Week \#3 Written Assignment: Due on Friday, January 31.

1. (Stewart, 7th edition, \#7.4.59) The German mathematician Karl Weierstrass (1815-1897) noticed that the substitution $t=\tan (x / 2)$ will convert any tational function of $\sin x$ and $\cos x$ into an ordinary rational function of t.
(a) If $t=\tan (x / 2),-\pi<x<\pi$, sketch a right triangle or use trigonometric identities to show that

$$
\cos \left(\frac{x}{2}\right)=\frac{1}{\sqrt{1+t^{2}}} \quad \text { and } \quad \sin \left(\frac{x}{2}\right)=\frac{t}{\sqrt{1+t^{2}}}
$$

(b) Show that

$$
\cos (x)=\frac{1-t^{2}}{1+t^{2}} \quad \text { and } \quad \sin (x)=\frac{2 t}{1+t^{2}}
$$

(c) Show that

$$
d x=\frac{2}{1+t^{2}} d t
$$

2. (Stewart, 7th edition, \#7.4.62) Using the results from problem \#1, evaluate

$$
\int_{\pi / 3}^{\pi / 2} \frac{1}{1+\sin (x)-\cos (x)} d x
$$

3. Evaluate the integral

$$
\int \ln \left(x^{3}+x\right) d x
$$

4. (Stewart, 7th edition, \#84) We know that $F(x)=\int_{0}^{x} e^{e^{t}} d t$ is a continuous function by the Fundamantal Theorem of calculus, though it is not an elementary function (see the section "Can We Integrate All Continuous Functions" in Section 7.5 of Stewart for a definition of elementary function).
(a) The function $\int \frac{e^{x}}{x} d x$ is not an elementary function, but it can be expressed in terms of $F(x)$. Evaluate

$$
\int_{1}^{2} \frac{e^{x}}{x} d x
$$

in terms of F.
(b) Similarly, the function $\int \frac{1}{\ln x} d x$ is not an elementary function. It too can be expressed in terms of $F(x)$. Evaluate

$$
\int_{2}^{3} \frac{1}{\ln x} d x
$$

in terms of F.

