evident when we realize that we have to find u
and p simultaneously, and the usual weak solution machinery (namely Lax-Milgram), produces
only a single function. A resolution to this problem comes when we think about how we would
get energy estimates: we use u as a test function and notice that

‖u‖21 = (u, u)1 = (u, u)1 − (p,div u)0 = 〈f, u〉−1 . (4.5)

The key to this equality is that if we use v ∈ H1
0,σ(Γ) as a test function, then the pressure term

completely disappears. That is, if (4.2) holds, then

(u, v)1 = 〈f, v〉−1 for every v ∈ H1
0,σ(Γ). (4.6)

Since u ∈ H1
0,σ(Γ) as well, this looks a lot more amenable to an application of Lax-Milgram

(or Riesz or the direct method in the calculus of variations). The big question is: can we work
directly with (4.6) and then somehow recover the pressure to produce a weak solution? The
answer is yes, and the reason is entirely due to Theorem 3.4.

Theorem 4.3. Let f ∈ H−1(Γ). Then there exists a unique weak solution (u, p) to the Stokes
problem (1.2). Moreover,

‖u‖1 + ‖p‖0 . ‖f‖H−1(Γ) . (4.7)

Proof. Since H1
0,σ(Γ) ⊂ H1

0 (Γ), we have the natural inclusion

H−1(Γ) ⊂ (H1
0,σ(Γ))∗. (4.8)

As such, f defines a bounded linear function on H1
0,σ(Γ). The Riesz representation theorem,

applied to the Hilbert space H1
0,σ(Γ), guarantees the existence of a unique u ∈ H1

0,σ(Γ) such
that

(u, v)1 = 〈f, v〉−1 for every v ∈ H1
0,σ(Γ). (4.9)

Choosing v = u, we arrive at the estimate

‖u‖21 = (u, u)1 = 〈f, u〉−1 ≤ ‖f‖H−1(Γ) ‖u‖1 , (4.10)

and hence

‖u‖1 ≤ ‖f‖H−1(Γ) . (4.11)

Notice here that we don’t have equality due to the fact that H−1(Γ) is smaller than the dual
of H1

0,σ(Γ).

Now define Λ ∈ H−1(Γ) via

Λ(v) = (u, v)1 − 〈f, v〉−1 for all v ∈ H1
0 (Γ). (4.12)

We know that Λ is bounded since

|Λ(v)| ≤ ‖u‖1 + ‖f‖H−1(Γ) . ‖f‖H−1(Γ) (4.13)

whenever v ∈ H1
0 (Γ) satisfies ‖v‖1 = 1, and hence

‖Λ‖H−1(Γ) . ‖f‖H−1(Γ) . (4.14)
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According to (4.9), Λ(v) = 0 for all v ∈ H1
0,σ(Γ). Theorem 3.4 then provides us with the

existence of a unique p ∈
◦
L2(Γ) such that

(p,div v) = Λ(v) = (u, v)1 − 〈f, v〉−1 for all v ∈ H1
0 (Γ) (4.15)

and

‖p‖0 . ‖Λ‖H−1(Γ) . ‖f‖H−1(Γ) . (4.16)

We have now found a pair (u, p) ∈ H1
0,σ(Γ)×

◦
L2(Γ) such that

(u, v)1 − (p,div v)0 = 〈f, v〉−1 for every v ∈ H1
0 (Γ). (4.17)

This constitutes a weak solution to the Stokes system (1.2). Combining (4.11) and (4.16) yields
the estimate

‖u‖1 + ‖p‖0 . ‖f‖H−1(Γ) . (4.18)

It remains to prove uniqueness. If (u1, p1) and (u2, p2) are both weak solutions, then u =
u1 − u2 and p = p1 − p2 satisfy

(u, v)1 − (p,div v)0 = 0 for every v ∈ H1
0 (Γ). (4.19)

Choosing v = u ∈∈ H1
0,σ(Γ) leads us to the equality

‖u‖21 = (u, u)1 = (u, u)1 − (p,div u)0 = 0, (4.20)

and hence u = 0. Choosing v ∈ H1
0 (Γ) such that div v = p as in Lemma 3.1 shows that

‖p‖20 = (p, p) = − (u, v)1 + (p,div v)0 = 0, (4.21)

and hence p = 0.
�

Remark 4.4. As we mentioned above, it is often said that the pressure in the Stokes problem
is determined as a Lagrange multiplier. This would have been more evident if we had employed
the direct method to produce u ∈ H1

0,σ(Γ) in the first step of the proof. Indeed, we could have
found u via a minimization argument:

E(u) = min
v∈H1

0,σ(Γ)
E(v), where E(v) =

1

2
‖v‖21 − 〈f, v〉−1 . (4.22)

We can view this as a constrained minimization on H1
0 (Γ), where the constraint is the solenoidal

condition div u = 0. Constrained minimization gives rise to Lagrange multipliers, and so the
equation

(u, v)1 − 〈f, v〉−1 = (p,div v)0 for every v ∈ H1
0 (Γ) (4.23)

tells us that the pressure term on the right is the Lagrange multiplier corresponding to the
divergence-free constraint.

5. Technical preliminaries for Darcy’s law

Here we develop some of the main technical results from Tartar’s paper [4].

5.1. The Poincaré inequality in Ωε. The first result specifies the dependence of the constant
in Poincaré’s inequality on ε.

