ANTIPLANE SHEAR FLOWS IN VISCO-PLASTIC SOLIDS
EXHIBITING ISOTROPIC AND KINEMATIC HARDENING

J. M. GREENBERG*AND D. R. OWEN?

Abstract. The authors consider antiplane shearing motions of an incompressible visco-plastic
solid. The particular constitutive equation employed assumes that the stress tensor has an “elastic”
component and a component which can exhibit hysteresis. The model exhibits both “kinematic”
and “isotropic” hardening. Our results consist of a set of energy type estimates for the resulting
system, Lo contractivity estimates for the solution operator, and finally an analysis of the approach
of our system to a “rate independent” model as a distinguished parameter describing our flow rule
approaches zero. We also include some computational results for simple piecewise constant data.
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1. Introduction. In this note we consider antiplane shear flows of an incom-
pressible, isotropic, visco-plastic solid. This work generalizes and compliments earlier
work of Greenberg [1], [2], Greenberg and Nouri [3], and Nouri and Rascle [4]. In
particular, our work shows that the energy estimates previously obtained in [1] - [4]
have counterparts for a broader class of visco-plastic materials.

The constitutive assumption we use postulates that the Cauchy stress tensor is
additively decomposable into a component without hysteresis, i.e., that depends only
on the present value of deformation gradient and an elasto-plastic component that
exhibits hysteresis, i.e., that can depend on the past history of deformation gradient,
and the flow rule we employ for the plastic strain tensor is basically an isotropic
hardening rule with yield determined by the elasto-plastic stresses. The presence of a
component without hysteresis for the stress tensor yields a model which exhibits both
“kinematic” and “isotropic” hardening. Mihailescu-Suliciu, Suliciu, and Williams [5]
analyzed the relationship between solutions of ordinary differential equations that
govern the motions of elasto-plastic and visco-plastic oscillators. Their constitutive
assumptions also admit both kinematic and isotropic hardening.

The organization of this paper is as follows. In section 2 we develop the equations
describing antiplane shear flows in visco-plastic solids. Section 3 focuses on a set of
a-priori energy type estimates and also estimates which guarantee that the solution
operator is a contraction in Ls. These estimates depend on a small parameter and as
that parameter tends to zero they supply information about rate independent limit
models. Similar estimates for a purely isotropic hardening model have been obtained
by Rascle and Nouri [4]. In section 4 we present some numerical experiments.

2. Model Development. In antiplane shear flows of an incompressible isotropic
visco-plastic solid, material points

(2.1) £ =¢&1ey +&ey + ez
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move to !
(2.2) X = x1€1 + T2€es + T3€3
where

x1 =&1, T2 =&, and 3 = &3+ ¢ (€1,62,11) -
For such motions the Eulerian velocity field is given by
(2.3) u (1,22, x3,t1) = w (21, %2,t1) €3

where

0
w(z1, 2, t1) = 99 (@1,22,t1)

0tq

and the shear strains are given by

2.4 _ 9 _ 9
(2.4) "= B and v, B2,

The latter are related to the former by the compatibility relations

o _ 0w g 9 0w

(2:5) ol P il

The deformation gradient, F', associated with this motion is given by

1 0 O
(2.6) F=| 0 1 0
o2 1

Our basic constitutive assumption postulates a plastic deformation tensor, P, of
the same form as F; that is

1 0 O
(2.7) p=|0 1 0
p1 p2 1

where p; and p; are functions of 1, z2, and ¢1, and postulates that the Cauchy Stress
tensor take the form

(2.8) T=—nl+8 +S,

Here 7 is the hydrostatic pressure,

(2.9) S1=p (FFT - % trace (FFT) I)

0 0
le; = ( ) , €3 = ( 1 ), and e3 = ( 0 ) are the standard basis for elements for R® and
0 1

e; ®e; = e;e ; are the standard basis elements for linear operators from R3 to R®

Noowr
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or equivalently

—5(f+m) 0 m
(2.10) S =p8 0 -3 (7 + %) L ;
" 72 (7 + %)
1
(2.11) So=p (RRT — 3 trace (RRT) I>
or equivalently
—% (r% + r%) 0 71
(2.12) Sy =p 0 -3 (r} + r3) LI
1 T2 3 (7‘1 + 7'2)

