FUNDAMENTAL SETS OF SOLUTIONS AND THE WRONSKIAN

2006 SPRING

Goal: Given a linear system of homogeneous, constant coefficient, first order differential equations

$$\frac{d\mathbf{x}}{dt} = A\mathbf{x}$$

we would like to find a *general solution*, i.e. an expression that allows, by choosing various parameters, a solution satisfying any *initial condition*

$$\mathbf{x}(t_0) = \mathbf{w}$$

Assuming that A is an $n \times n$ matrix, our intention is to find a set of n solutions $\{\mathbf{x}_1(t), \ldots, \mathbf{x}_n(t)\}$ so that the linear combination

$$\mathbf{x}_g(t) = c_1 \mathbf{x}_1(t) + \dots + c_n \mathbf{x}_n(t)$$

is the general solution. In this case $\{\mathbf{x}_1(t), \ldots, \mathbf{x}_n(t)\}$ is called a *fundamental set* of solutions.

1. BACKGROUND

The procedure we shall follow depends on some results from linear algebra, which we will state here without proof.

Definition 1. A *basis* for \mathbb{R}^n is a set of vectors $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ such that for any $\mathbf{w} \in \mathbb{R}^n$, there is a unique representation

$$\mathbf{w} = c_1 \mathbf{v}_1 + \dots + c_k \mathbf{v}_k.$$

Theorem 1. If $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ is a basis for \mathbb{R}^n , then k = n.

Example: The set

$$\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$$

is a basis for \mathbb{R}^3 .

Another important result we need from linear algebra is

Theorem 2. A set of n-vectors, $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$, is a basis for \mathbb{R}^n if and only if $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ is a linearly indemendent set.

2006 SPRING

2. The Wronskian

With the linear algebra background above, the requirements for a fundamental set of solutions can now be restated as

Definition 2. The solutions $\{\mathbf{x}_1(t), \ldots, \mathbf{x}_n(t)\}$ to the system of differential equations $\frac{d\mathbf{x}}{dt} = A\mathbf{x}$ form a fundamental set if for each $t_0 \in \mathbb{R}$,

$$\{\mathbf{x}_1(t_0),\ldots,\mathbf{x}_n(t_0)\}$$

is a basis for \mathbb{R}^n .

By Theorem 2, $\{\mathbf{x}_1(t), \dots, \mathbf{x}_n(t)\}$ is a fundamental set if and only if: $c_1\mathbf{x}_1(t) + \dots + c_n\mathbf{x}_n(t) = \mathbf{0} \implies c_1 = \dots = c_n = 0.$

Using matrix notation, this condition can be restated as:

$$\left[\begin{array}{ccc} \mathbf{x}_1(t) & \dots & \mathbf{x}_n(t) \end{array}\right] \left[\begin{array}{c} c_1 \\ \vdots \\ c_n \end{array}\right] = \mathbf{0} \implies \left[\begin{array}{c} c_1 \\ \vdots \\ c_n \end{array}\right] = \mathbf{0}$$

This is equivalent to the statement

$$\begin{bmatrix} \mathbf{x}_1(t) & \dots & \mathbf{x}_n(t) \end{bmatrix}$$
 is invertible.

Finally, this can be restated in terms of the determinant

det
$$\begin{bmatrix} \mathbf{x}_1(t) & \dots & \mathbf{x}_n(t) \end{bmatrix} \neq 0.$$

Since the Wronskian is simply the determinant on the left:

$$W[\mathbf{x}_1,\ldots,\mathbf{x}_n](t) = \det \begin{bmatrix} \mathbf{x}_1(t) & \ldots & \mathbf{x}_n(t) \end{bmatrix}$$

we reach the conclusion that:

The solutions $\{\mathbf{x}_1(t), \ldots, \mathbf{x}_n(t)\}$ to the system of differential equations $\frac{d\mathbf{x}}{dt} = A\mathbf{x}$ form a fundamental set if and only if the wrondkian $W[\mathbf{x}_1, \ldots, \mathbf{x}_n](t)$ is non-zero for all values of t.