Lemma 5.1. Let Ωε be given by (1.8). There exists a constant C ≥ 0, independent of ε, such
that ∫

Ωε

|u|2 ≤ Cε2

∫
Ωε

|∇u|2 (5.1)

for every u ∈ H1
0 (Ωε).
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Proof. Notice first that, by construction,

Kε :=
⋃

m∈Iε(Ω)

Y ε
m;f ⊂ Ωε. (5.2)

The usual Poincaré inequality yields a constant C0 > 0 such that∫
Y 1
0;f

|u|2 ≤ C0

∫
Y 1
0;f

|∇u|2 (5.3)

for every u ∈ H1(Y 1
0;f ) such that u = 0 on the solid boundary, ∂Y 1

0;s. Upon making the change

of variables x 7→ ε(x+m), we find that∫
Y εm;f

|u|2 ≤ C0ε
2

∫
Y εm;f

|∇u|2 (5.4)

for every u ∈ H1(Y ε
m;f ) such that u = 0 on the solid boundary, ∂Y ε

m;s.

On the other hand, if we write Sε = {x ∈ Ω | dist(x, ∂Ω) <
√
dε}, then we have the inclusion

Ω\K̄ε ⊂ Sε. (5.5)

By flattening the boundary and employing the fundamental theorem of calculus and an ap-
proximation argument, we can prove a variant of the Poincaré inequality in Sε: there exists a
constant C1 > 0, independent of ε, such that∫

Sε
|u|2 ≤ C1ε

2

∫
Sε
|∇u|2 (5.6)

for every u ∈ H1(Sε) such that u = 0 on ∂Ω.
Suppose now that u ∈ H1

0 (Ωε). Then u = 0 on ∂Y ε
m;s for every m ∈ Iε(Ω), and so we can

sum (5.4) over m ∈ Iε(Ω) to find that∫
Kε

|u|2 ≤ C0ε
2

∫
Kε

|∇u|2 . (5.7)

The restriction of u to Sε ∩ Ωε vanishes on ∂Ω and on ∂Y ε
m;s for each m ∈ Iε(Ω) such that

Y ε
m;s∩Sε 6= 0. As such, we may extend u by 0 in each such Y ε

m;s to view it as element of H1(Sε)
such that u = 0 on ∂Ω. Applying (5.6) then gives the estimate∫

Sε∩Ωε

|u|2 =

∫
Sε
|u|2 ≤ C1ε

2

∫
Sε
|∇u|2 = C1ε

2

∫
Sε∩Ωε

|∇u|2 . (5.8)

We sum (5.7) and (5.8) to arrive at the estimate∫
Ωε

|u|2 =

∫
Kε∪(Sε∩Ωε)

|u|2 ≤ C0ε
2

∫
Kε

|∇u|2 + C1ε
2

∫
Sε∩Ωε

|∇u|2 ≤ (C0 + C1)ε2

∫
Ωε

|∇u|2 .

(5.9)
Here we have used the fact that Ωε ⊆ Kε ∪ (Sε ∩ Ωε). This is the inequality (5.1).

�

5.2. Extension and restriction operators. Our goal in this section is to construct a restric-

tion operator Rε : H1
0 (Ω) → H1

0 (Ωε) and an extension operator Eε :
◦
L2(Ωε) →

◦
L2(Ω). The

latter is essential in Tartar’s derivation of Darcy’s law since it allows us to extend the pressure
from the Stokes problem in Ωε to all of Ω.

We begin with a technical construction from [4].

Lemma 5.2. Suppose that Σ ⊂ Y 1
0 is a smooth surface that encloses Y 1

0;s ⊂ Y 1
0 such that

∂Y 1
0;s ∩ Σ = ∅. Write YM for the open set contained between ∂Y 1

0;s and Σ. Then for each

u ∈ H1(Y 1
0 ) there exist a unique pair (v, q) with v ∈ H1(YM ) and q ∈

◦
L2(YM ) such that

−∆v +∇q = −∆u in YM (5.10)
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in the weak sense:

(v, w)1 − (q,divw)0 = (u,w)1 for all w ∈ H1
0 (YM ). (5.11)

Additionally,

div v = div u+
1

|YM |

∫
Y 1
0;s

div u in YM (5.12)

and
v = u on Σ and v = 0 on ∂Y 1

0;s. (5.13)

Moreover,
‖v‖H1(YM ) . ‖u‖H1(Y 1

0 ) . (5.14)

Proof. We will exploit linearity to construct v as a sum

v = Φ + Ψ + Ξ. (5.15)

We first use the usual trace theory to choose Φ ∈ H1(YM ) such that

Φ = u on Σ and Φ = 0 on ∂Y 1
0;s (5.16)

with
‖Φ‖1 . ‖u‖H1/2(∂Y 1

0;s)
. ‖u‖1 . (5.17)

Next we notice that (writing ν for the normal vector pointing out of YM )∫
YM

(
−div Φ + div u+

1

|YM |

∫
Y 1
0;s

div u

)

=

∫
∂Y 1

0;s

(−Φ · ν + u · ν) +

∫
Σ

(−Φ · ν + u · ν) +

∫
Y 1
0;s

div u

=

∫
∂Y 1

0;s

u · ν +

∫
Σ

0 +

∫
∂Y 1

0;s

−u · ν = 0.

(5.18)

Here the negative sign appears in the third term of the third inequality because −ν is the vector
pointing out of Y 1

0;s. This means that

− div Φ + div u+
1

|YM |

∫
Y 1
0;s

div u ∈
◦
L2(Ym). (5.19)

This allows us to use Lemma 3.1 in order to find Ψ ∈ H1
0 (YM ) satisfying

div Ψ = −div Φ + div u+
1

|YM |

∫
Y 1
0;s

div u in YM (5.20)

and
‖Ψ‖1 . ‖Φ‖1 + ‖u‖1 . ‖u‖1 . (5.21)

Finally, we use f = −∆(u − Φ − Ψ) ∈ H−1(YM ) in Theorem 4.3 to find Ξ ∈ H1
0,σ(YM ) and

q ∈
◦
L2(YM ) such that

(Ξ, w)1 − (q,divw)0 = (u− Φ−Ψ, w)1 for all w ∈ H1
0 (YM ) (5.22)

and
‖Ξ‖1 + ‖q‖0 . ‖−∆(u− Φ−Ψ)‖−1 . ‖u‖1 + ‖Φ‖1 + ‖Ψ‖1 . ‖u‖1 . (5.23)