(2.13) R=FP'=pP'F
or equivalently

1 0 0 1 0 0
(2.14) R=|0 1 0 |= 0 1 0

ry T2 1 M"—pP1 Y2—p2 1

and B and p are positive constants. Equations (2.9) - (2.14) imply that S; is an

isotropic trace free function of F' that has the interpretation of a stress without hys-

teresis, whereas Sy is an isotropic trace free function of R that is interpreted as the

“elasto-plastic” stress and exhibits hysteresis for appropriate deformation histories.
In what follows it will be convenient to let

(2.15) s1:=p(y1—p1) and s2:=p(y2—p2)

and to use s1(z1, 2, t1), s2(1, T2, t1), P1(T1, T2, t1) and pa(z1, T2,%1) as the
basic descriptors of our system. With this choice we have

1 0 0
(2.16) F= 0 1 0],
8 8
wtp Ptpe 1
1 0 0
(2.17) R=| 0 1 0],
S1 S2 1
b
—3; (1 + 3) 0 51
(2.18) Sy = 0 —3, (57 + 3) 82 ,
S1 So % (s% + s%)



S1

4

(2.19) and

2
-3 ((% +p1) + (;

J. M. GREENBERG AND D. R. OWEN

s n))

0

S8
W Th

0
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Balance of momentum in the e; and es directions implies that

(2.20)

(2.21)

wiN

2 2 2 2
i<ﬁ+(sl+@) g((s_1+pl) +(s_z+p2) )):0,
Oz, 3p 3 1z I
0 (3%4'33) B8 81 2 2 2 _
a—zz(”Tu 5((7*“) *(_”“’) -0

and thus that the pressure, 7, is given by

(2.22)

™ =T ($3, t) —

B

3

(st + s3)
3u

Balance of momentum in the eg direction yields

(2.23)

Here, pg is the constant mass density of the material. Since

w 0
po 6t1 axl

)

8.’L'2

<32+ﬂ<%+p2))

dmg

I

_0m
6.’1)3.

depends on z3

and t;, whereas all quantities in the left-hand side of (2.23) depend on z1, z2 and 1,
we conclude that for antiplane shear flows
we shall assume this term is zero.
We now turn our attention to the flow rule for the nonconstant components p;
and py of P. We assume the isotropic hardening rule

(2.24)

and

(2.25)
Here,

(2.26)

op1 _ S1

9mg
dzs3

(Ve + 3 -s(@)

o I+

(VT + - s(d)

;I,T(] €

Op2 _ __ s +
otr  \/s? + s2 uTye
_J 0 z < 0
(@)+ = { z, £ > 0 ’

is independent of z3. In what follows
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d is the accumulated plastic strain and satisfies

od \/(ap1)2+ <3p2)2: (m—swa

at,  \ \ oty oty pToe

(2.27)

and finally d — s,(d) is the yield stress which we assume satisfies
(2.28)  0<8y(0) <sy(d), 0<m<s,(d) and —M <sy(d)<0

for d > 0. The parameter Ty has the interpretation of a relaxation time, p is the
“shear” modulus, and € > 0 is a dimensionless small parameter.

Equations (2.5), (2.15), and (2.23) -(2.27) combine to yield the following system
for 81, 82, P1, P2, da and w:

10s1; Ow _ 0Op:
(2.29) Lot 0m ot

105, 0w _ Ops
;u?tl 8$2_ Btl’

(2.31) pOZZ—ail<(ﬂ:u)81+,3p1>—8z2<('B:u)sz+ﬂp2>:0

(2.30)

(2.32) o _ ( S%H%_Sy(d))*,

oti /2 452 uThe

(2.33) O _22 (S%Hg_sy(d))*,

ot \/s?+s2 puToe

and

oa  (VTsd-sd),

B_tl - uThe

(2.34)

For convenience, we put (2.29) - (2.34) into dimensionless form. We let

[ _Po_ pPo_ Y, b
lH‘ﬁ p+BTy To’

Lo S1 82
w, T1=—, To=— and Ty(d)=—"=
p+n u’ 7 v(d) p

(2.35)

Then, (2.29) - (2.34) transforms to

o Ou _ Opm

(2.36) Bt o ot
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Ors Ou __ Op

(2:37) 9 oy ot
ou 0 B \_9 B _

(2.38) 5% 92 (T1 + ,u—}—,Bpl) By (Tz + u +ﬂpz) =0
o7 (VT -0),
(239 % aen
» op (V7))
(240 e
and

oa (VEFE-7(@)
(2.41) — = t >0

ot €

In section 3 we shall present a set of energy type estimates for (2.36) - (2.41).

