Note: This review most likely underrepresents the weight of differential equations topics for Exam #3. Linear equations and the predator-prey model are both fair game for the exam, but don’t show up here.

1. The size of a population of rabbits on a small island is modeled by the logistic equation

\[\frac{dP}{dt} = 5P \left(1 - \frac{P}{1000} \right). \]

where \(P \) denotes the number of rabbits, and \(t \) is time measured in years.

(a) Sketch the phase line and slope field for this differential equation.
(b) On the slope field above, sketch the solution satisfying \(P(0) = 200 \). What is \(\lim_{t \to \infty} P(t) \)?
(c) Suppose that the island is stocked with 100 additional rabbits each year. Modify the differential equation to account for this additional assumption.
(d) What are the equilibrium points of the modified system? If \(P(0) = 0 \), what is \(\lim_{t \to \infty} P(t) \)? It might help to know that \(\sqrt{27} \approx 5.2 \) and you might want to consider the phase line for the modified system.

2. (a) Let \(a_n = \frac{n^2 - 1}{n^2} \). What is \(\lim_{n \to \infty} a_n \)? Does \(\sum_{n=1}^{\infty} a_n \) converge? Why or why not?
(b) Let \(b_n = \frac{1}{n \ln(n)} \). What is \(\lim_{n \to \infty} b_n \)? Does \(\sum_{n=1}^{\infty} b_n \) converge? Why or why not?
(c) Let \(t_n = \frac{(n!)^2}{(2n)!} \). Is the sequence \(\{t_n\} \) monotonic (increasing or decreasing)? (Hint: what can you say about \(t_n/t_{n+1} \)?)
(d) Is the sequence \(\{t_n\} \) bounded? Does the limit \(\lim_{n \to \infty} t_n \) exist? Why or why not?

3. The Sierpinski triangle is constructed by removing the center one-fourth of an equilateral triangle with area 1, then removing the centers of three smaller remaining triangles, and so on. Show that the sum of the areas of the removed triangles is 1.

[EDIT: By the “center one-fourth” of a triangle, I mean the triangle formed by connecting the midpoints of the edges.]

4. Newton’s method may be used to solve the equation

\[(x + 8)^2 = 0 \]

Begin with \(x_1 = 8 \), and compute \(x_2, x_3, x_4 \) and \(x_5 \).
5. (a) Find the limit of the sequence \(\left\{ \frac{(-1)^{n-1}n}{n^2+1} \right\}_{n=1}^{\infty} \).
(b) Let \(a_n = \frac{n!}{n^3 \sqrt{n + 1}} \). Find \(\lim_{n \to \infty} a_n \).

6. Determine if each of the following series converges. If the series converges find the sum.
(a) \(\sum_{n=1}^{\infty} \ln\left(\frac{3n}{2n+5}\right) \)
(b) \(\sum_{n=1}^{\infty} 3 \left(\frac{2}{3}\right)^n \left(\frac{1}{4}\right)^{n-1} \)

7. Consider the series
\[\sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{2}{n+1} + \frac{1}{n+2} \right) \]
(a) Find the partial sums \(s_3, s_4 \) and \(s_5 \).
(b) Find a formula for the \(n \)th partial sum, \(s_n \).
(c) What is the limit \(\lim_{n \to \infty} s_n \)?
(d) What is the sum of the series, \(\sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{2}{n+1} + \frac{1}{n+2} \right) \)?

8. Show that the infinite series
\[\sum_{n=2}^{\infty} \frac{1}{n \ln(n)^2} \]
converges. How close is the partial sum \(s_{10} \) to the sum of the series?

9. Determine whether the infinite series
\[\sum_{n=1}^{\infty} \frac{n^3}{\sin^2(n)2^n} \]
converges or diverges. If it converges, how large must \(n \) be such that the remainder \(R_n \) satisfies \(|R_n| < \frac{1}{10} \)?

10. (20 points) A figure is drawn in the following way. First begin with a \(1 \times 1 \) square. Attach to each corner a \(\frac{1}{2} \times \frac{1}{2} \) square. Now on each of the free corners, attach a \(\frac{1}{4} \times \frac{1}{4} \) square. Continue in this fashion. The figure is the “limit as \(n \to \infty \)”. What is the area of this figure.

(0 points) If you finish early, think about the following: Will the construction above ever overlap itself? What is the smallest square that can be drawn around the figure? What is the area of this square? How much of this square will the figure fill?
11. Does the infinite series
\[\sum_{n=1}^{\infty} (-1)^n \frac{n!}{n^n} \]
converge or diverge? If it converges, how large must \(n \) be such that the remainder \(R_n \) satisfies \(|R_n| < \frac{1}{10}\)? (Hint: show that \(\frac{(n+1)!}{(n+1)^{n+1}} = \left(\frac{n}{n+1} \right)^n \frac{n!}{n^n} \) and that \(\lim_{n \to \infty} \left(\frac{n}{n+1} \right)^n = e^{-1} \).)