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Abstract

We show that Vizing’s Theorem holds in the Borel context for graphs

induced by actions of 2-ended groups, and ask whether it holds more

generally for everywhere two ended Borel graphs.

1 Introduction

For a graph G on a set X , let χ′(G) denote the edge chromatic number of
G. That is, the smallest cardinal k such that there exists a function assigning
each edge in G to an element of k such that any two edges incident on the
same vertex are assigned different elements. Such a function is called a k-edge
coloring of G, and the elements of k are called colors. If G is a Borel graph on
a standard Borel space X , let χ′

B(G) denote the Borel edge chromatic number
of G. That is, the smallest cardinal k as above, but where only Borel (as
functions) colorings are allowed.

A classical theorem of Vizing states that if G is a graph of maximum degree
d ∈ ω, χ′(G) ≤ d+1. Note the tirival lower bound χ′(G) ≥ d, so that Vizing’s
theorem implies χ′(G) ∈ {d, d + 1}. We are interested in generalizations of
this theorem to the Borel context. Marks has shown [1] that the direct gen-
eralization fails, but on the other hand, Grebik and Pikhurko have shown [2]
that the generalization holds if ‘Borel’ is weakened to ‘µ-measurable’ for some
Borel probability measure µ on X which is G-invariant.

Recently, Weilacher has shown [4] that some combinatorial bounds which
hold in the measurable context but not generally in the Borel context can still
be salvaged in the Borel context with an additional assumption: that every
connected component of G has two ends. In the spirit of this, we show in this
note the following:
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Theorem 1. Let Γ be a marked group with two ends, say with d generators.

Let G be the shift graph of Γ, so that G is d regular. Then χ′

B(G) ≤ d+ 1.

One purpose of this note is to pose the question of whether the assumption
in Theorem 1 that G be generated by a group action is necessary, which seems
to be open.

Problem 1. Let G be a Borel graph of maximum degree d such that every

connected component of G has two ends. Is χ′

B(G) ≤ d+ 1?

2 Proof

In this section we prove Theorem 1. The proof is very simple and intuitive,
but it takes some time to write down all of the details

Proof. Fix a two ended marked group Γ with symmetric generating set S of
size d. It is well known that since Γ has two ends, there is a finite normal
subgroup ∆ ≤ Γ such that Γ/∆ ∼= Z or D∞ = 〈a, b | a2 = b2 = id〉. Let us
start with the former case for ease of notation. The latter case can be handled
in the same way and will be addressed at the end of this section.

Partition S as S =
⊔

n∈Z
Sn, where Sn = {γ ∈ S | γ = n}, where γ

denotes the image of γ in the quotient Γ/∆ identified with Z. Note that
S−n = S−1

n = {γ−1 | γ ∈ Sn} for each n. Let dn = |Sn| for each n, so that∑
n
dn = d.
Let G be the shift graph of Γ with vertex set X . Let Y be the standard

Borel space of ∆-orbits of X . The action of Γ on X descends to an action
of Z on Y . Let H denote the Borel multigraph on Y defined by placing an
edge between y and n · y for each γ ∈ Sn for n > 0 and y ∈ Y . In other
words, the number of edges between y and n · y in H is always dn for n 6= 0.
Let k =

∑
n>0

dn, so that H is 2k-regular. We claim that H admits a Borel
2k+1-edge coloring. Since H is generated by an action of Z, it suffices to just
prove our main Theorem when Γ = Z and multiplicity for the generators is
allowed:

Lemma 1. Theorem 1 holds when Γ = Z, even when multiplicity for genera-

tors is allowed.

It should be noted that Vizing’s Theorem fails in general for multigraphs,
(although there is a generalization which still holds) so this lemma is somewhat
surprising. We now prove it:
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Proof. Keeping in line with the notation established so far, let H be the shift
graph of Z with our generating set with vertex set Y . Let 0 < n1 ≤ n2 ≤
· · · ≤ nk list the positive generators with multiplicity, so that H is 2k-regular.

Let G′ be the graph on Y induced by the action of Z with usual generators
±1.

We first show the following: Let A ⊂ Y be a Borel subset of our shift
graph such that the induced subgraph G′ ↾ A has connected components all
of size at least 2, and such that A is recurrent. That is, for each x ∈ Y , there
are m, l > 0 such that m · x ∈ A and (−l) · x ∈ A. Then there is a Borel
3-edge coloring of G′, say using the colors 1,2, and 3, such that the color 3
only appears on edges between points in A.

First, by the recurrence of A, we can clearly find a Borel G′-independent
recurrent set B ⊂ Y such that if x, y ∈ B are distinct points in the same con-
nected component of G′, the unique path between them in G′ passes through
A. Suppose x, y ∈ B such that y = N · x for some N > 0 and there are no
points of B between x and y in the graph G′.