3. Energy Estimates. In this section we shall focus on a series of energy type
estimates for solutions of the Cauchy problem for (2.36) - (2.41). We shall continu-
ally use an integral identity, presented in (3.2) below, for solutions of the divergence
identity:

(3.) S-cm _C_,

The basic identities are

% // f(z,y,s)dzdy =

{V/(z —20)* + (¥ — v0)> < R+t — s}

2w
(R+t—s)/ [g1cos0 + gasinf — f] (zo+ (R+t— s)cosb,yo+ (R+t— s)sinh,s)db
0

+ // g (z,y,s)dzdy

{V/(z —20)* + (¥ — v0)* < R+t — s}
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and

/] (2,9, 5) dady =

{V/(= — 20)> + (v — v0)* < R}

// f (z,y,0)dzdy

{y/ (@ —20)* + (y — 0)® <R +1}

t 2w
—i—/ (R+t—2ys) (/ [g1cosf + g2sinf — fl(zog+ (R+t+s)cos,yo + (R+¢— s)sin0,s)d0> ds
0 0

_4_/: (3.2) // g (z,y,s)dzdy | ds.

{v/(@—20)*+®-w)* <R+t—s}

Our first identity is obtained by multiplying (2.36) by 71, (2.37) by 72, (2.38) by
u and (2.41) by z4.7,(d) and adding the equations. The result is that (3.1) holds
with

u(r2+1) ﬂ(('rl +p1)2 + (72 +p2)2) u? u d
B3I =Sw+p * 2(u+0) Hy g ) mman
(3-4) q :u<uiﬂﬁ+ﬂiﬂ(ﬁ +P1)>
(3.5) 92 ZU<M_/:ﬂT2+Miﬂ(Tz +p2))
and

(3.6) 9= s D) ((W—Ty (d))+>2.

The observation that

. H 2 2 B 2 2
67 wcostrasno<lul (Lo e Lo m e n) )’

implies that

q1cosf + gosinf — f <

68 50 (- VEB) —505g (W= Vim0 ot

p+B)
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and thus the last two integrals on the right-hand side of (3.2) are less than or equal
to zero.?

To obtain the contractivity of the solution operator for (2.36) - (2.41) we look at
two solutions to (2.36) - (2.41) which we label a and b, respectively. Their differences
satisfy

8 a a a 3 a

(3-9) a(ﬁ —Tf)—g(u —Ub)z—a (P1—P11’),
o, . 0 /4 0 4

(3.10) E(TZ —Té’)—a—y(u —Ub) T (P2_pg)7

ot + 8 Ay +8
(3.11)
o a(Verraione) (Ve @ -n @)
Az (p(:ll _pl) = - 2 2 +:
ot e \(f) + (15)’ e () + ()
(3.12)

0
— (% _Pg) = - 2 2 i
(5; | e 4/ (78)? + (rg)? e /() + (13)
.13
and
, (Verr+er-n@) (Ve +@ - @)
E (da _ db) — . + _ c + .
(3.14)

We next multiply (3.9) by (¢ —7?), (3.10) by (7§ —7%), (3.11) by (u® — u®), and
(3.14) by

p o _r ([ o ._
@) = (@) = s ([ (- ) an) (- )

and add the resulting equations. The result is that (3.1) holds where now

d
2We are, of course, using the fact that d > 0,d; > 0, and that 0 < 7, (0)d < / Ty(n)dy.
0
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_|_

p((re =)+ @ =)")  B((rf—rb+p8—p)"+ (5 — b +p8 - b))
p+p p+p

+ (u® — ub)2 L. (/l‘r; (1 =mn)d®+nd*)dn) (d* - db)2

N——

(3.16) g1 = (u*—u’) <u-l:r6 (r¢ —7P) + #iﬂ (rf — 10+ p§ —pS)),

(3.17) g = (u —ub)< _l:ﬂ('@ T§)+Mf_ﬂ(73—r§+pg—pg)>,
and
g2

(3.18) 9= Miﬂ (9:+2)
where

1 L b a b a a b) 2
619) o= ([ (@ 0@+ ae) (@@ ad)an) @ - &)
and

o= @) (@) (Vo7 + (7 @) - (Vb - m @) )

it (Vor? e n@) (rf)2+(T5)2ry(d”))+)