Then v = Φ + Ψ + Ξ satisfies

(v, w)1 − (q,divw)0 = (u,w)1 for all w ∈ H1
0 (YM ), (5.24)

div v = div(Φ + Ψ + Ξ) = div u+
1

|YM |

∫
Y 1
0;s

div u in YM , (5.25)

and
v = Φ + Ψ + Ξ = u+ 0 + 0 = u on Σ and v = 0 on ∂Y 1

0;s (5.26)
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in addition to the estimate

‖v‖1 ≤ ‖Φ‖1 + ‖Ψ‖1 + ‖Ξ‖1 . ‖u‖1 . (5.27)

It remains only to prove uniqueness. This can be done as in the uniqueness proof from
Theorem 4.3. We leave the details as an exercise.

�

This construction allows us to define a special restriction operator.

Theorem 5.3. There exists a restriction operator Rε : H1
0 (Ω)→ H1

0 (Ωε) satisfying the follow-
ing properties.

(1) We have the estimates

‖Rεw‖L2(Ωε)
. ‖w‖L2(Ω) + ε ‖∇w‖L2(Ω) (5.28)

and

‖∇Rεw‖L2(Ωε)
.

1

ε
‖w‖L2(Ω) + ‖∇w‖L2(Ω) (5.29)

for all w ∈ H1
0 (Ω).

(2) If w ∈ H1
0 (Ωε) is extended by zero to w̃ ∈ H1

0 (Ω), then Rεw̃ = w.
(3) If w ∈ H1

0,σ(Ω), then Rεw ∈ H1
0,σ(Ωε).

Proof. We again write

Kε :=
⋃

m∈Iε(Ω)

Y ε
m;f ⊂ Ωε. (5.30)

We also write
Zε :=

⋃
m∈Iε(Ω)

Y ε
m ⊂ Ωε (5.31)

for the union of all the ε−cells contained in Ω.
Let Σ and YM be as in Lemma 5.2. Given a function u ∈ H1(Y 1

0 ) we define Ru ∈ H1(Y 1
0 )

via

Ru(x) =


0 if x ∈ Y 1

0;s

v(x) if x ∈ YM
u(x) if x ∈ Y 1

0 \(YM ∪ Y 1
0;s),

(5.32)

where v is the function constructed in Lemma 5.2. The lemma guarantees that

‖Ru‖H1(Y 1
0 ) . ‖u‖H1(Y 1

0 ) . (5.33)

Clearly Ru ∈ H1(Y 1
0;f ), Ru = 0 on ∂Y 1

0;s, and

‖Ru‖H1(Y 1
0;f ) . ‖u‖H1(Y 1

0 ) . (5.34)

Consider the mapping

φεm : Y 1
0 → Y ε

m given by φεm(y) = ε(y +m). (5.35)

By employing the change of variables x = φεm(y), we find that that for any w ∈ H1(Y ε
m),

ε−d
∫
Y εm

|w|2 dx =

∫
Y 1
0

|w ◦ φεm|
2 dy (5.36)

and

ε2−d
∫
Y εm

|∇w|2 dx =

∫
Y 1
0

|∇(w ◦ φεm)|2 dy. (5.37)

Then (5.34) implies that

‖R(w ◦ φεm)‖2H1(Y 1
0;f ) . ‖w ◦ φ

ε
m‖

2
H1(Y 1

0 ) . ε
−d ‖w‖2L2(Y εm) + ε2−d ‖∇w‖2L2(Y εm) . (5.38)

On the other hand, for g ∈ H1(Y 1
0;f ) the change of variables y = (φεm)−1(x) shows that∫

Y εm;f

∣∣g ◦ (φεm)−1
∣∣2 dx = εd

∫
Y 1
0;f

|g|2 dy (5.39)
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and ∫
Y εm;f

∣∣∇(g ◦ (φεm)−1)
∣∣2 dx = εd−2

∫
Y 1
0;f

|∇g|2 dy. (5.40)

Hence (5.38) implies that∥∥R(w ◦ φεm) ◦ (φεm)−1
∥∥2

L2(Y εm;f )
= εd ‖R(w ◦ φεm)‖2L2(Y 1

0;f ) . ‖w‖
2
L2(Y εm)+ε

2 ‖∇w‖2L2(Y εm) (5.41)

and∥∥∇(R(w ◦ φεm) ◦ (φεm)−1)
∥∥2

L2(Y εm;f )
= εd−2 ‖∇(R(w ◦ φεm))‖2L2(Y 1

0;f )

. ε−2 ‖w‖2L2(Y εm) + ‖∇w‖2L2(Y εm) . (5.42)

We now define Rεw for any w ∈ H1
0 (Ω) according to

Rεw(x) =

{
w(x) if x ∈ Ωε\Zε

R(w ◦ φεm) ◦ (φεm)−1(x) if x ∈ Y ε
m;f for m ∈ Iε(Ω).