We need to color the edges between x and y. If N is even, we color the
edge (m · x, (m+ 1) · x) with the color 1 for m even and the color 2 for m odd
for 0 ≤ m < N . If N is odd, let 0 < M < N −1 be minimal with the property
that M · x ∈ A. This exists by definition of B, and then (M + 1) · x ∈ A by
definition of A. Accordingly, we color the edge (m · x, (m + 1) · x) with the
color 1 for m even and the color 2 for m odd for 0 ≤ m < M , then color the
edge (M ·x, (M+1 ·x)) with the color 3, then color the edge (m ·x, (m+1) ·x)
with the color 1 for m odd and the color 2 for m even for M < m < N . Note
that for each x ∈ B, (x, 1 · x) has color 1 and (−1 · x, x) has color 2, so we do
indeed end up with a coloring. Furthermore, the color 3 was clearly only ever
used for edges between points of A.

Now, returning to our original goal, we begin by partitioning Y into k Borel
recurrent sets A1, . . . , Ak such that for each i, the connected components of
G′ ↾ Ai each have size at least 2nk. By a result from [3], we can start by finding
a Borel maximal 2nk-discrete set B. In particular B will be recurrent. We
can then partition B into k many recurrent sets B1, . . . , Bk using, for example,
that same result. Now, for each i and each x ∈ Bi, there will be a smallest
N > 0 such that N · x ∈ B. We then include m · x ∈ Ai for each 0 ≤ m < N .
This clearly works.

Now, fix one of our generators ni. Consider only the edges in H corre-
sponding to this generator, and call the resulting (simple) graph Hi. Abusing
language slightly, observe that since ni ≤ nk, our set Ai will be recurrent for
the graph Hi (more precisely, for each y ∈ Y , there are m, l > 0 such that
mni · y and (−l)ni · y ∈ Ai), and all the connected components of Hi ↾ Ai will
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have size at least 2. It follows from the statement of paragraph 3 of this proof
that we can Borel edge color Hi, say using the colors 2i, 2i+1, and 2k+1, such
that the color 2k + 1 is only used for edges between vertices in Ai. Do so for
each i. Now, the sets of colors we used for each Hi were disjoint, save for the
color 2k + 1. This was only used to color edges between points in Ai, though,
so since the Ai’s are pairwise disjoint, this will not cause any conflicts. Thus
in the end, we have a Borel edge coloring using the colors 1, 2, . . . , 2k + 1, as
desired.

We now return to our proof of Theorem 1 in the case Γ/∆ ∼= Z. Fix a
Borel 2k + 1-edge coloring c of H , say using the colors 1, 2, . . . , 2k + 1

Let γ ∈ Sn for some n > 0. For each ∆-orbit y, γ corresponds to an edge
from y to n · y in H . Suppose c assigns the color l to that edge. Then let
us give the edges (x, γ · x) in G the color l for each x ∈ y. Of course, since
x 6= x′ ⇒ γ · x 6= γ · x′, this does not cause any conflicts. Also, since c was a
coloring of H , doing this for all γ ∈ S \ S0 does not cause any conflicts.

It remains to color the edges corresponding to generators in S0. These are
the edges within each ∆-orbit. For every such orbit y, the induced subgraph
G ↾ y is d0-regular, so by Vizing’s theorem it can be d0 + 1-edge colored, say
with the colors 2k + 2, . . . , 2k + d0 + 2 = d + 2. Since there are only finitely
many such colorings for each orbit, we may choose one of them for each orbit
in a Borel fashion. We have now d + 2-edge colored our graph G in a Borel
fashion.

Finally, for each ∆-orbit y, there must be some color l ∈ {1, . . . , 2k + 1}
which does not appear on any edges incident to y in our coloring c of H , since
H is 2k-regular. This means that, in our d+2-edge coloring above, none of the
edges incident to a point in y have the color l. Therefore, in the d0+1-coloring
of y we have, we may replace the color d+ 2 with the color l without causing
any new conflicts. Doing so, we improve our coloring to a d+1-edge coloring,
and so are done.

Finally, let us address the case Γ/∆ ∼= D∞. The argument which showed
the sufficiency of Lemma 1 was completely general, so here it suffices to show

Lemma 2. Theorem 1 holds when Γ = D∞, even when multiplicity for gen-

erators is allowed.

This can be proved similarly to Lemma 1. If γ ∈ D∞ is an order two
element, no two of the edges it corrresponds to share an edge, So they can
be Borel colored with a single color. Else, γ has infinite order, so the edges
corresponding to γ and γ−1 can be Borel 3-colored. As in the proof of Lemma
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1, the third color here can be the same for every such γ, and used sparsely
enough for each γ so that there is no conflict in the end.

Thus, Theorem 1 is proved.
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