(8)* + (5)°

The arguments leading to (3.8) yield the inequality

2
_2( <| ¢ —u| - \/7'1 _71 75_75)2)

B ( b \/ a_ b b)2 b b)2 ’
- u® —u’| =7/ (T =1 +p} —p7) + (78 —T5+D5 —D
2(u+B) | | (rf 1 1 ) (78 — 75 + 0§ — p})

p T . o b2
[t e a) ey

q1cosf + gosinf — f <
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We further note that the hypotheses that 0 < 7,(0) < 7y(d), 0 < ¢ < 7,(d), and
—% < T?'/'(d) < 0 for d > 0 guarantees that g; < 0. Thus, to show that

// f (0,9,t) dady < /] 1 (2,9,0) dedy

{v/(= — 20)* + (v — %0)* < R} V(@ =20)" + (y—v0)* <R +1}
(3.22)

where f is given by (3.15) it suffices to show that go < 0. We first note that g» may
be written as

o= = (Ver + @ - @)
(Ve + @) - @)
(3.23)

+ (Verr + @y - n @)

and (3.23), together with

(3.29) rorb oot </(r0) + ()2 (9) + ()7,

implies that

7<= (Vrr - - (da))+ (Vo + @ - @)

(V@ @) (Ve @ -n @)
(3.25)

# (Vo= @ -n @) (Vo' @ - @)

(VO = @ m @) (Ve e - @)
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or that

( (m8)" + (18)” — 7 (d°) )+ <m_7y (db)>+>2

+

(¢7 @ - (Vo - n @) )

< )"+ () —Ty (d®) >+ < (8)? + (v8)* — 7y (d®) — < (r0)? + (18)? - 7 (da)>+> '

(3.26)

Since each of the terms on the right-hand side of (3.26) is nonpositive we conclude
that go < 0 and thus (3.22) holds, which is the desired contractivity of the solution
operator associated with (2.36) - (2.41). Similar arguments have been used previously
by Greenberg and Nouri [3] and Nouri and Rascle [4].

Our next objective is a set of derivative estimates for solutions of the Cauchy
problem for (2.36) - (2.41). In what follows D will be one of the following operators:
Bt’ 52> OF 3y Differentiation of the original system yields the following equations
for D7y, D7e, Du, Dp,, Dpy, and Dd:

0

0

0
2 — (D7) — — (Du) = —— (D
0 0 0
2 o (D72) = o= (Du) = — 4 (D
] i) B 0 B _
(3.29) 5 (Du) — 52 <DT1 + u+ﬂDp1> ~ oy <D72 + u+ﬂDp2> =0,
0 1 T71DT11 + D719
— (D = —————H(/m2+72— d =" * _ 7' (d)Dd
ot ( pl) P le n 7_22 ( TH T Ty — Ty ( )) ( \/m Ty( ) )
(Vo +73 = @)
+ 372 (7'22D7'1 — 7'1T2D7'2) ,
(3.30) ("'1 + "'2)
9 _ T 2 nDn+nbn
ot (Dp2) € mH ( T1 + T2 Ty (d)) ( \/m Ty (d) Dd
(vVE+2 -7 )
+ 372 (7'12D7'2 — 7'17'2D7'1) ,
(7'1 + 7'2)

(3.31)
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and
(3.52) g (Dd) — H (\/Tl + 715 — Ty (d)) D1y + 19 D1y o (d)Dd | .
ot ‘ B +m)?

In equations (3.30) - (3.32)

0, <0
(3.33) H(ar:)—{ 1 230"

If we now multiply (3.27) by D7y, (3.28) by D72, (3.29) by Du, (3.32) by 457, (d) Dd

and add the resulting expressions we find that (3.1) and (3.2) hold where now

1 (m(@ 00 B(EEtn)  OEre))
f—§ P + T B +( U)+m7y()( )]
(3.34)
—pul-*_pr+ B pir
(3.35) m_lm<#+ﬂD1+u+ﬂD(1+m0,
—pul " _prv B pir
(3.36) qz_Du(#‘i‘ﬂD 2+#+ﬂD(2+p2))a
and
_ ur/(d) 2
= 2rp® P

2
o T1DT1 + 1o D1y ,
(33) T <+ B ﬂ)H (\/7'12 + 72—y (d)) (—\/m -7, (d) Dd)

. (VAT @) 2
— 3/2 + (TQDTl — 7'1D7'2) .
€(p+B) (12 + 72)

The hypothesis that 7,/ < 0 and d; > 0 then guarantee that g < 0. Moreover, the
boundary density satisfies

(10— fiDm + (0m)

2(p+p)

q1cosf+ gasinf — f < —
(3.38)

ﬂ(ﬂwk—¢@Nﬁ+pm2+UNW+pﬂf> 7! (d) (Dd)®
B 2 (u+P) - 2

and the latter two inequalities along with (3.2) yield the desired derivative bounds.