(5.43)

Upon summing (5.41) over m ∈ Iε(Ω), we find that

‖Rεw‖2L2(Kε) . ‖w‖
2
L2(Zε) + ε2 ‖∇w‖2L2(Zε) . (5.44)

Similarly, we may sum (5.42) to find that

‖∇Rεw‖2L2(Kε) . ε
−2 ‖w‖2L2(Zε) + ‖∇w‖2L2(Zε) . (5.45)

Since

‖Rεw‖2L2(Ωε\Zε) = ‖w‖2L2(Ωε\Zε) and ‖∇Rεw‖2L2(Ωε\Zε) = ‖∇w‖2L2(Ωε\Zε) , (5.46)

Ωε = Kε ∪ (Ωε\Kε), and ε < 1, we deduce from (5.44) that

‖Rεw‖2L2(Ωε)
. ‖w‖2L2(Ω) + ε2 ‖∇w‖2L2(Ω) , (5.47)

while we deduce from (5.45) that

‖∇Rεw‖2L2(Ωε)
. ε−2 ‖w‖2L2(Ω) + ‖∇w‖2L2(Ω) . (5.48)

The estimates (5.28) and (5.29) follow easily from (5.47) and (5.48), and the fact that w = 0 on
∂Ωε follows from the fact that w = 0 on ∂Ω and Rεw = 0 on ∂Y ε

m;s for each m ∈ Iε(Ω). This
completes the proof of the first item.

To prove the second item we first note that if u ∈ H1(Y 1
0;f ) vanishes on ∂Y 1

0;s, then its

extension by zero ũ belongs to H1(Y 1
0 ). Then the pair (v, q) produced by Lemma 5.2 is in fact

(u, 0), as can easily be checked. Then Ru = u. Accordingly, whenever w ∈ H1
0 (Ωε) is extended

by zero to w̃ ∈ H1
0 (Ω), the construction of Rεw̃ guarantees that Rεw̃ = w in each cell Y ε

m;f ,
and hence Rεw̃ = w in Ωε.

The third item follows from a similar argument. If u ∈ H1(Y 1
0 ) satisfies div u = 0 in Y 1

0 , then
the function v produced by Lemma 5.2 also satisfies div v = 0. This in turn guarantees that
divRεw = 0 in Ωε whenever w ∈ H1

0 (Ω) satisfies divw = 0 in Ω.
�

The main point of the restriction operator Rε : H1
0 (Ω) → H1

0 (Ωε) is that it induces an
extension operator for the pressure.

Proposition 5.4. There exists an extension operator Eε :
◦
L2(Ωε)→

◦
L2(Ω) such that

(Eεp,div v)0,Ω =

∫
Ω
Eεp div v =

∫
Ωε

p divRεv = (p,divRεv)0,Ωε
for all v ∈ H1

0 (Ω). (5.49)

Moreover,

‖Eεp‖L2(Ω) .
1

ε
‖p‖L2(Ωε)

for every p ∈
◦
L2(Ωε), (5.50)

and
Eεp|Ωε = p+ Cε (5.51)
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for a constant Cε ∈ R that depends on ε.

Proof. For each p ∈
◦
L2(Ωε) we set Λp(v) = (p,divRεv)0,Ωε

for v ∈ H1
0 (Ω). Then the first item

of Theorem 5.3 allows us to estimate

|Λp(v)| ≤ ‖p‖0 ‖divRεv‖0 . ‖p‖0 ‖∇Rεv‖0 . ‖p‖0
(

1

ε
‖v‖0 + ‖∇v‖0

)
, (5.52)

and hence Λp ∈ H−1(Ω). The third item of Theorem 5.3 guarantees that if v ∈ H1
0,σ(Ω), then

Rεv ∈ H1
0,σ(Ωε), and hence

Λp(v) = 0 for all v ∈ H1
0,σ(Ω). (5.53)

Theorem 3.4 then provides us with a unique Eεp ∈
◦
L2(Ω) such that

(p,divRεv)0,Ωε
= Λp(v) = (Eεp,div v)0,Ω for all v ∈ H1

0 (Ω) (5.54)

and

‖Eεp‖L2(Ω) . ‖Λp‖H−1(Ω) .
1

ε
‖p‖L2(Ωε)

. (5.55)

It remains only to prove that Eεp|Ωε and p differ by a constant. For this we use the second
item of Theorem 5.3 on an element w ∈ H1

0 (Ωε) extended by 0 to an element w̃ ∈ H1
0 (Ω). We

find that ∫
Ωε

p divw =

∫
Ωε

p divRεw̃ =

∫
Ω
Eεp div w̃ =

∫
Ωε

Eεp divw, (5.56)

and hence ∫
Ωε

(p− Eεp) divw for all w ∈ H1
0 (Ωε). (5.57)

According to Lemma 3.1, for any q ∈
◦
L2(Ωε) we may find w ∈ H1

0 (Ωε) such that divw = q.
Using this above shows that ∫

Ωε

(p− Eεp)q = 0 for all q ∈
◦
L2(Ωε), (5.58)

and so

p− Eε = Cε in Ωε for some constant Cε ∈ R. (5.59)

�

6. Deriving Darcy’s law

6.1. The cell problem and the permeability tensor. The cell problem seeks solutions

(vk, qk) ∈ H1
0,σ(Yf )×

◦
L2(Yf ) for k = 1, 2, 3 to the Stokes problem

−∆vk +∇qk = ek in Yf

div vk = 0 in Yf

vk = 0 on ∂Ys

(6.1)

where ek is the unit vector in the kth direction. Unique solutions exist for k = 1, 2, 3 by virtue
of Theorem 4.3, and the solutions (vk, qk) inherit the periodicity of Y .

Definition 6.1. We define the constant permeability tensor K ∈ Rd×d via

Kij =

∫
Yf

vj · ei =
1

|Y |

∫
Yf

vj · ei. (6.2)

Our next result shows that the permeability tensor is symmetric and positive definite, which
is essential, as it will appear as the coefficient matrix in an elliptic problem later.

