Week \#2 Written Assignment: Due on Friday, May 31.

1. Find the exact length of the curve

$$
y=\frac{x^{4}}{8}+\frac{1}{4 x^{2}}
$$

where $1 \leq x \leq 2$
2. Solve the initial value problem

$$
\frac{d y}{d x}=\frac{x y \sin (x)}{y+1}, \quad y(0)=1
$$

3. The logistic population model is described by the differential equation

$$
\frac{d P}{d t}=k P\left(1-\frac{P}{M}\right)
$$

where $k$ and $P$ are positive constants.
Show that this equation has constant solutions $P(t)=0$ and $P(t)=M$, and that other solutions are given by

$$
P(t)=\frac{M}{1+A e^{-k t}}, \quad \text { where } A=\frac{M-P_{0}}{P_{0}} .
$$

The constant $P_{0}$ is the initial population, $P(0)=P_{0}$.
4. Sketch a direction field for the differential eqation

$$
y^{\prime}=x y-y^{2}
$$

and use it to sketch a graph of the solution satisfying the initial condition $y(-1)=1$.
5. Use Euler's method with a step size of $h=.5$ to approximate the value of the solution to the initial value problem

$$
y^{\prime}=x y-y^{2}, \quad y(-1)=1
$$

when $x=1$, i.e. find $\left(x_{4}, y_{4}\right)=(1, ?)$ when $\left(x_{0}, y_{0}\right)=(-1,1)$.