<0
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We conclude this section with an examination of the behavior of our system as
the small parameter € approaches zero from above. In what follows we let

339 Q@ Rt-9) = {@ )@+ G- <R+i-sf

when 0 < s <t and

B (@0, yo, R, t) = {(-’E,yas)|\/($—$0)2+(y—y0)2 SR‘H—S,OSSSt}-

(3.40)
The a-priori estimates associated with (3.2) when f is given by (3.3) or (3.34) and D
is one of the operators %, a%’ or % guarantee that if the initial values for a family

(75, 75, D5, p§, d,uc) of distributional solutions are in LY* independently of €, then
we may choose a sequence €;, ¢ = 1, 2,..., with the ¢;’s decreasing to zero and limit
functions (79, 73, pd, p, d°, u®) with the following properties:

(i) For any (zo,¥0), R > 0, and ¢ > 0 the sequence (71, 75°, p}’, py, d, u)
converge strongly in Ly (B (zo,y0, R, t)) to (10, 79, p?, p3, d°, u’). Moreover, the
limit functions have weak t, =, and y derivatives and the sequences D (r5irst, py, pst, dt, ust)

converge weakly in L (B (zo,y0,R,t)) to D (7f, 73, p?, p3, d°, u®) where again

D_—08 8 . 0

8t 9z O By-

(ii) The hypotheses (2.28) and (2.35) on the yield stress further guarantee that
'ry (d) converges strongly in Ls (B (%o, yo, R, t)) to 7, (d°) and that Dry (de) =
7, (d*) Dd* converges weakly in Ly (B (zo, Yo, R, t)) to D7, (d°) = 7 (d°) Dd°

0

2, 2ol 3 . Moreover, equations (2.30) -(2.41) and the conver-

where once again D =

mandn = 1and 2, and 4/ (75)? 4 (757)? 24

. . i apn
gence results (i) above imply that 75 B

m ot ?
(1]
converge weakly in L; (B (zo, yo, R, t)) to 70 %

m ot
y/ (9 )% + (7 )Zad respectively.

Finally, the identities
3p Bpg" 2 3d e
41 =4/(7

apil TEi apgl — 0
ot ' ot
guarantee that the limit functions satisfy

Op? op? 2 20d°
F0PL | 001 o 0
(3.43) 1oy T2 = ™" + () 5

and

m and n =1 and 2, and

(3.42) TS

Op? 0p)
L09P1 _ _00P>
(3.44) Ty 5 T T 0.

(iii) For any ¢ > 0, the measure

(3.45) m <{(wy s) € B(xo,y0, Rt) |\/ (79 + () — 7, (d°) > 5}) =0.



14 J. M. GREENBERG AND D. R. OWEN

The last identity implies that

m ({(wy s) € B(zo,y0,Rt) |1/ () + (9)% — 7, (d°) > 0})
(3.46)

= m({(w,y,s) € B(zo,y0,R,t) [\/(79)? + (r9)* — 7, (dO):o}).

In what follows we shall refer to

(@) € B RN E + 0 -7 (&) =0}
as the yield set. On open subsets U/ of the yield set we introduce © by
(3.47) 7 =1y (d°) cos© and 7§ = 7, (d°) sin ©.

The relationships (3.41) and (3.42) then imply that

o} | . 0p) ad°
(3.48) cos© 5 TSmOS ==
and
NG/ oph _
(3.49) sm@E —cosO " = 0.

Since the weak limits (T?, 79, 1Y, pg,uo) also satisfy the conservation laws (2.36) -
(2.38) we find that in & the following equations are satisfied in the distributional sense

od° 00 ou° 0p}
! 0 _ 0\ .: Tz _ X __ 71
(3.50) cos O7, (d°) 5 T (d°) sin® 5% 02 5
od° 00 ou° 09
. 1 (40 0 _ _ 2
(3.51) sin ©7, (d°) Bt + 7y (d°) cos © ot~ oy 5
and
6U0 8 0 ﬂ 0 8 0 . ﬂ 0 _
(352) W — % <Ty (d )COS@ + MP]) - Fy <Ty (d )sm@ + [1,74- ﬂpg =0.