Proposition 6.2. The permeability tensor K ∈ Rd×d is symmetric and positive definite.
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Proof. For i, j = 1, . . . , d we may use vj as a test function in the weak formulation of the
equation for (vi, qi) to see that

Kij =

∫
Yf

vj · ei = (vi, vj)1 − (pi,div vj)0 = (vi, vj)1 = (vj , vi)1

= (vj , vi)1 − (pj , div vi)0 =

∫
Yf

vi · ej = Kji. (6.3)

Hence K is symmetric.
Let ξ ∈ Rd. Then, writing ξi for the components of ξ, we find that

Kξ · ξ =

d∑
i=1

d∑
j=1

Kijξ
iξj =

d∑
i=1

d∑
j=1

(vj , vi)1 ξ
iξj =

∥∥∥∥∥
d∑
i=1

ξivi

∥∥∥∥∥
2

1

. (6.4)

This shows that K is positive semi-definite, but we can do better.
Set

v :=
d∑
i=1

ξivi and q =
d∑
i=1

ξiqi. (6.5)

Taking linear combinations of the weak formulations of the problems for (vk, qk) leads us to the
identity

(v, w)1 − (q,divw)0 = (ξ, w)0 for all w ∈ H1
0 (Yf ). (6.6)

If v = 0, then in particular

− (q,divw)0 = (ξ, w)0 for all w ∈ H1
0 (Yf ). (6.7)

Choosing w = ∇ϕ for ϕ ∈ C∞c (Yf ) proves that

(q,−∆ϕ)0 = (ξ,∇ϕ)0 = 0 for all ϕ ∈ C∞c (Yf ), (6.8)

which means that q is weakly harmonic. Weyl’s lemma then implies that q ∈ C∞(Yf ), and then
(6.7) tells us that

∇q = ξ in Yf . (6.9)

Since Yf is connected, we deduce that

q(x) = ξ · x+ C for all x ∈ Yf , where C ∈ R is some constant. (6.10)

We now know that q is smooth and respects the periodicity of Y ; this is only possible if ξ = 0.
Hence v = 0 implies that ξ = 0. Returning to (6.4), we find that

Kξ · ξ > 0 for all ξ 6= 0, (6.11)

which means that K is positive definite.
�

6.2. Darcy’s law. Assume that f ∈ L2(Ω) is given and is independent of ε. For each ε ∈ (0, ε0),

Theorem 4.3 provides us with a unique pair (uε, pε) ∈ H1
0,σ(Ωε)×

◦
L2(Ωε) that is a weak solution

of the Ωε−Stokes problem 
−∆uε +∇pε = f in Ωε

div uε = 0 in Ωε

uε = 0 on ∂Ω.

(6.12)

We extend these solutions as follows.

Definition 6.3. Let (uε, pε) ∈ H1
0,σ(Ωε) ×

◦
L2(Ωε) be as above. We define their extensions

(ûε, p̂ε) ∈ H1
0,σ(Ω)×

◦
L2(Ω) according to

ûε = ũε and p̂ε = Eεpε, (6.13)

where ũε denotes the extension by zero of uε from Ωε to Ω, and Eε :
◦
L2(Ωε) →

◦
L2(Ω) is the

extension operator constructed in Proposition 5.4.



16 I. TICE

Next we derive a priori estimates for (ûε, p̂ε).

Proposition 6.4. Let (ûε, p̂ε) ∈ H1
0,σ(Ω)×

◦
L2(Ω) be as in Definition 6.3. Then

1

ε2
‖ûε‖L2(Ω) +

1

ε
‖∇ûε‖L2(Ω) + ‖p̂ε‖L2(Ω) . ‖f‖L2(Ω) . (6.14)

Proof. Since (uε, pε) are weak solutions of (6.12) and f ∈ L2(Ω), we know that

(uε, v)1,Ωε
− (pε,div v)0,Ωε

= (f, v)0,Ωε
for every v ∈ H1

0 (Ωε). (6.15)

We may use v = uε to arrive at the estimate

‖∇uε‖2L2(Ωε)
=

∫
Ωε

f · uε ≤ ‖f‖L2(Ω) ‖uε‖L2(Ωε)
. (6.16)

Lemma 5.1 them implies that

‖∇uε‖2L2(Ωε)
. ε ‖f‖L2(Ω) ‖∇uε‖L2(Ωε)

(6.17)

and hence
‖∇uε‖L2(Ωε)

. ε ‖f‖L2(Ω) . (6.18)

Chaining together this estimate and Lemma 5.1 then yields the estimate

‖uε‖L2(Ωε)
. ε ‖∇uε‖L2(Ωε)

. ε2 ‖f‖L2(Ω) . (6.19)

Since ûε is the extension of uε by zero, we deduce from (6.18) and (6.19) that

1

ε2
‖ûε‖L2(Ω) +

1

ε
‖∇ûε‖L2(Ω) . ‖f‖L2(Ω) . (6.20)

Since p̂ε = Eεpε, Proposition 5.4 implies that

(p̂ε, div v)0,Ω = (Eεpε, div v)0,Ω = (pε, divRεv)0,Ωε
for all v ∈ H1

0 (Ω), (6.21)

where Rε is the restriction operator constructed in Theorem 5.3. Combining (6.15) and (6.21)
yields the equality

(p̂ε,div v)0,Ω = (uε,Rεv)1,Ωε
− (f,Rεv)0,Ωε

for every v ∈ H1
0 (Ω). (6.22)

According to Lemma 3.1 there exists vε ∈ H1
0 (Ω) such that div vε = p̂ε in Ω and ‖vε‖H1(Ω) ≤

C ‖p̂ε‖L2(Ω) for a constant C > 0 independent of ε. Using v = vε in (6.22) and recalling the

estimates (5.28) and (5.29) of Theorem 5.3 as well as (6.18), we find that

‖p̂ε‖2L2(Ω) = (p̂ε,div vε)0,Ω = (uε,Rεvε)1,Ωε
− (f,Rεvε)0,Ωε

≤ ‖∇uε‖L2(Ωε)
‖∇Rεvε‖L2(Ωε)

