Week \#4 Written Assignment: Due on Friday, February 7.

1. The purpose of this exercise is to explain the idea underlying Simpson's rule for approximating the integral $\int_{a}^{b} f(x), d x$, and to justify the formula for computing the Simpson's rule approximation of an integral. The fundamental idea is to approximate

$$
\int_{x_{i-1}}^{x_{i+1}} f(x) d x
$$

by the area under a parabola that passes through the points $\left(x_{i-1}, f\left(x_{i-1}\right),\left(x_{i}, f\left(x_{i}\right)\right.\right.$, $\left(x_{i+1}, f\left(x_{i+1}\right)\right.$.
(a) Setting $\Delta x=\frac{b-a}{n}$ we can write $x_{i-1}=x_{i}-\Delta x$ and $x_{i+1}=x_{i}+\Delta x$. Explain why

$$
\int_{-\Delta x}^{\Delta x} f\left(x+x_{i}\right) d x=\int_{x_{i}-\Delta x}^{x_{i}+\Delta x} f(x) d x
$$

(b) Note that the graph of $y=f\left(x+x_{i}\right)$ passes through the points $\left(-\Delta x, f\left(x_{i}-\Delta x\right)\right.$, $\left(0, f\left(x_{i}\right),\left(+\Delta x, f\left(x_{i}+\Delta x\right)\right.\right.$. For convenience, let's use the notation $y_{-}=f\left(x_{i}-\Delta x\right)$, $y_{0}=f\left(x_{i}\right), y_{+}=f\left(x_{i}+\Delta x\right)$.
Find the polynomial $p(x)=A x^{2}+B x+C$ that satisfies $p(-\Delta x)=y_{-}, p(0)=y_{0}$, $\left(p(+\Delta x)=y_{+}\right.$by solving

$$
\begin{aligned}
A(-\Delta x)^{2}+B(-\Delta x)+C & =y_{-} \\
A(0)^{2}+B(0)+C & =y_{0} \\
A(+\Delta x)^{2}+B(+\Delta x)+C & =y_{+}
\end{aligned}
$$

(c) Show that $\int_{-\Delta x}^{\Delta x}\left(A x^{2}+B x+C\right) d x=\frac{\Delta x}{3}\left(y_{-}+4 y_{0}+y_{+}\right)$.
(d) Explain why we say that $\int_{x_{i}-\Delta x}^{x_{i}+\Delta x} f(x) d x \approx \frac{\Delta x}{3}\left[f\left(x_{i-1}\right)+4 f\left(x_{i}\right)+f\left(x_{i+1}\right)\right]$
(e) Derive the Simpson's rule approximation

$$
S_{n}=\frac{\Delta x}{3}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{3}\right)+\cdots+2 f\left(x_{n-2}+4 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right]\right.
$$

for the integral $\int_{a}^{b} f(x) d x$.
2. (Stewart, 7 th edition, \#7.8.50) Show that $\frac{1}{3} T_{n}+\frac{2}{3} M_{n}=S_{2 n}$.
3. (Stewart, 7th edition, \#7.8.78) Find the value of C for which the integral

$$
\int_{0}^{\infty}\left(\frac{x}{x^{2}+1}-\frac{C}{3 x+1}\right) d x
$$

converges, and evaluate the integral for that value of C.
4. The Laplace transform of a function $f:[0, \infty) \rightarrow \mathbb{R}$ is the function F defined by

$$
F(s)=\int_{0}^{\infty} e^{-s t} f(t) d t
$$

The domain of F is the set of all $s \in \mathbb{R}$ for which the integral converges.
Find the Laplace transform and it's domain for each of the following functions
(a) $f(t)=1$
(b) $f(t)=t$