These equations represent a closed system for (p}, p3, d°, u®, ©) on the yield
surface. They imply that (3.52) holds and that

od° ou? ou®
10V 99 _ ou" . O0u”
(3.53) (147, (d°)) 5t cos© 92 +sin® oy
00 1 N T ou®
(354) E = Ty (dO) (-Sln(")a—m + COS G‘)a—y) ,

0
(3.55) %Ltl = 1;2580) (cos @%—“: + sin 6%—1;0) )
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and
apd _ in © 8 : 9
(3.56) a = m (cos O5L +sin 93—1;) .
Not surprisingly, we find that in open sets € of { (z, y,5) € B (0,0, R,t)[0 < 1/(0) + (79)* < 7, (do)}

the weak limits satisfy the elasticity equations

(3.57) 36_75_36_’5:0,
(3.58) 38_75_36_’5:0
(3.60) opi _ Opy _ 0d° _

ot ot ot

The assertions in part (i) which pertain to (77%, 75%, p{*, p5’, u) follow from (3.2),
(3.3), and (3.34). Equations (2.28), (2.35), (3.2), and 2¢° > 0 imply that the d%’s
are bounded in L; (B (2o, Yo, R, t)). Their Ly boundedness follows from the inequality

BS) @ @y o) 2w 2 [ () @undn

which in turn implies that

/ot / / (d (z,y,5))? dedy | ds

/(@202 + (@ -p)? <R+t—s}

<2t // d? (z,vy,0) dedy

{V/(= —20)? + (v — %0)> < R+1}

t 8 e 2
+2/s / // (g—‘; ’) (z,y,m)dzdy | dn | ds
0 0

V(-2 +(@u-w)? <R+t—n}

<2t // d? (z,vy,0) dzdy

{V/(= —20)* + (v — %0)> < R +1}

t e 2
+2t2/0 // (g—g ) (z,y,m) dedy | dn

{\/(@ —20)% + (¥ —y0)> <R+t — 7}

(3.62)
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As noted previously, the assertions of (ii) follow directly from those of (i) and the

governing equations (2.39) - (2.41).
The veracity of (iii) follows from the inequality

0 < m{(z,y,s) € B(o,y0, R, 1)/ () + (13)* — 7 (d°) > 6}

/// (VG + () —7,(d) dadyds

{(2,9,5) € B(zo, 50, R, t)|4/(79)? + (12)2 — 7 (d°) > 6}

IN

//] (VD7 + @87 - VO + (75)?) dedyds

{(2,,8) € B(zo, 90, R, 1)1/ (1) + (19)? — 7, (d°) > &}

+ / / / (1y(d%) — 1 (d°)) dzdyds

{(zvyys) € B(“’OyﬂOvth)l (T1 )2 + (7-2)2 - Ty(do) > 6}

+ /// (VTP + () - 7)) dedyds,
{(z,y,5) € B(zo,y0, R, t)|4/ (70)2 + (7§)2 — 7, (d°) > &}
(3.63)

the strong convergence results of part (i) which guarantee that the first two integrals
on the right-hand side of (3.63) converge to zero as the ¢;’s tend to zero, and from
the observation that the third integral is bounded from above by

/// (Ve )+()—wuﬁ0+mwm

(z0,v0, R, 1)

which in turn is bounded by

9 1/2
(m (B (x0, yo, R, t)))l/2 /// (( + (75 D Ty (de’)) ) dzdyds
B((Eo,yo,R t) +
(3.64)
The identity (3.2) with f given by (3.3) and g by (3.6) guarantees that
2
/// (( +(r5) =7y (de’)> ) dzdyds <
B (z9,y0, R, t) +
€i(pt+P) d
Iz #(T12+T22) ,3((T1+P1)2+(T2+P2)2)2 u?
+ +% 4+ T d z,y,0)dzd
{\/(:E _ z0)2 + (y _ yo)z S R—‘rt} < 2(M+ﬂ) 2([‘+ﬁ) 2 I"_"ﬁ Y (T’) T] ( y ) y