+ ‖f‖L2(Ω) ‖Rεvε‖L2(Ωε)

. ε ‖f‖L2(Ω)

(
1

ε
‖vε‖L2(Ω) + ‖∇vε‖L2(Ω)

)
+ ‖f‖L2(Ω)

(
‖vε‖L2(Ω) + ε ‖∇vε‖L2(Ω)

)
. ‖f‖L2(Ω) ‖vε‖H1(Ω) . ‖f‖L2(Ω) ‖p̂ε‖L2(Ω) . (6.23)

Then
‖p̂ε‖L2(Ω) . ‖f‖L2(Ω) . (6.24)

The estimate (6.14) now follows by summing (6.20) and (6.24).
�

An immediate consequence of Proposition 6.4 is that there exist (u, p) ∈ L2(Ω)×
◦
L2(Ω) such

that, up to the extraction of a subsequence,

ûε
ε2

⇀ u weakly in L2(Ω) and p̂ε ⇀ p weakly in
◦
L2(Ω) as ε→ 0. (6.25)

Our next result derives some extra information.

Proposition 6.5. Let (ûε, p̂ε) ∈ H1
0,σ(Ω)×

◦
L2(Ω) be as in Definition 6.3. Assume that (6.25)

holds for (u, p) ∈ L2(Ω)×
◦
L2(Ω). Then the following hold.
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(1) u ∈ L2
σ(Ω). In particular div u = 0 in the sense of distributions and u · ν = 0 on ∂Ω,

where the equality is understood in the sense of H−1/2(∂Ω) via Proposition 2.2.

(2) Actually, p̂ε → p strongly in
◦
L2(Ω).

Proof. We have the inclusion H1
0,σ(Ω) ⊂ L2

σ(Ω) ⊂ L2(Ω). It’s easy to see that L2
σ(Ω) is a

weakly closed subspace of L2(Ω): if {wk}∞k=0 ⊂ L2
σ(Ω) and wε ⇀ w weakly in L2(Ω), then for

ϕ ∈ C∞c (Ω),

0 =

∫
Ω
wk · ∇ϕ→

∫
Ω
w · ∇ϕ⇒

∫
Ω
w · ∇ϕ = 0, (6.26)

and so divw = 0 in the sense of distributions. Since ûε/ε
2 ∈ H1

0,σ(Ω) for each ε, we deduce that

u ∈ L2
σ(Ω).

To prove that p̂ε → p strongly it suffices to prove that

lim
ε→0
‖p̂ε‖2L2(Ω) = ‖p‖2L2(Ω) . (6.27)

We may use Lemma 3.1 to find vε ∈ H1
0 (Ω) such that div vε = p̂ε in Ω and

‖vε‖H1(Ω) ≤ C ‖p̂ε‖L2(Ω) . ‖f‖L2(Ω) , (6.28)

where for the last inequality we have used Proposition 6.4. From weak compactness and Rellich’s
theorem we know that, up to the extraction of another subsequence,

vε ⇀ v weakly in H1
0 (Ω) and vε → v strongly in L2(Ω). (6.29)

Since div vε = p̂ε and p̂ε ⇀ p weakly in L2(Ω), we find that div v = p. Then

‖p̂ε‖2L2(Ω) − ‖p‖
2
L2(Ω) = (p̂ε, div vε)0,Ω − (p,div v)0,Ω

= (p̂ε − p,div v)0,Ω + (p̂ε, div(vε − v))0,Ω . (6.30)

From (6.22), (5.28), (5.29), and Proposition 6.4 we may estimate

(p̂ε,div(vε − v))0,Ω = (uε,Rε(vε − v))1,Ωε
− (f,Rε(vε − v))0,Ωε

≤ ‖∇uε‖L2(Ωε)
‖∇Rε(vε − v)‖L2(Ωε)

+ ‖f‖L2(Ω) ‖Rε(vε − v)‖L2(Ωε)

. ‖f‖L2(Ω) ε

(
1

ε
‖vε − v‖L2(Ω) + ‖∇(vε − v)‖L2(Ω)

)
+ ‖f‖L2(Ω)

(
‖vε − v‖L2(Ω) + ε ‖∇(vε − v)‖L2(Ω)

)
. ‖f‖L2(Ω)

(
‖vε − v‖L2(Ω) + ε ‖∇(vε − v)‖L2(Ω)

)
. ‖f‖L2(Ω)

(
‖vε − v‖L2(Ω) + ε ‖vε‖H1(Ω) + ε ‖v‖H1(Ω)

)
. ‖f‖L2(Ω)

(
‖vε − v‖L2(Ω) + ε ‖p̂ε‖L2(Ω) + ε ‖v‖H1(Ω)

)
. ‖f‖L2(Ω)

(
‖vε − v‖L2(Ω) + ε ‖f‖L2(Ω) + ε ‖v‖H1(Ω)

)
.

(6.31)

Since vε → v strongly in L2(Ω), we see that along this second subsequence

lim
ε→0

(p̂ε, div(vε − v))0,Ω = 0. (6.32)

On the other hand (p̂ε − p, div v)0,Ω → 0 by weak convergence. Hence, along this second subse-
quence

lim
ε→0

(
‖p̂ε‖2L2(Ω) − ‖p‖

2
L2(Ω)

)
= 0. (6.33)

Since this works for any possible choice of second subsequence, we deduce that the convergence
holds along the original subsequence, and so p̂ε → p strongly in L2(Ω). �

We have now developed all of the tools needed to prove the main result, which derives Darcy’s
law as the homogenization limit of the Ωε−Stokes problem.



18 I. TICE

Theorem 6.6. Let (ûε, p̂ε) ∈ H1
0,σ(Ω) ×

◦
L2(Ω) be as in Definition 6.3. Assume that (6.25)

holds for (u, p) ∈ L2(Ω)×
◦
L2(Ω). Then the following hold.

(1) p ∈ H1(Ω) ∩
◦
L2(Ω) is the unique zero-average solution to the elliptic problem{

−div(K∇p) = −div(Kf) in Ω

K(f −∇p) · ν = 0 on ∂Ω
(6.34)

in the weak sense:∫
Ω
K∇p · ∇w =

∫
Ω
Kf · ∇w for all w ∈ H1(Ω). (6.35)

Here K ∈ Rd×d is the permeability tensor given by Definition 6.1.
(2) u = K(f −∇p) in Ω.

Since (u, p) are uniquely determined, we actually have the convergence results

ûε
ε2

⇀ u weakly in L2(Ω) and p̂ε → p strongly in
◦
L2(Ω) (6.36)

along any sequence of ε values in (0, ε0).

Proof. We divide the proof into several steps.
Step 1 – Tilings of the cell problem solutions

Let (vk, qk) ∈ H1
0 (Yf ) ∩

◦
L2(Yf ) be as in (6.1), and write ṽk ∈ H1(Y ) for the extension of vk

by zero. Define the functions vεk ∈ H1
loc(Rd) and qεk ∈ L2

loc(L(Yf )) according to

vεk(x) = ṽk([x/ε]) and qεk(x) = qk([x/ε]), (6.37)

where [y] ∈ Y is the equivalence class of y ∈ Rd under the quotient Rd/Zd. Notice that div vεk = 0

in Rd and that vεk = 0 on ∂L(Yf ).
Step 2 – Estimates
Let us write Jε(Ω) = {m ∈ Zd | Y ε

m ∩ Ω 6= ∅}. Since Ω is bounded, it is contained in some
large cube, and hence there exists a constant CΩ > 0 such that

#Jε(Ω) ≤ CΩ

εd
. (6.38)

A simple rescaling shows that

ε−d ‖qεk‖
2
L2(Y εm;f ) = ‖qk‖2L2(Yf ) , ε−d ‖vεk‖

2
L2(Y εm) = ‖vk‖2L2(Y ) ,

and ε2−d ‖∇vεk‖
2
L2(Y εm) = ‖∇vk‖2L2(Y ) . (6.39)

We may then use this to estimate

‖vεk‖
2
L2(Ω) ≤

∑
m∈Jε(Ω)

‖vεk‖
2
L2(Y εm) =

∑
m∈Jε(Ω)

εd ‖vk‖2L2(Y ) = εd ‖vk‖2L2(Y ) #Jε(Ω) ≤ CΩ ‖vk‖2L2(Y )

(6.40)
and

‖∇vεk‖
2
L2(Ω) ≤

∑
m∈Jε(Ω)

‖∇vεk‖
2
L2(Y εm) =

∑
m∈Jε(Ω)

εd−2 ‖∇vk‖2L2(Y )

= εd−2 ‖∇vk‖2L2(Y ) #Jε(Ω) ≤ CΩ

ε2
‖∇vk‖2L2(Y ) . (6.41)

Similarly, for Kε =
⋃
m∈Iε(Ω) Y

ε
m;f , we may estimate

‖qεk‖
2
L2(Kε) =

∑
m∈Iε(Ω)

‖qεk‖
2
L2(Y εm;f ) =

∑
m∈Iε(Ω)

εd ‖qk‖2L2(Yf )

= εd ‖qk‖2L2(Yf ) #Iε(Ω) ≤ εd ‖qk‖2L2(Yf ) #Jε(Ω) ≤ CΩ ‖qk‖2L2(Yf ) . (6.42)
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Since vk and qk do not depend on ε, we deduce that

‖vεk‖L2(Ω) + ε ‖∇vεk‖L2(Ω) + ‖qεk‖L2(Kε) . 1. (6.43)

Step 3 – A weak limit
We claim that vεk ⇀ v̄k weakly in L2(Ω), where v̄k ∈ Rd is the constant vector

v̄k =

∫
Y
ṽk =

∫
Yf

vk. (6.44)

Indeed, for ϕ ∈ C∞c (Ω)∫
Ω

(vεk(x)− v̄k) · ϕ(x)dx =
∑

m∈Jε(Ω)

∫
Y

(vk(y)− v̄k) · ϕ(ε(m+ y))εddy

=

∫
Y

(vk(y)− v̄k) ·
∑

m∈Jε(Ω)

ϕ(ε(m+ y))εddy =
∑

n∈Zd\{0}

a(n) · bε(n) (6.45)

where the Fourier coefficients on Y are given for n ∈ Zd by

a(n) =

∫
Y

(vk(y)− v̄k) exp(−2πin · y)dy (6.46)

and

bε(n) =

∫
Y

∑
m∈Jε(Ω)

ϕ(ε(m+ y))εd exp(−2πin · y)dy. (6.47)

Notice that a(0) = 0 by the choice of v̄k. We then compute

bε(n) =

∫
Y

∑
m∈Jε(Ω)

ϕ(ε(m+ y))εd exp(−2πin · y)dy

=
∑

m∈Jε(Ω)

∫
Y εm

ϕ(x) exp(−2πin · (x/ε−m))dx

=
∑

m∈Jε(Ω)

∫
Y εm

ϕ(x) exp(−2πin · x/ε)dx

=

∫
Rd
ϕ(x) exp(−2πin · x/ε)dx

= Fϕ(n/ε)

(6.48)

where F denotes the Fourier transform, and the second-to-last equality follows from the fact
that

supp(ϕ) ⊆ Ω ⊆
⋃

m∈Jε(Ω)

Y ε
m. (6.49)