(3.65)

and (3.64) and (3.65) imply that the third integral on the right-hand side of (3.63)
tends to zero as ¢; tends to zero.
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To establish (3.57)-(3.60) in open subsets & of {(z, y,5) € B (w0,y0, R t) [0 < 1/(19)* + (9)” < Ty (do)}
it suffices to show that aa—‘f = 0 on £. Equations (3.43) and (3.44) will then guaran-

tee that aa—pt? = % = 0 and these identities, along with (2.36)-(2.38) will guarantee
that (3.57)-(3.60) hold.
In what follows we let 6 > 0,

(366) Es = {(‘/L'a Y 5) € B("L'Oa Yo, R, t)| (T{))z + (Tg)z — Ty (dO) <-6< 0} .

and observe that

d® 8d° od*
/ / 8—dmdyds / / / < — > dxdyds
0s Os
Es
3.67
(3.67) -
s dxdyds
4 s
EsN { 0d 4 > 0}
The weak convergence of 2 a ' to 94 guarantees that the first integral on the right-

hand side of (3.67) may be made arbltrarlly small. We estimate the second integral
by

1/2

/// (%ei)zdmdyds (E5 A {adel S 0})1/2

B (z0,y0, R, 1)

That the first factor is bounded follows from (3.2) with f given by (3.34) and D = 8t
Thus, it suffices to show that lim m (E5 N {adel > 0}) = 0. To establish this

1—00

assertion we observe that {%61 > 0} = {\/ (T8 + (759)% — 7 (d) > 0}, and that
sm(msn{ge=ol)<  [[[ ( (@) )+ (73)2) dadyds

EsN {%Ei > 0}

< / / / (7y (d°) — 7y (%)) dzdyds

EsN {"’de’ > 0}

v []] (\/<T + (75" —¢<T1°>2+<Tg>2)dmyds.

EsN {adez > 0}
(3.68)




18 J. M. GREENBERG AND D. R. OWEN

The strong convergence results of (i) imply that the latter two integrals tend to zero
as the ¢;’s tend to zero thereby yielding lim m (E,g N {%ei > 0}) =0.
71— 00

4. Computational Experiments. In this section we present some computa-
tional experiments for the dimensionless system (2.36) - (2.41) when the normalized
yield stress is given by

C
(4.1) »@=1+q+4q—cgd—1;d
and
(4.2) 0<ce <ey.

Since the flows associated with this system may be quite complicated we restrict our
attention to problems with Riemann type data where

(4.3) (71, 72,P1,D2,d) (w,y, 0+) =(0,0,0,0,0)
and

N ug, if zy>0
(4.4) u(2,9,07) = { —ug, if zy<O0

where ug is a constant. The solutions generated by this data exhibit a high degree
of symmetry and thus when visualizing them we may confine our attention to one of
the four quadrants (k — 1)Z < 6 < &Z,

k=1, ...,4. The data for u(z,y,0") is not H'°¢ but the functions
( . h h h h
uo,1f:c>Eandy>§0rz<—§andy<—§,
) h h h h
— uo,1f.'v<—§andy>§orw>§andy<—§,
2ug h h h
— - — if —=—<z< > —
ug + 5 <x+2),1f 2_cc_h/2andy_2,
2
uo—w(w—i—h),if—hgwghandyg—h,
N N h 2 2 2 2
u(z,y,07) =
2u, h ) h h
UO—TO<ZI+§),1f—gﬁyﬁ—and$<—§a
2ug h\ . h h h
_ . — ——<y< = > —
ug + 5 <y+2),1f 2_y_QaJndw_T
L N R W I I U I L (R N (.
"k 2) n \YT2) T h2 2)\Y"2)
i~ o< tana Pyt
| i 5 ST< g an 5 SYS< 5

(4.5)
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are H!°¢ and this, together with our LY° contractivity estimate of the previous section,
is sufficient to guarantee that the solution to (2.36) - (2.41) taking on the data (4.3)
and (4.5) has a strong LY limit as h — 0" which satisfies (2.36) - (2.41), (4.3), and
(4.4). This limiting behavior is true when € > 0 is fixed and also in the e = 0" limit
when the rate independent equations (3.52) - (3.60) govern.