Since ϕ ∈ C∞c (Ω), it is also in the Schwartz class, which means that Fϕ is Schwartz class as
well. Then there exists Cϕ > 0 such that

|Fϕ(ξ)| ≤ Cϕ

(1 + |ξ|d)
for all ξ ∈ Rd, (6.50)

which in particular implies that

|bε(n)| = |Fϕ(n/ε)| ≤ Cϕε
d

(εd + |n|d)
. (6.51)
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Now, since

∑
n∈Zd\{0}

|a(n) · bε(n)| ≤

 ∑
n∈Zd\{0}

|a(n)|2
1/2 ∑

n∈Zd\{0}

C2
ϕε

2d

(εd + |n|d)2

1/2

≤ Cϕεd ‖vk − v̄k‖L2(Y )

 ∑
n∈Zd\{0}

1

|n|2d

1/2

. εdCϕ ‖vk − v̄k‖L2(Y )

(6.52)

we deduce from (6.43) and the fact that vk is independent of ε that∣∣∣∣∫
Ω

(vεk(x)− v̄k) · ϕ(x)dx

∣∣∣∣ ≤ ∑
n∈Zd\{0}

|a(n) · bε(n)| . εdCϕ ‖vk − v̄k‖L2(Y ) . ε
dCϕ. (6.53)

Hence ∫
Ω

(vεk(x)− v̄k) · ϕ(x)dx→ 0. (6.54)

The density of C∞c (Ω) in L2(Ω) then guarantees that vεk ⇀ v̄k weakly in L2(Ω), as claimed.
Step 4 – Passing to the limit
Let ϕ ∈ C∞c (Ω). When ε is sufficiently small we must have the inclusion supp(ϕ) ⊆ Kε. This

allows us to deduce from (6.1) that

(vεk, ϕûε)1,Ω = (vεk, ϕuε)1,Ωε
=

1

ε
(qεk,div(ϕuε))0,Ωε

+
1

ε2
(ek, ϕuε)0,Ωε

= ε

(
qεk,∇ϕ ·

ûε
ε2

)
0,Ωε

+

(
ek, ϕ

ûε
ε2

)
0,Ω

. (6.55)

The estimate (6.43) and Proposition 6.4 then imply that

lim
ε→0

(vεk, ϕûε)1,Ω = (ek, ϕu)0,Ω . (6.56)

On the other hand, we may use v = ϕvεk as a test function in the weak formulation (6.12) to
see that (using the fact that p̂ε = pε + Cε on Ωε)

(ûε, ϕv
ε
k)1,Ω = (uε, ϕv

ε
k)1,Ωε

= (pε, div(ϕvεk))0,Ωε
+ (f, ϕvεk)0,Ωε

= (p̂ε, div(ϕvεk))0,Ωε
+ (f, ϕvεk)0,Ωε

= (p̂ε,∇ϕ · vεk)0,Ωε
+ (f, ϕvεk)0,Ωε

= (p̂ε,∇ϕ · vεk)0,Ω + (f, ϕvεk)0,Ω . (6.57)

Since p̂ε → p strongly in L2(Ω) and vεk ⇀ v̄k weakly in L2(Ω), we deduce that

lim
ε→0

(ûε, ϕv
ε
k)1,Ω = (p,∇ϕ · v̄k)0,Ω + (f, ϕv̄k)0,Ω . (6.58)

We rewrite

(ûε, ϕv
ε
k)1,Ω − (vεk, ϕûε)1,Ω =

∫
Ω
∇ûε : ∇(ϕvεk)−∇vεk : ∇(ϕûε)

=

∫
Ω
∇ûε : (vεk ⊗∇ϕ+ ϕ∇vεk)−∇vεk : (ûε ⊗∇ϕ+ ϕ∇ûε)

=

∫
Ω
∇ûε : vεk ⊗∇ϕ−∇vεk : ûε ⊗∇ϕ

= ε

∫
Ω
∇ ûε
ε

: vεk ⊗∇ϕ− ε2

∫
Ω
∇vεk :

ûε
ε2
⊗∇ϕ. (6.59)

Then (6.43) and Proposition 6.4 imply that

lim
ε→0

(
(ûε, ϕv

ε
k)1,Ω − (vεk, ϕûε)1,Ω

)
= 0. (6.60)
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Combining (6.56), (6.58), and (6.60) then yields the equality

(ek, ϕu)0,Ω = (p,∇ϕ · v̄k)0,Ω + (f, ϕv̄k)0,Ω for every ϕ ∈ C∞c (Ω). (6.61)

This implies that ∫
Ω
ϕu = K

∫
Ω
p∇ϕ+ fϕ for every ϕ ∈ C∞c (Ω), (6.62)

where K is the permeability tensor.
Step 5 – Equations for (u, p)
Proposition 6.2 guarantees that K is symmetric and positive definite, so we deduce from

(6.62) that ∫
Ω
ϕ(K−1u− f) =

∫
Ω
p∇ϕ for every ϕ ∈ C∞c (Ω), (6.63)

which means that p is weakly differentiable on Ω, and

−∇p = K−1u− f ∈ L2(Ω). (6.64)

Since we already knew that p ∈
◦
L2(Ω), we have that p ∈ H1(Ω). Then for any v ∈ H1(Ω) we

have ∫
Ω
K∇p · ∇v =

∫
Ω
Kf · ∇v −

∫
Ω
u · ∇v, (6.65)

but since u ∈ L2
σ(Ω) and C∞(Ω̄) is dense in H1(Ω), we have that

−
∫

Ω
u · ∇v = 0. (6.66)

Then p ∈ H1(Ω) ∩
◦
L2(Ω) satisfies∫

Ω
K∇p · ∇v =

∫
Ω
Kf · ∇v for all v ∈ H1(Ω), (6.67)

which means that p is the unique solution to (6.34). Then u = K(f − ∇p) is also uniquely
determined, and we deduce the convergence results along any sequence ε→ 0.

�
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