Our updating algorithm is as follows. We assume we are given (71, 72, p1, P2, d, u)N (z,v)
on the z — y plane. These represent the approximate solution at time ¢t = (N —1/2) 4
where § is our time step and N > 1. To advance these data we successively solve the
following systems:

on _Ou_, Om _, Ou_9( | _o
(4.6) 5t oz O ot ot ez \ T ayph) "
. 31’1731’2

—6—:0, 0<t<§,

and B = 5 T &

on or,  Ou ou 0 Jé] _
a0 o ey Y a ay<T2+u+ﬁp2)_0’

(4.7)

O _Op2 04 _, gy

and - FE =m0 0st<o

and

0 0 ou
5 (m+p1) = e (e +p2) = 5 0,

(4.8) % B ! (\/‘1'12 + 75— Ty (d))+ % T2 (\/T12 +72 -7y (d))+

Y £ N . 2
oa (VETTE-7,@),

and — = , 0<t<é.
\ ot €

Our principal reason for this splitting is that the systems (4.6) and (4.7) may be

updated exactly by elementary characteristic methods and (4.8) may be easily inte-
grated to any desired order of accuracy via Runge Kutta methods.
For (4.6) we use (71,72,p1,p2,d,u)" as initial data and let (i, 73,01, p3, d*, ut)
denote the solution to (4.6) with these data at time ¢ = §. We then solve (4.7)
using (7{,75,p},p}, d,u') as initial data and let (7,7, p?,p3,d?, u?) denote the so-
lution at t = §. We next repeat the process but first solve (4.7) with the data
(11, 72,01, P2, d,u)" and let (r3,73,p%,p3,d%,u®) denote the solution at ¢ = §. We
then use (7£,73,p%,p3,d%, u?) as data for (4.6) and let (rf,74,pt,p3,d* u?) denote
the solution at ¢ = §. Finally we average the approximate solutions indexed by (2)
and (4) and denote the result as (77, 75,p3,p3,d°, u®); that is

(4.9) (8,735,03,p3, &% u®) = < (7F + 7,73 + 73,0} + 01,05 + P35, d* + d*,u® +ut).

N[ =

We note that this particular approximation represents a second order update to the
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“elastic” wave equation:

g ey 0 (B 0, O

ot oz 0 ot oy ' ot Oz p+ B p+0
6p1_8p2_6d_

ot o o 0sts?
(4.10)

taking on the data (71, 72,p1,Pp2,d, u)N at t = 0 and does better than either of the
approximates labeled 2 or 4; in particular solution symmetries are preserved via the
averaging algorithm.

The final step in our algorithm involves solving (4.8) with the data (7,73, p3, p3, d®, u®).
Over the interval 0 < ¢t < § we have

(4.11) TP =T + P}, T2+ p2 =75 +p5, and u = uP

and

o, n(VETTE-7@) 5, m(VEEE-n@)

ot E\/T12+T22 ’ ot e\/712+722

(4.12)
T O 1)
and — = + .
ot €
If we let
(4.13) 71 = Jcos® and 75 = Jsin O,

then equation (4.12) implies
(4.14) J+d=J°+d> and ©=0° 0<t<§
and

od (JP+d°—d-m,(d),

. — = <t<).
(4.15) p - , 0<t<$

In (4.14), J5 = 1/(r8)” + ($)® and 0 < ©° < 2r satisfies

TP 75
(4.16) cos ©° = 75 and sin©° = N
In what follows we let d® denote our update of (4.15) taking on the data d° at ¢ = 0.
Equation (4.14) then implies that

5 5
R L R A LI S [
(4.17) J? J?

6__ .5 6 .5, .5 .6 6 .5, .5 .6
u’=u’, pi=pi+74—77, and p5=p3+75 —T75.
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Our approximate solution at ¢ = (N + 1/2)4 is given by the update labeled 6. To
obtain the approximate solution at ¢ = §/2 we merely solve (4.8) over the interval
0 < ¢t < §/2 with the prescribed initial data and take the value of their update at
t=46/2 to be (11,72, p1,P2,d, u)l.

The snapshots shown in Figure 1-18 were run with the normalized yield stress
given by (4.1) when ¢; = 1 and ¢ = .5. The parameter ug defining the initial data
was set to 1.5 and we chose § = h = .01. The parameter ¢ was set to 0.1. Surface
renderings of J = /72 + 72,d, and u are shown at times .3, .4, and .5.

The purely one dimensional nature of the solutions away from the corner where
strong interactions take place is evident from these simulations and it is clear from
these calculations that our algorithm captures the sharp contact discontinuities in J
and u correctly. Our algorithm is easy to implement and avoids a number of thorny
issues we would have to contend with if we tried to integrate the reduced ¢ = 0%
equations directly.
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